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ABSTRACT: The frame problem is a special case of the problem of induction. It
has at least three aspects: (a) When can we know when something is going to
change? (b) When can we know when something is not going to change? (c)
What can we do when we don’t know the answer to (a) or (b)? The solution
to the frame problem, like the solution to the problem of induction, requires
adopting an account of the nature of laws of which David Hume would have
disapproved. Its solution is not merely a matter of implementation.

1. INTRODUCTION

The conundrum that is known as “the frame problem” within Al is but a special case of
a very familiar problem within the theory of knowledge, a problem first emphasized by
David Hume. Hume thought our knowledge of the future represented mere “habits
of mind” fashioned on the basis of past experience, which create psychological
expectations that are ultimately not amenable to rational warrant. The problem
of induction as Hume viewed it was one of justifying some inferences about the
future as opposed to others. The frame problem, likewise, is one of justifying some
inferences about the future as opposed to others. The second problem is an instance
of the first.

Bertrand Russell was a 20th century student of Hume’s 18th century problem.
Russell observed that this problem cannot be solved simply by postulating that the
future will be like the past. Any postulate which asserts that the future will be like
the past in every respect, after all, appears to be false. Indeed, change appears to be
an inevitable feature of the passage of time. Any postulate which asserts that the
future will be like the past in some respects, by comparison, appears to be true. But
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the problem can only be resolved if we know the ways in which it will change and
the ways it will not. The postulate that is true is trivial, alas, while the postulate that
is significant is false.

The purpose of this paper is to suggest that the frame problem, like the problem
of induction before it, can be resolved by means of a theory about the nature of
natural laws. This theory implies that laws cannot be violated and cannot be changed.
It satisfies Russell’s concern because it specifies the respects in which the future will
be like the past. It agrees with Hume to the extent to which our knowledge about the
laws of nature must always be uncertain as a product of fallible inductive reasoning.
But it differs from Hume in rejecting the position that every justifiable idea has to
be reducible to impressions from experience or deductive consequences that follow
from them.

2. THERE ARE AT LEAST THREE
ASPECTS TO “THE FRAME PROBLEM”

There are various versions of “the frame problem.” Some authors even regard it
as a matter of implementation in an appropriate programming language. Although
issues of implementation are not irrelevant to the solution of this problem as a
practical difficulty, they cannot be dealt with in the absence of resolution of the
deeper problem of the extent to which the future will resemble the past. Without
knowledge about the future (even though it must be fallible and uncertain), it would
be impossible to resolve matters of implementation. Without a resolution to the
problem of induction as it is encountered in Al, in other words, there would be no
solution to implement.

Other authors have appreciated the character of this problem, whether or not
they have understood its relationship to the illustrious predecessor to which it stands
as a special case. Eugene Charniak and Drew McDermott, for example, have provided
an appropriate depiction of its general dimensions:

The need to infer explicitly that a state will not change across time is called the
frame problem. It is a problem because almost all states fail to change during
an event, and in practical systems there will be an enormous number of them,
which it is impractical to deal with explicitly. This large set forms a “frame”
within which a small number of changes occur, hence the phrase. (Charniak &
McDermott, 1985, p. 418)

The basic problem is one of ascertaining which states change and which do not change
during a temporal sequence. But that is not the only issue, even when problems of
implementation are temporarily left to one side. We also need to know what to do
if we don’t know the answer to the basic problem.

From this perspective, what is known as “the frame problem” actually possesses
at least three different aspects, which can be indicated as follows:

(a) How can we know when something is going to change?
(b) How can we know when something is not going to change?
(c) What can we do when we don’t know enough to know (a) or (b)?
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The answers to these questions depend upon causation and laws. Causes, of course,
“bring about” changes from state S1 at time ¢1 to state S2 at time 2. Causal laws
themselves, in turn, may be deterministic (= u =>) or probabilistic (= p =), where
the difference between them concerns the strength of the causal tendency for the
conditions whose simultaneous presence constitutes the state S1 to bring about an
outcome of the kind whose presence constitutes S2.

Whether a law is deterministic (by characterizing conditions that invariably and
without exception bring a certain outcome about) or is probabilistic (by characterizing
conditions that probably and only with exceptions bring a certain outcome about),
the antecedents of those laws have to be maximally specific. This means that, for a
specific outcome 4, every factor F1, F2, ..., Fm, whose presence or absence makes
a difference to the occurrence of that outcome has to be taken into account in
formulating any sentence describing such a law. If even one property that makes a
difference is not reflected by a corresponding predicate, a sentence that describes
that law cannot be true.

The requirement of maximal specificity can be formalized and this theory of
laws can be elaborated in detail (Fetzer, 1981, Pt. I). The purpose of this essay
might be better served, however, by illustrating its application to a few specific cases
instead. These cases exemplify the kinds of difficulties that can be encountered when
the requirement of maximal specificity is overlooked or ignored. Cases of the first
kind display the problem of missing conditions, of the second kind the problem of
interfering (or of “counteracting”) conditions, and of the third kind the problem of
unusual conditions.

(1) Consider, for example, an attempt to light a match. It might be the case
that the match is dry, is of a correct chemical composition, has not been exposed to
rain or otherwise been made wet, etc. Nevertheless, that match would not light, no
matter how many times you were to strike it, unless oxygen were present. Thus, when
even one factor whose presence or absence makes a difference to the occurrence of
that phenomenon is not present, the outcomes that otherwise should be expected to
occur (either invariably, if the law is deterministic; or probably, if it is probabilistic)
may not occur at all.

(2) Consider, for example, an attempted suicide. There are two kinds of poison,
which are alkaline and acidic, respectively. Suppose that, under ordinary conditions,
rather large doses of either poison would be sufficient to induce death. Consuming
that amount of either poison would ordinarily bring death about. But a very serious
person who wanted to guarantee his death might decide to drink large doses of them
both. Since alkaline poison counteracts the effects of acidic poison, especially when
consumed in equal doses, the result of this deliberate attempt to end life would not
do so at all.

(3) Consider, for example, an attempted murder. Under ordinary circumstances,
no doubt, stabbing a person through the heart with a knife is sufficient to bring about
his death. There are, however, some unusual conditions under which that would not
occur. Thus, were the victim a patient about to undergo a heart transplant operation
whose blood was being circulated artificially by means of a heart-lung machine, then
even though a knife were stabbed directly through his heart, that would not bring
about his death at all. Such cases might be rare, but they are obviously possible.
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I would like to believe that these illustrations suggest that “common sense” (or
“ordinary”) knowledge is not enough to provide a firm foundation for resolving the
frame problem. The idea of counting on the haphazard and unsystematic accumu-
lation of beliefs that occurs throughout our daily lives for sufficient information to
anticipate the occurrence of future events is faintly ridiculous. What is required is
the kind of knowledge we only possess when we have discovered those causal laws
whose operation governs the processes and outcomes concerning us. There is no
other way.

No problems can be solved unless we are willing to embrace answers that have
the potential to solve them. As in the case of the problem of induction itself, the
frame problem can only be overcome by adopting a theory of the nature of natural
laws that goes beyond what Hume’s theory of knowledge would permit. I have already
developed the case against Hume (Fetzer, 1981, Ch. 7), and I have discussed the
peculiar limitations of common sense in another place (Fetzer, 1990, Pt. II). Here
I shall simply assume the positions that I have elaborated there and consider their
implications.

3. HOW CAN WE KNOW WHEN SOMETHING IS GOING TO CHANGE?

The relation between causation and change, in principle, is simple and straight-
forward, since causes bring about changes. In practice, of course, things are more
complicated, because knowledge of causal relations can be ascertained only on the
basis of systematic investigation. While the aim of scientific inquiry is the discovery
of natural laws, the knowledge that such research can provide is always fallible
and uncertain. It is always possible—and sometimes happens—that beliefs about
laws of nature are affected by later observations and experiments. While laws of
nature themselves cannot change, our beliefs about what are the laws of nature may
change. Nevertheless, at least two different kinds of inferential situations can arise
as a function of the kind of law that subsumes the phenomena under consideration.
The first presupposes that we possess knowledge of a deterministic law of the form,

(DL-1) (x)(t)[(Filxt & F2xt& ... &« Fmxt) = u = Axt*|

which asserts that an occurrence of conditions F1, F2, ..., Fm (invariably, with
universal strength) brings about an occurrence of an outcome of kind A (where time
t* occurs some definite interval of time later than time ¢).

When knowledge of a deterministic law of form (DL-1) is available, it is possible
to formulate a predictive argument with a demonstrative form, which exemplifies
deterministic-deductive inferential situations generally:

(DL-2) ) [(Flxt &F2xt & ... & Fmxt) = u = Axt*]
Flat1& F2atl& ... & Fmatl

[u]

Aatl*



The Frame Problem: Arificial Intelligence Meets David Hume 223

In this case, knowledge of the occurrence of an instance of the conditions that
are specified by that law permits a deductive inference to be drawn concerning the
occurrence of an outcome of a corresponding kind. The logical relationship between
the premises of this prediction and its conclusion are those of complete entailment.
Such arguments are deductively valid.

The second kind of inferential situation that can occur arises when laws are
known, but they are not deterministic laws of kind (DL-1). These cases presuppose
that we possess knowledge of a probabilistic law of the form,

(PL-1) X))N(Flxt &F2xt& ... « Fmxt) = p = Axt*]

which asserts that an occurrence of conditions F1, F2, ..., Fm (probably, with
probabilistic strength) brings about an occurrence of an outcome of kind A. Thus,
laws of form (PL-1), unlike those of form (DL-1), are compatible with the occurrence
or the non-occurrence of outcomes of kind A.

When knowledge of a probabilistic law of form (PL-1) is available, it is possible
to formulate a predictive argument of non-demonstrative form which exemplifies
probabilistic-inductive inferential situations generally:

(PL-2) @E)O)[(Flxt &F2xt& ... & Fmxt) = p = Axt*|
Flat1& F2atl1& ... &Fmatl

(]

Aatl*

In this case, knowledge of the occurrence of an instance of the conditions that are
specified by that law permits an inductive inference to be drawn concerning the
occurrence of an outcome of a corresponding kind. The logical relationship between
the premises of this prediction and its conclusion are those of partial entailment.
Thus, such arguments are deductively invalid.

At least two significant features of arguments of form (DL-2) and form (PL-2)
deserve to be emphasized. The first is that a single line between the premises and the
conclusion of (DL-2) indicates that this relationship is one of deductive validity, while
the double line between the premises and the conclusion of (PL-2) indicates that
this relationship is one of inductive propriety instead. The second is that the number
in brackets [n] indicates the degree of nomic expectability with which the truth of
the conclusion ought to be expected given the truth of the premises. It reflects a
nomic expectability for each single trial and approximates a relative frequency over
long runs of trials.

Strictly speaking, the satisfaction of the requirement of maximal specificity
means that the system thereby described is a “closed system” in relation to the
occurrence of a corresponding outcome. For cases of closed systems, it is possible
to predict—with deductive certainty or with probabilistic confidence—precisely how
those systems will behave over the interval of time ¢ — ¢* (when those properties are
instantiated at time ¢ and the outcome occurs at #*), so long as the laws of systems of
those kinds are known. Issues of 1mplementanon only become important problems

at this juncture.
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4. HOW CAN “CONVERSATIONAL SCOREKEEPING” HELP?

Conversational scorekeeping is a phrase describing the tacit assumptions at work
in a conversation between two persons on a subject where inferences based upon
premises are involved (Lewis, 1973). Ordinary conversations, of course, may transpire
over an extended period of time, where various assumptions between its participants
can remain constant across time. The following pattern might occur as part of a
conversation:

(OC) an ordinary conversation:
Agree on premise (a) at t1: (a) porg
Agree on premise (b) at £2: (b) - p
Entitled to deduce (c) at t3: (c) ¢

where 12 might occur long after ¢1, for example, assuming that nothing intervened
in the meanwhile to affect these participants in their beliefs.

Analogous patterns of conversation can be discerned within the context of sci-
entific discourse. The following pattern might occur as part of a scientific experiment
involving the application of some established law:

(SC) a scientific conversation:

Assume law (L1) at ¢1: (L) (Flatl& ... &Fmatl)=n = Aatl*
Agree about (F1) at #2: (F1) Flatl

Agree about (F2) at #3: (F2) F2atl

Agree about (...)atr...:  (...)

Agree about (Fm) at tm: (Fm) Fmatl
Entitled to infer (A) at tn: (A) Aatl*

The strength of the inferential relationship between the premises (L1)-(Fm) and the
conclusion (A) in such cases depends upon and varies as a function of the strength of
the causal tendency n, which in turn generates the degree of nomic expectability [r]
with which that conclusion follows. In deterministic-deductive inferential situations,
of course, n will equal u, and in probabilistic-inductive inferential situations, n will
equal p instead.

The combination of conversational scorekeeping and the requirement of maxi-
mal specificity suggests a solution for the problem of implementation. The function
cond in LISP (Wilensky, 1984, p. 55), for example, offers one among many means
for representing causal reasoning when maximally specific causal antecedents are
known. The cond function, (Fun 1),
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(Funl) (cond (exp 11 exp 12 exp 13 ...)
(exp 21 exp 22 exp 23 ...)
(exp 31 exp 32 exp 33 ...)

(exp nl exp n2 exp n3 ...))

executes in the following fashion. LISP examines the first cond clause, where each
sequence (exp 11 exp 12 exp 13 ...) qualifies as one clause. If the first element of
that clause is true (not-nil), it continues down that clause until it comes to the end.
When they are all true, LISP returns the last element of that clause as its value and,
otherwise, nil.

This function can be readily adapted for the purpose of implementing the
patterns of reasoning that we have been discussing here. Notice, in particular, that
it can implement patterns of conversation such as (SC):

(Fun2) (cond (F1xt F2xt ... Fmxt Axt*)
(Fixt -F2xt ... -Fmxt -Axt*)
(-F1xt F2xt ... Fmxt Axt*)

(-F1xt -F2xt ... -Fmxt -Axt*))

The use of functions such as cond, therefore, can be employed to implement rep-
resentations of scientific knowledge of causal laws of the kind (DL-1) and, with
suitable enhancements, of the kind (PL-1). This illustration implies that even issues
of implementation can likewise be resolved.

5. HOW CAN WE KNOW WHEN
SOMETHING IS NOT GOING TO CHANGE?

The second version of “the frame problem,” by comparison, concerns when we can
know that something is not going to change. The persistence of a specific factor Fi
from time ¢ to time ¢* itself can be subjected to systematic prediction when we possess
knowledge of all those factors whose presence or absence would make a difference
to the presence or absence of Fi during that interval. Suppose, for example, that a
deterministic law is known which relates the existence of Fi at ¢ to the existence of

Fi at t*:
(DL-3) (x)®)[(Fixt&Txt)=u= Fixt*]

A law of this form asserts that conditions Fi continue to endure through the temporal
interval from ¢ to ¢*, so long as condition T also obtains at .
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When knowledge of a deterministic law of form (DL-3) is available, it is possible
to formulate a predictive argument with a demonstrative form that predicts that Fi
instantiated at time ¢ will remained unchanged at ¢*:

(DL-4) X)O(Fxt&Txt)=u= Fixt*]
Fiat1& Tatl

[u]

Fiat1*

where “T” specifies the presence or the absence of each factor whose presence or
absence makes a difference to the possibility that Fi might change or not (i.e., every
relevant property in relation to that outcome from ¢ to t*).

As a simple example, note that an instance of an argument of the deductive
form (DL-4) might predict that the barbecue coals would continue to burn from
the time they were ignited at ¢1 to the time the steaks were placed on the grill at
12, provided that they were burning properly at #1 and “nothing happened” (say, a
rain storm, an errant hosing-down, etc.) to bring that process to an end. But laws
of this kind, like all other scientific laws, must be maximally specific and overlook
no relevant property at all. There need to have been enough properly-ignited coals
to begin with, etc.

Once again, there are probabilistic counterparts. A probabilistic law might be
known relating the existence of Fi at ¢ to the existence of Fi at ¢*:

(PL-3) x)O)[(Fixt &Txt)=p= Fixt*]

A law of this form asserts that conditions Fi tend to endure (with probability p)
through the temporal interval from ¢ to t*, provided condition T obtains at ¢ also. The
truth of a probabilistic law of form (PL-3) not only provides no guarantee that the
conditions Fi must continue to endure but even implies that they will not continue
to endure with probability 1 — p!

When knowledge of a probabilistic law of form (PL-3) is available, it is possible
to formulate a predictive argument with a non-demonstrative form predicting that
Fi instantiated at ¢ will probably be unchanged at ¢*:

(PL-4)  (x)()[(Fixt & Txt)=p= Fixt*)
Fiat1& Tatl

(P]

Fiat1*

where, as before, “T” specifies the presence or the absence of each factor whose
presence or absence makes a difference to the possibility that Fi might change.
Corresponding arguments could be constructed for alternative outcomes that might
occur in lieu of Fi under the same conditions.
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As a less simple example, note that an instance of an argument of the inductive
form (PL-4) might predict that a particular atom of polonium?!8 at time ¢ would
remain intact by time #*, where t* = ¢ + 3.05 minutes (with probability p equal to
one-half), provided that it is not subjected to nuclear bombardment, etc., because
the half-life of polonium?!8 is 3.05 minutes. A corresponding argument of a similar
form might predict that that same atom would undergo decay during that same
temporal interval (with probability one minus p), under the very same conditions,
of course, because this is a probabilistic, rather than a deterministic, phenomenon.

Notice that the laws and arguments considered in Section 3 were all concerned
with closed systems, relative to which a specific outcome event, 4, will or will not
occur. The laws and arguments considered in Section 4 are also concerned with
closed systems, relative to which a specific set of conditions, such as Fi, may or
may not endure from time ¢ to time ¢*. Indeed, even when Fiat happens to be a
closed system in relation to an outcome of kind Aat*, this does not mean that those
conditions must endure forever. A sugar cube left in its box on the shelf in a dry
pantry, for example, tends to persist as a cube of sugar, but not when it’s dropped
into a cup of hot coffee.

Perhaps it ought to be emphasized that these argument forms serve to establish
the degree of nomic expectability with which the occurrence described by their
conclusions should be expected, given the truth of the sentences that constitute their
premises. They do not indicate whether a degree of nomic expectability of .6, for
example, is strong enough to support a specific decision. When the prospects for fair
weather are .6, the prospects for other-than-fair weather are .4. Whether or not the
family should depart for a picnic under these conditions concerns decision-making
policies that go far beyond the scope of nomic expectabilities as such.

6. WHAT CAN WE DO WHEN WE DON'T
KNOW ENOUGH TO KNOW (A) OR (B)?

The inferential situation is somewhat more complicated than it has been described
thus far, because predictions can be made on the basis of statistical knowledge of
relative frequencies in the past as well as on the basis of inductive knowledge of
natural laws. The benefit of inferences drawn on the basis of natural laws, however,
is that laws as properties of the world cannot be changed and cannot be violated.
Laws that have obtained in the past will obtain in the future, necessarily, as functions
of the “permanent property” relations which they embody (Fetzer, 1981).

The hazard with inferences drawn on the basis of relative frequencies, therefore,
is that relative frequencies as properties of the world can be violated and can be
changed. Frequencies that have obtained in the past need not obtain in the future,
necessarily, as functions of the “transient property” relations that they may represent.
That 100%)/50%/whatever% of the Volkswagens sold in America in the past have
been painted grey, for example, provides no guarantee that 100%/50%/whatever%
of the Volkswagens sold in America in the future will also be painted grey.
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The underlying distinction is one between relations between properties (such
as the atomic number of things that are gold and their malleability, conductivity,
melting points, boiling points, etc.) that cannot be violated and cannot be changed
(because there are no processes or procedures, natural or contrived, that could
separate instances of the atomic number 79 and the possession of those attributes)
and those that can be violated and can be changed (because there are processes or
procedures, such as repainting a car), that can separate instances of those properties
(such as being a Volkswagen) from those attributes (such as being painted grey).

We can refer to this situation as reflecting the predictive primacy of scientific
knowledge (of natural laws) over other kinds of beliefs concerning the future, however
rational. Nevertheless, there are conditions within which scientific knowledge (of
natural laws) may be unavailable, while knowledge of relative frequencies, especially,
may be available. Suppose, for example, that the causally relevant factors that bring
about outcomes of a certain kind are either not finite or not known. Then the best
knowledge available to us may turn out to be knowledge of relative frequencies.

Under these conditions, the strongest forms of inference that turn out to be
possible may have to be based upon assumptions concerning so-called normal,
typical, or standard situations. “Case-based” and “script-based” reasoning, in fact,
exemplify this practice. From a statistical point of view, of course, these “norms”
might be defined as means, as modes, or as medians. In any case, they are amenable
to exceptions, even if they happen to reflect constant conjunctions (100% relative
frequencies) that have had no exceptions in the past. Unless these relations are
displays of natural laws, there are conditions under which they can be violated or
can be changed.

The different kinds of inferential situations that can be encountered as a function
of the different kinds of knowledge that might be available, therefore, can be
summarized by means of a series of epistemic theorems. When we possess knowledge
of causal laws and specific conditions, for example, the following epistemic theorems
obtain in a knowledge context K:

(ET-1)  When ‘(x)())[(Flxt & F2xt & ... & Fmxt) = u = Axt*]” and ‘Flatl
& F2atl & ... & Fmatl’ belong to a knowledge context K, then the
nomic expectability of ‘Aaf1*’ in K is u;

(ET-2)  When ‘x)(O)[(Fxt & F2u¢ & ... & Fmxt) = p = Axt*]” and ‘Flatl
& F2atl & ... & Fmat1’ belong to a knowledge context K, then the
nomic expectability of ‘4at1*’ in K is p; and,

(ET-3)  When ‘x)(O)[(Flxt & F2xt & ... & Fmxt) = u = Aat*] and ‘—Aar1®
belong to a knowledge context K, then the nomic expectability of
‘~(Flatl & F2atl & ... & Fmatl)’ in K is u.

When we lack knowledge of causal laws but possess knowledge of relative
frequencies, by contrast, then the following epistemic theorem obtains:

(ET-4)  When ‘P(Axt*/Fixt & F2xt & ... & Fmxt) = f’ and ‘Flatl & F2atl &
... & Fmat1’ belong to a knowledge context K, then the “qualified-
instance” expectability of ‘Aar1*’ in K is f,
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where ‘P(...[) = f’stands for the relative frequency f with which properties of kind
... occur in relation to properties of kind —_ and “qualified-instance” expectability
reflects the best available estimate of the relative frequency for outcomes of that
kind within that reference class. These values, in turn, can be utilized as “weights”
for the next single case (Fetzer, 1983). (ET-4) thus affords a principle of predictive
inference that can be employed on the basis of empirical knowledge of mere relations
of relative frequency.

7. WHAT GENERAL CONSEQUENCES
FOLLOW FROM THIS ANALYSIS?

Our knowledge of natural laws, of course, arises from empirical procedures employing
inductive inference and can never be certain or be infallible. The most difficult task
that science confronts, from this point of view, is that of separating good guesses
from bad guesses about the laws of nature. And, as Karl Popper, especially, has
emphasized, this process involves testing laws by attempting to refute them (Popper,
1968). Only by sincere attempts to show that a guess is wrong can we accumulate
evidence that a guess might be right. Such evidence is always inconclusive, however,
precisely because, when our guesses survive our best efforts to refute them, this does
not show that they are correct. We may have not yet discovered how to refute them!

This means that a proper understanding of Popperian methodology entails ap-
preciating the difference between the negative significance of successful attempts to
refute an hypothesis, on the one hand, and the positive significance of unsuccessful
attempts to refute an hypothesis, on the other. Although the tentative elimination
of mistaken guesses about natural laws is an indispensable element of scientific pro-
cedure, deductive inference alone cannot possibly be enough. Without the tentative
acceptance of hypotheses that have withstood our best efforts to refute them, it
would be impossible to acquire the kind of knowledge that we need to explain the
occurrence of events in the past or even to predict the occurrence of events in the
future.

The crucial ingredient in resolving Hume’s problem of induction is thus the same
crucial ingredient required to solve the frame problem. Knowledge of natural laws
exceeds the epistemic resources that Hume would permit, a fateful blunder that has
affected the history of philosophy ever since. For Hume insisted that every justifiable
idea has to be reducible to impressions from experience or deductive consequences
that follow from them. But he should have insisted instead that every justifiable
idea has to be reducible to impressions from experience or inductive consequences
that follow from them. That would support inference to natural laws, even if our
knowledge of laws will always be uncertain as a product of fallible inductive reasoning.

This essay must conclude with at least two important qualifications. An exact
analysis of the problem of induction would require refinements which have been
ignored within this context. These are discussed in other places, however, to which
references have been made. A complete analysis of the frame problem, similarly,
would acknowledge that unsolved (and possibly insoluble) issues of implementation
yet remain. When laws involve more than finitely many relevant properties (if any of
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them do) or only a finite but large number that exceeds the programming capacity
of our available machines, then the frame problem cannot be solved in practice.
Whether or not the frame problem can be solved, therefore, ultimately depends
upon its specific formulation. But the solution to the frame problem is never just a
matter of implementation in an appropriate programming language.

APPENDIX A: HOW ARE PREDICTIONS
RELATED TO EXPLANATIONS?

The most influential account concerning the nature of arguments involving laws
is known as the “covering law theory.” Its principal proponent has been Carl G.
Hempel, who, in a sequence of important papers, has argued for what is referred to
as “the symmetry thesis” (Hempel, 1965). According to the symmetry thesis, every
adequate explanation is potentially an adequate prediction (i.e., the same premises
that explain the occurrence of an outcome could have served as premises for its
prediction, were they taken account of in time, and conversely). In his later work,
however, Hempel acknowledged that some premises suitable for prediction are not
suitable for explanation.

Hempel’s observation has a great deal of relevance for the views which have
been presented here. Predictive inferences that are based upon relative frequencies,
such as those supported by (ET-4), for example, are entirely lacking in explanatory
significance. This may appear obvious, since these predictions do not involve in-
ferences from laws. Other instances of predictions that do involve inferences from
laws, such as those supported by (ET-3), however, are also lacking in explanatory
significance, which is far more surprising. Indeed, cases of this kind provide conclu-
sive evidence that the symmetry thesis itself, although plausible, ultimately cannot
be sustained.

Consider, for example, every law concerning those conditions relative to which
the death of a human being would be brought about. In order to emphasize the
point at issue, let us restrict our attention only to sufficient conditions, such as being
stepped on by an elephant (being run over by a steamroller, etc.). Every human being
is such that, if he were stepped on by an elephant (were run over by a steamroller,
etc.), his death would be brought about thereby. For all of us who are still alive,
therefore, an inference from laws can be made to the conclusion that we have not
been stepped on by an elephant (and have not been run over by a steamroller, etc.).

These arguments, of course, satisfy the conditions called for by inferences that
satisfy (ET-3), which exemplifies a special case of the principle known as modus
tollens. Arguments involving inferences that satisfy (ET-1) and (ET-2), by comparison,
can fulfill the appropriate conditions for an adequate prediction to be an adequate
explanation as well, so long as their premises are not just believed to be true but
actually are true. Arguments that satisfy (ET-3), however, fulfill the conditions that
are required to be an adequate prediction but not those required to be an adequate

explanation, even when their premises are true and are not merely believed to be
true.
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So the symmetry thesis itself is not tenable. Even the thesis that every argument
involving inferences from laws is a potential explanation turns out to be unjustifiable.
If you have any doubts, ask yourself what it would take to explain why you have never
been stepped on by an elephant (run over by a steamroller, etc.). On the other hand,
arguments involving inferences from relative frequencies are never explanatory. That
an argument involves an inference from laws turns out to be a necessary, but not
a sufficient, condition for it to be an explanation. There is more to explanation
than inference from laws, just as there is more to nomic explainability than nomic
expectability.

APPENDIX B: WHAT DOES IT TAKE FOR
AN EXPLANATION TO BE ADEQUATE?

Another important respect in which prediction differs from explanation suggests
another reason why inferences from laws and nomic expectability may not produce
adequate explanations. The prediction that a large sugar cube would dissolve were
it dropped into a cup of hot coffee should not be faulted merely because it refers
to certain properties (the size of the sugar cube, the shape of the sugar, etc.) whose
presence or absence makes no difference to the occurrence of that outcome: (refined)
sugar, after all, would dissolve in a cup of hot coffee, whether it were a large cube,
a spoonful, etc. (Even the amount of coffee and its temperature may be causally
irrelevant—at least, as long as it is not frozen!)

Although we might argue about specific features of this example—say, if the
sugar cube were larger than the cup and therefore could not fit into it, thereby
preventing it from dissolving, then its size would be relevant—the issue that arises
here ought to be clear. In the case of predictions, the presence or absence of properties
whose presence or absence makes no difference to the occurrence of an outcome is
permissible and innocuous. But in the case of explanations, the presence of properties
whose presence or absence makes no difference to the occurrence of their outcome
is misleading and unacceptable. (See, for example, Salmon, 1971, pp. 29-87.)

The requirement of maximal specificity (RMS) itself insures that every sentence
that describes a law can be true only when the presence or absence of every property
whose presence or absence makes a difference to the occurrence of the outcome of
interest is included in the antecedent of that law. The requirement of strict maximal
specificity (RSMS) insures that only properties whose presence or absence makes
a difference to the occurrence of the outcome of interest can be included in the
antecedent of laws that appear in the premises of arguments that are intended to
be explanatory. The requirement of strict maximal specificity is what we need.

Indeed, once this additional condition has been acknowledged, it is possible
to formalize the requirements that an adequate explanation must satisfy. Because
explanations are arguments which have premises and conclusions, it has become
standard terminology within the theory of explanation (following Hempel) to refer
to the premises of an explanation as its “explanans” and its conclusion as its “ex-
planandum.” An adequate explanation, thus understood, must satisfy the following
four general requirements, namely:
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(CA) A set of sentences S, known as “the explanans,” provides an adequate
(nomically significant) scientific explanation for the occurrence of a singu-
lar event described by another sentence E, known as “its explanandum,”
in relation to the language L, if and only if:

(CA-1) the explanandum E is a deductive or a probabilistic consequence
of its explanans S;

(CA-2) the explanans S contains at least one lawful sentence that is
actually required for the deductive or probabilistic derivation
of the explanandum E from its explanans;

(CA-3) the explanation satisfies the requirement of strict maximal speci-
ficity with respect to its lawful premises; and,

(CA-4) the sentences constituting the explanation-both the explanans
S and the explanandum E-must be true, in relation to the
language L.

Thus, the combined force of these requirements insures that the lawful premises of
an adequate explanation must specify all and only those properties whose presence
or absence made a difference to the occurrence of its explanandum-phenomenon.
(For discussion of these issues in greater detail, see especially Fetzer, 1981, 1987,
and references mentioned there.)

Acknowledgments: The author is indebted to Paul Humphreys for several valuable

suggestions, especially for hinting that two sections would function better as appen-
dices.
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