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1 Introduction

The word ‘duality’ is often used to invoke a contrast between two related concepts, as when the
informal, peasant, or agricultural sector of an economy is labeled as dual to the formal, or profit-
maximizing sector. In microeconomic analysis, however, ‘duality’ refers to connections between
guantities and prices which arise as a consequence of the hypotheses of optimization and convexity.
Connected to this duality are the relationship between utility and expenditure functions (and profit
and production functions), primal and dual linear programs, shadow prices, and a variety of other
economic concepts. In most textbooks, the duality between, say, utility and expenditure functions,
arises from a sleight-of-hand with the first order conditions for optimization. These dual relationships,
however, are not naturally a product of the calculus; they are rooted in convex analysis and, in par-
ticular, in different ways of describing a convex set. This entry will lay out some basic duality theory
from the point of view of convex analysis, as a remedy for the microeconomic theory textbooks the
reader may have suffered.



2 Mathematical Background

Duality in microeconomics is properly understood as a consequence of convexity assumptions, such
as laws of diminishing marginal returns. In microeconomic models, many sets of interest are closed
convex sets. The mathematics here is surveyed in the CONVEX PROGRAMMING entry. The urtext for
this material is Rockafellar (1970).

Closed convex sets can be described in two ways; by listing their elements, the 'primal’ de-
scription of the set, and by listing the closed half-spaces that contain it. A closed (upper) half-space in
R™ is a set of the form hpa = {x prx > a}, where p is another n-dimensional vector, a is a number
and p - x is the inner product. The vector p is the normal vector to the half-spaces hpa. Geometrically
speaking, this is the set of points lying on or above the line p - x = a. The famous separation theorem
of convex sets implies that every closed convex set is the intersection of the half-spaces containing
it.

Suppose that C is a closed convex set, and that p is a vector in R". How do we find all the
numbers a such that C C hpa? If there is an x € C such that p - x < a, then a is too big. So the
natural candidate is w = infyccp - x. If a > w there will be an x € C such that p - x < a on the
other hand, ifa < w, thenp-x > aforallx € C. So the half-spaces hpa for a < w are the closed
half-spaces containing C.

This construction can be applied to functions: A concave function on R™ is an [—o0,00)-
valued function f such that the hypograph of f, the set hypo f = {(x,a) € R*™ :a < f(x)},
is convex. If hypo f is closed, f is said to be upper semi-continuous (usc). The domain dom f of
concave f is the set of vectors in R™ for which f is finite-valued. Concave (and convex) functions are
very well-behaved on the relative interiors of their effective domains. The relative interior of a convex
set is the interior relative to the smallest affine set containing it (see CONVEX PROGRAMMING), and
onridom f, f (concave or convex) is continuous.

Suppose that f is usc. The minimal level a such that h(p,_l)a, the hyperplane in R™*1 with nor-
mal vector (p, —1), contains hypo f is f*(p) = inf, p - x — f(x). Why the normal vector (p, —1)?
Because the graph of the affine function x — f*(p) + px is a tangent line to f; the graph of f lies ev-
erywhere beneath it, and no other line with the same slope and a smaller intercept has this property.
The function f*(p) is the Fenchel transform or conjugate of f, and is traditionally denoted f*. The
construction of the preceding paragraph can be done just this way: The concave indicator function of
a convex set C is the function ¢ (x) which is 0 on C and —oo otherwise, and 65(p) = infyccp - x.
For any function f not necessarily usc or concave, the Fenchel transform f* is usc and concave. If
f is in fact both usc and concave, then f** = f. This fact is known as the conjugate duality theorem.



Convex functions with range (—oo, oo| are treated identically. The function f is convex if and only
if —f is concave, but the definitions are handled slightly differently in order to preserve the intuition
just described. The setepi f = {x,a) : a > f(x)}, and f*(p) = sup, p-x — f(x). The convex
Fenchel transform is defined differently: f*(p) = sup, p-x — f(x). The convex indicator function
of a convex set C is the function (5C(x) which is 0 on C and +oo otherwise; its (convex) conjugate is
5% (p) = sup, p - x. These facts are discussed in the CONVEX PROGRAMMING entry.

If concave functions have tangent lines, then they must have something like gradients. A
vector p is a subgradient of f at x if f(x) +p-(y —x) < f(y). If f has a unique subgradient at
x, then f is differentiable at x and p = V f(x), and conversely. But the subgradient need not be
unique: The set df (x) of subgradients at x is the subdifferential of f at x. The domain of f, dom f,
is the set of x such that f(x) > —oo. The subdifferential is non-empty for all x in its relative interior. It
follows from the definition of concavity (and is proved in CONVEX OPTIMIZATION that the subdifferential
correspondence is monotonic: if p € df(x) andg € df(y), then (p —q) - (x —y) < 0. If f is convex,
then the inequality is reversed, and (p —gq) - (x —y) > 0. Finally, suppose f is usc and concave.
Then so is its conjugate f*, and their subdifferentials have an inverse relationship: p € df(x) if and
only if x € f*(p).

3 Cost, Profit and Production

In the theory of the firm, profit functions and cost functions are alternative ways of describing the
firms’ technology choices. A technology is described by a set of vectors F in RN. Each vector
z € F is an input-output vector. We adopt the convention that negative coefficients correspond to
input quantities and positive quantities correspond to outputs. Suppose that the first L. goods are
inputs and the last M = N — L are outputs, so that F ¢ RE x RIXI.It is convenient to assume
free disposal, so that if (x,y) € F, and both x’ < x and ¥’ < y (more input and less output),
then (x,y’) € F. Two important dual representations of the technology are the cost and profit
functions. The profit function is 7(p, w) = sup(, ycpp-y+w -xforp candw € RL, which is
the conjugate of the convex indicator function of F. The cost function too can be obtained through
conjugacy. The set F(y) = {x : (x,y) € F} is the set of all input bundles that produce y. Then
Cly,w) = —SUP,cp(y) W ¥, that s, Cly, -) = —oFW,

Immediately the properties of the Fenchel transform imply that 77(p, w) is convex in its argu-
ments and C(y, w) is concave in w, the profit function is Isc and the cost function is usc. (This implies
that both functions are continuous on the relative interior of their effective domains.) Cost and profit
functions are also linear homogeneous. Doubling all prices doubles both costs and revenues. Cost



is also monotonic. If w; < w for every input [, then C(y, w') < C(y, w) and if w; < w; for all I, then
C(y,w'") < C(y, w).

The point of duality is that if the technology is closed and convex, then cost profit functions
each characterize the technology F. The conjugate duality theorem (see CONVEX PROGRAMMING)
implies that 77* (x, y) = 67**(x,y) = 6" (x, ), the convex indicator function of F:

0 if (x,y) € F,

sup p-x+w-y—rn(pw)= {+oo otherwise

(p,w)eRN

If F is closed and convex, then each F(y) is convex. If F is closed then F(y) will also be closed.
Then 6F¥) is concave and usc, so SUP gt @ X + C(Y, W) = SUp,cpr W x6F W (w) = 5FW) (x).

Hotelling’s lemma is a famous result of duality theory. It says that the net supply function of
good i is the derivative of the profit function with respect to the price of good i. The usual proof is
via the envelope theorem: The marginal change in profits from a change in price p is the quantity of
good i times the change in the price plus the price of all goods times the changes in their respective
guantities. But the quantity changes are second-order because the quantities solve the profit max-
imization first order conditions, that price times the marginal change in quantities in technologically
feasible directions is 0. Every advanced microeconomics text proves this. A result like this is true
whenever the technology is convex, even if the technology is not smooth.

The convex version of Hotelling’s lemma is a consequence of the inversion property of sub-
differentials for concave and convex f; that p € df(x) if and only if x € df*(p). See CONVEX
PROGRAMMING for a brief discussion.

Hotelling’s Lemma: (x,y) € o7t(p, w) if and only if (x, y) is profit-maximizing at prices (p, w).

Hotelling’s lemma is quickly argued. If (x,y) € d7t(p, w) = 36" *(p, w), then (p,w) € 36T**(x,y) =
90 (x,y). Then 6F(x,y) + (p,w) - (¥, y') — (x,y)) < 6F(x,y') for all (x/,y’). This implies that
x € F and furthermore that (p,w) - ((x',y') — (x,y)) < 0 for all (x,y) € F, in other words, that
(x,y) is profit-maximizing at prices (p, w). Conversely, suppose that (x,y) is profit maximizing at
prices (p, w). Then (p,w) satisfies the subgradient inequality of ¥ at (x,y), and so (p,w) € 95F.
Consequently, (x,y) € 36" (p, w) = ant(p, w).

The textbook treatment of duality observes that, if net supply is the first derivative of the profit
function, then the own-price derivative of net supply must be the second own-partial derivative of profit
with respect to price, and convexity of the profit function implies that this partial derivative should be
positive, so net supply is increasing in price. The same fact follows in the convex framework from the



monotonicity properties of the subgradients. Suppose that (w, p) and (w’, p’) are two price vectors,
and suppose that (x,y) and (x/, ") are two profit-maximizing production plans corresponding to the
two price vectors. Then (w —w', p — p')(x —x’,y —y’) > 0. If the two price vectors are identical
for all prices but, say, px # p;. then (px — p;.)(vx — ¥;) = 0, and net supply is non-decreasing in
price. As with net supplies, some comparative statics of conditional factor demand with respect to
input price changes follows from the monotonicity property of subgradients.

Another implication of profit function convexity and (twice continuous) differentiability is sym-
metry of the derivatives of net supply:

Ay  o*m 9’ Ay

opi  Opkdpr  Opidpk  Opk
The convex analysis version of this is that for any finite sequences of goods i, . .., [,

pi-Wj—vyi)tpi-Wk—yj)+-+p-i—y) <0.

This requirement, which has a corresponding expression in terms of differences in prices, is called
cyclic monotonicity. All subdifferential correspondences are cyclicly monotone. The connection with
symmetry is not obvious, but it helps to know that Rockafellar (1974) leaves as an exercise (and so
do we) that cyclic monotonicity is a property of a linear transformation corresponding to an n x n
matrix M if and only if M is symmetric and positive semi-definite. Monotonicity is cyclic monotonicity
for sequences of length 2.

The other famous result in duality theory for production is Shephard’s lemma, which does for
cost functions what Hotelling’s lemma does for profit functions: Conditional input demands are the
derivatives of the cost functions. This is demonstrated in the same way, since the cost function and
the indicator function for the set of inputs from which y is produceable are both convex and have
closed hypographs.

4 Utility and Expenditure Functions

A quasi-concave utility function U defined on the commodity space R"} has upper contour sets, the
sets R, of consumptions bundles which have utility at least u, which are convex. If u is usc, these
sets are closed as well.

The expenditure function gives for each utility level u and price vector p the minimum cost of
realizing utility u at prices p: e(p,u) = inf{p - x : u(x) > u}. If the infimum is actually realized at a
consumption bundle x, then x is the Hicksian or compensated real income demand.



In terms of convex analysis, e(p, u) is the conjugate of the concave indicator function ¢, (x)
of the set R(u) = {x : U(x) > u}, thatis, e(p, u) = ¢;,(p). Thus e(p, u) will be usc and concave in
p for each u. The expenditure function is also linearly homogeneous in prices. If prices double, then
the least cost of achieving u will double as well.

The duality of utility and expenditure functions is that each can be derived from the other;
they are alternative characterizations of preference. Since the concave indicator function ¢, (x) is
closed and convex, e( -, u)* = ¢,(x). For fixed u, the Fenchel transform of the expenditure function
is the concave indicator function of R(u); inf, p- x —e(p,u) is 0if U(x) > u and —oo otherwise.
If x € R(u) then the cost of x at any price p can be no less than the minimum cost necessary to
achieve utility u. The gap between the cost of x and the cost of utility level u is is made by taking
ever smaller prices, and so its minimum is 0. Suppose that x is notin R(u). The separation theorem
for convex sets says there is a price p such that p - x < infycr(,) p - ; there is a price at which x
is cheaper than the cost of u. Now, by taking ever larger multiples of p, the magnitude of the gap
can be made arbitrarily large, and so the value of the conjugate is —oo. Thus the conjugate is the
concave indicator function of R(u).

Among the most useful consequence of the duality between utility and expenditure functions
is the relationship between derivatives of the expenditure function and the Hicksian, or compensated
demand. Hicksian demand. The compensated demand at prices p and utility © are those consump-
tion bundles in R(u) which minimize expenditure at prices p. This result is just Shephard’s lemma for
expenditure functions:

Hicks-Compensated Demand: Consumption bundle x is a Hick's compensated consumption bundle
at prices p if and only if x € dye(p, u). Furthermore, if x is demanded at prices p and utility «, and y
is demanded at prices g and the same utility u, then (p — q) - (x —y) < 0.

The downward-sloping property just restates the monotonicity property of the subdifferential cor-
respondence. For the special case of changes in a single price, the statement is that demand is
non-increasing in its own price.

5 Equilibrium and Optimality

The equivalence between Pareto optima and competitive equilibria can also be viewed as an expres-
sion of duality. When preferences have concave utility representations, quasi-equilibrium emerges
from Lagrangean duality. Quasi-equilibrium entails feasibility, profit maximization, and expenditure



minimization rather than utility maximization. That is, each traders consumption allocation is expen-
diture minimizing for the level of utility it achieves. The now traditional route of Arrow (1952) and
Debreu (1951) to the second welfare theorem first demonstrates that a Pareto-optimal allocation can
be regarded as a quasi-equilibrium for an appropriate set of prices. Under some additional condi-
tions, the quasi-equilibrium is in fact an competitive equilibrium, wherein utility maximization on an
appropriate budget set replaces expenditure minimization. Our concern here is with the first step on
this path.

Suppose that each of [ individuals has preferences represented by a concave utility function
on RL\E, and that production is represented, as in section 3, by a closed and convex set F of feasible
production plans. Suppose that 0 € F (it is possible to produce nothing) and that the aggregate
endowment e is strictly positive. Assume too that there is free disposal in production. Every Pareto
optimum is the maximum of a Bergson-Samuelson social welfare function of the form ) ; A;u; defined
on the set of all consumption allocations. An allocation is a vector (x,y) where x € RI}FH is a
consumption allocation, a consumption bundle for each individual, and y is a production plan. The
allocation is feasible if y € F and y +e — ) ;; x; > 0. A Lagrangean for this convex program is

Yiui(xi)+p-(y+e—Y;x) ifxe RN, yeFandp e RL,
L(x,y,p) = { +oo ifx e RN,y € Fand p ¢ RE,
—00 otherwise,

where p is the vector of Lagrange multipliers for the L goods constraints.

The possibility of 0 production and the strict positivity of the aggregate endowment guarantee
that the set of feasible solutions satisfies Slater’s condition, and so a saddle point (x*,y*, p*) exists;
thatis, sup, , L(x,y, p*) < L(x*,y* p*) < L(x*,y*,p) forall x € RN', y € Fand p € R". Then
(x*,y*) is Pareto optimal and p* solves the dual problem min,, sup, , L(x,y, p). The interpretation

of (x*,y*, p*) as a quasi-equilibrium comes from examining the dual problem. The dual problem can
be rewritten as

inf  sup L(x,y,p)= inf sup Z”l Xi)+p- y—i—e—le

peRY xeRNyeF peRY xeRNyeF i )
= inf Y sup {Ajui(x;) — p-x;} +supp-y.
PERL i x;eRL yeF

In the dual problem, the Lagrange multipliers can be thought of as goods prices. The second welfare
theorem interprets the optimal allocation as an equilibrium allocation using the Lagrange multipliers
as equilibrium prices. To see this, look at the second line of (1). At prices p, a production plan is



chosen from y to maximize profits p - y, so the value of this term is 77(p). Each consumer is asked
to solve

max A;u;(xg) —p-x = —minp - x — Aju;(x;)
1

= Aiu;‘ — minp X — )Li(ui(xi) — ul*)

*

where u; = u,-(xi ). The term being minimized is the Lagrangean for the problem of expenditure
minimization, and so x; is the Hicksian demand for consumer i at prices p and utility level u; =
u;(x7). Finally, the optimal allocation is feasible, and so (x*, y*, p*) is a quasi-equilibrium.

Given the observation about expenditure minimization, the saddle value of the Lagrangean is

Yo At —eilp*,uf) +7(p)

The planner chooses prices to minimize net surplus, which is the sum of profits from production and
the excess of total Bergson-Samuelson welfare less the cost of the consumption allocation.

6 Historical Notes

Duality ideas appeared very early in the marginal revolution. Antonelli, for instance, introduced the
indirect utility function in 1886. The modern literature begins with Hotelling (1932), who provided us
with Hotelling’s lemma and cyclic monotonicity. Shephard (1953) was the first modern treatment of
duality, making use of notions such as the support function and the separating hyperplane theorem.

The results on consumer and producer theory are surveyed more extensively in Diewert
(1981), who also provides a guide to the early literature. In its focus on Fenchel duality, this re-
view has not even touched on the duality between direct and indirect aggregators, such as utility and
indirect utility, and topics that would naturally accompany this subject such as Roy’s identity. Again,
this is admirably surveyed in Diewert (1981).
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