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1 Random graph models

Suppose that we have calculated a set of descriptive statistics for some network of interest G, e.g.,
the mean degree 〈k〉, the degree distribution Pr(k), the (global) clustering coefficient C, and the
mean geodesic distance 〈`〉. How do we interpret the values these statistics take? Which ones are
“big” or “small,” “typical” or “unusual”?

Random graph models provide one way to answer these questions, by providing a reference
point against which to compare empirical measurements.1

For example, if a gene regulatory network G yields a value C = x for its clustering coefficient, and
a random graph model M , designed to be similar to G, tends to produce “synthetic” (computer
generated) networks whose clustering coefficients tend to be close to x, e.g., 〈C〉 ≈ x, then we can
comfortably say that the assumptions that underlie M are sufficient to explain C = x in G.

There are three main classes of random graph models that we will consider in this course, and these
represent a sequence of increasing structure imposed on the basic property of randomness.2

1. Erdős-Rényi (ER) random graph:
the simplest random graph, in which edges are independent and identically distributed with
probability p, which makes them very homogeneous.

2. Configuration model (and the Chung-Lu model):
in which the random graph is conditioned on having a specified degree sequence ~k or a specified
degree distribution Pr(k), which makes them more heterogeneous.

3. Modular random graphs:
in which the random graph is conditioned on having a specified modular structure θ, and
sometimes also a specified degree sequence, etc.

We leave a deeper discussion of the third class until later in the course, when we talk about
community structure. Below, we describe the ER random graph and and the configuration model,
and then show how they can be used to test whether density or the degree distribution are sufficient
to explain certain structural patterns of real-world networks.

1As mathematical models, random graphs are also extremely useful for analyzing the structural properties of
networks in ways that is impractical for real-world networks, whose structure is messier and more complicated.
Random graph models provide a way to build our intuition about how certain descriptive statistics should behave,
under different assumptions about the structural randomness.

2A fourth class of random graph, which we will not discuss in detail, are spatial random graphs, in which the
probability that an edge (i, j) exists depends on the pairwise distance d(i, j) of the two nodes in some latent or explicit
space, e.g., a shorter distance correlates with a higher connection probability.
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2 The Erdős-Rényi random graph

The Erdős-Rényi random graph model, sometimes called an ER graph or simply G(n, p), is
the oldest and simplest random graph model. It was most prominently studied by mathematicians
Paul Erdős (1913–1996)3,4 and Alfréd Rényi (1921–1970).

An ER graph is a simple graph, and is defined as G(n, p), where n is the number of vertices and p is
the probability that each simple edge (i, j) exists.5 That is, edges are independent and identically
distributed (iid) random variables, and the size of the network and the edge probability fully specify
everything about the model.

In an adjacency matrix representation, we say

∀i>j Aij = Aji =

{
1 with probability p
0 otherwise .

(Do you see why we need the restriction i > j?)

Mathematically, G(n, p) defines an ensemble, or a parametric distribution over all graphs Pr(G | p).
Choosing a p parameterizes this distribution, and we draw any particular graph G with probability
Pr(G | p). This fact means that when we describe the properties of G(n, p) below, we are typically
describing average properties, and individual instances will tend to fluctuate around these values.6

The extremal values of p produce extreme graphs: p = 1 produces a fully connected (dense) graph,
or a clique, because all

(
n
2

)
possible edges exist; in contrast, p = 0 produces an “empty” graph,

because no edges exist. But, most real-world networks are sparse, meaning they have a mean degree
〈k〉 = O(1) that is roughly constant, independent of network size n. For G(n, p) to produce sparse
graphs, we just set p = c/(n− 1), for a desired mean degree 〈k〉 = c.

2.1 Properties of ER graphs

ER random graphs are not considered realistic models of networks, but they are a useful baseline
random graph model. But, for a few descriptive statistics, randomness and low density are sufficient
to produce interesting structure. At a high level, ER graphs have the following properties:

• Traditionally a simple graph, but also easily generalized to directed edges, with or without
self-loops (do you see how?).

3http://xkcd.com/599/ and https://en.wikipedia.org/wiki/Erdos_number
4“A mathematician is a machine for turning coffee into theorems.”
5A closely related random graph model is G(n,m), which places exactly m edges on n vertices, meaning that m

is no longer a random variable as it is under G(n, p).
6Counter-intuitively, if 0 < p < 1, there is a non-zero probability of generating any graph of size n from G(n, p).
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• Connectivity is “homogeneous,” and is entirely driven by the edge “density” parameter p;
edges are independent and identically distributed (iid).

• The degree distribution Pr(k) is a Poisson distribution with mean c = p(n − 1), which is a
low-variance distribution.

• The diameter and mean geodesic distance are O(log n), making ER graphs “small-world-like,”
so that short paths exist between most pairs of nodes.

• The clustering coefficient is C = O(1/n), meaning there are very few triangles.

• The largest connected component (LCC) is proportional to the network size O(n) when c > 1,
and is vanishingly small, containing O(1) nodes, when c < 1 (a phase transition at c = 1).

2.2 Generating a G(n, p) network

Once n and p have been specified, the most straightforward way to draw a graph from the ensemble
is to loop over the pairs:

1. initialize an empty graph G with n nodes

2. for each of the
(
n
2

)
pairs i, j, draw a uniformly random number r

3. if r ≤ p, then add the undirected edge (i, j) to G.

Basically, this procedure flips
(
n
2

)
coins, each with bias p. As a result, generating a network in this

way takes Θ(n2) time, and is computationally expensive when n > 104 or so. 7

2.3 Mean degree

There are two simple ways to calculate the mean degree. On the one hand, note that for any
particular node i, there are n − 1 possible other nodes j, and each of those pairs i, j is connected
iid with probability p. Hence, the mean degree is

〈k〉 = c =
∑
j 6=i

p = p(n− 1) . (1)

On the other hand, note that there are
(
n
2

)
pairs of nodes, and each of them exists with probability

p. Hence, the expected number of edges is

〈m〉 =

n∑
i=1

∑
j>i

p = p

(
n

2

)
= p

(
n(n− 1)

2

)
. (2)

7It’s possible to draw from G(n, p) in only O(n+m) time, using an algorithm that is only slightly more complicated
than this one. See Batagelj and Brandes, Phys. Rev. E 71, 036113 (2005)
http://vlado.fmf.uni-lj.si/pub/networks/doc/ms/rndgen.pdf.
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Now recall that the mean degree is 〈k〉 = 2m/n. Plugging Eq. (2) into this expression yields

〈k〉 =
2

n

(
p

(
n(n− 1)

2

))
= p(n− 1) .

2.4 Degree distribution

Because edges in G(n, p) are iid random variables, the entire degree distribution has a simple form:
it’s a Binomial distribution. For a node to have degree k, when we flip the n−1 coins that determine
which of the other n − 1 nodes it connects to, we have to get exactly k successes and n − 1 − k
failures. And, there are

(
n−1
k

)
ways to get those k successes. Hence, the degree distribution is

Pr(k) =

(
n− 1

k

)
pk(1− p)n−1−k , (3)

with parameter p for n− 1 independent “Bernoulli” trials (coin flips).

Recall that for G(n, p) to be sparse, we set p = c/(n− 1), where c is some small integer choice for
the mean degree. In this parameter regime, in which p is small and G is sparse, the Binomial is
well-approximated by a Poisson distribution8

Pr(k) =
ck

k!
e−c . (4)

A Poisson distribution has mean and variance c, runs only over the “counting” integers (non-
negative), and is slightly asymmetric. The figure above shows examples of Poisson distributions,
with c = {1, 3, 8}.

Implications. Recall from Lecture 2 that most real-world networks have heavy-tailed distributions.
In contrast, a Poisson distribution is not heavy tailed—it falls off too quickly to produce nodes with
degrees much higher than the mean. Hence, ER graphs are poor models of real-world networks.

2.5 Motifs, reciprocity, and the clustering coefficient

The fact that edges in an ER graph are iid makes it easy to calculate the probability of many motifs.

8It’s a nice little calculation to derive this answer yourself. Start off by applying a first-order Taylor expansion of
the logarithm to simplify ln

[
(1− p)n−1−k

]
, and then let n be large, and simplify.
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For instance, if we generalize G(n, p) to a directed case, in which both (i, j) and (j, i) each occur
with probability p, then the reciprocity coefficient is

r =
(number of reciprocated links)

(number of links)
=

(n2 − n)p2

(n2 − n)p
= p , (5)

where n2 − n is the number of possible directed edges (without self-loops), and in the numerator,
we require that both (i, j) and (j, i) exist, which happens with probability p2.

The calculation for the clustering coefficient, on the undirected ER graph, follows a similar logic:

C =
(number of triangles)

(number of connected triples)
∝
(
n
3

)
p3(

n
3

)
p2

= p . (6)

Implications. When the random graph G is sparse, both r = O(1/n) and C = O(1/n), meaning
that the density of these motifs shrinks toward zero in the limit of large graphs. In other words,
ER graphs have very few reciprocated links or triangles. The latter fact has a crucial implication:
ER graphs are locally tree-like, meaning that if we build a tree outward from any particular node
in the graph, we rarely encounter a “cross edge” that links between two branches of the tree.

2.6 Diameter and mean geodesic path length

The locally tree-like structure of an ER graph implies that, if we were to grow that tree outward
from any particular node, i.e., as in a breadth-first search tree, each new node the tree touches
would itself branch out to touch roughly c− 1 additional nodes (do you see why c− 1 rather than
c?). Roughly speaking, after ` such steps, the tree will have touched (c − 1)` nodes, and the tree
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Sparse Erdős-Rényi random graphs are locally tree-like because they lack many loops of any size.

will stop growing when it has touched all n nodes. From this fact, we can now derive an estimate
of an ER graph’s diameter:

(c− 1)`max = n

`max log(c− 1) = log n

`max = logc−1 n

= O(log n) . (7)

Hence, the diameter of an ER graph is O(log n), and so is the mean geodesic distance, by a similar
argument. This analysis can be made fully rigorous, but we omit the details here.

Implications. The logarithmic diameter of ER graphs implies that information will tend to cir-
culate or propagate quickly across the network, because a signal needs to only cross a chain of
O(log n) edges to reach anywhere in the network. That is, for any pair of nodes i, j, there exists a
“short” path between them. If you recall how fast the binary search algorithm is at finding a target
element within a sorted array, traversing an ER graph is similarly fast—the length of the longest
chain of steps in both cases is logarithmic in the size of the problem.

This fact implies that the existence of such short paths can be explained by randomness and sparse
connectivity alone, without needing to refer to other structural patterns. In this sense, short paths
are “automatic” if a network has some amount of randomness in the structure of its connectivity.
This fact can be useful for spreading signals quickly, e.g., to synchronize different parts of a system,
but also problematic if the goal is to decouple or insulate different parts of the network.

6



Biological Networks, CSCI 3352
Lecture 3

Prof. Aaron Clauset
Fall 2019

2.7 What G(n, p) graphs look like

In this section, we’ll build some intuition for the shape of ER graphs, and how that structure varies
with mean degree c. The figure below shows simple visualizations9 for networks of varying sizes
n = {10, 50, 100, 500, 1000} and mean degrees c = {0.5, 1.0, 2.0, 4.0}. And, to avoid visual clutter,
any singleton vertices (degree k = 0) are omitted.

In the ultra-sparse case of c < 1, the networks are composed entirely of small or very small com-
ponents, mostly perfect trees. At c = 1, many of these little trees have begun to connect, forming
a wide variety of larger components, most of which are still trees. However, for c > 1, we see the
emergence of a large connected component (in fact, a giant component ; see the Appendix below)
containing O(n) of all vertices. Despite this large component, when c = 2, we do see some “dust”
components, i.e., the same small trees we saw for c < 1, around the giant component, and in
this regime, the largest component displays some interesting structure, being locally tree-like but
exhibiting long cycles punctuated by tree-like whiskers.

Finally, when the mean degree is fairly large (here, c = 4), the largest component has gobbled
up nearly every node and has the appearance of a big hairball, with little apparent structure.10

Although one cannot see it in these visualizations, the structure is still locally tree-like.

3 The configuration model

Suppose that instead of merely setting the density of edges p, we fixed the entire degree sequence ~k
of a random graph. The configuration model, and its close relative the Chung-Lu model, define
such an object: a random graph with a specified degree sequence. These networks are richer in
their structural variety than Erdős-Rényi random graphs, because they have more realistic degree
structures—indeed, we can even set ~k to be exactly the degree sequence of a real-world network G.

As an undirected adjacency matrix, such a random graph essentially says

∀i>j Aij = Aji =

{
1 with probability ∝ kikj
0 otherwise ,

meaning that the probability that i, j are connected depends on their joint degrees ki and kj , rather
than the constant value p = 2m/n(n− 1) of an ER graph.

9The positions of nodes on the page were assigned via a standard spring-embedder algorithm like the Fruchterman-
Reingold force-directed layout algorithm, in this case, implemented in the yEd software program.

10Visualizations of such networks are sometimes called ridiculograms, reflecting the fact that much of the meaningful
structure is obscured by the overprinting of the edges on each other and on the nodes. Such figures are surprisingly
common in the networks literature.
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And, just as the Erdős-Rényi model allows us to test whether some descriptive statistic’s value can
be explained by the density of edges alone (plus randomness), the configuration model lets us say
whether or not it can be explained by the degree distribution alone (plus randomness).

There are, in fact, four configuration models for undirected networks,11 depending on the target
graph properties; specifically, self-loops (yes or no) and multiedges (yes or no). If neither are

11The subtleties of these distinctions, and their implications for generating and using configuration model random
graphs are discussed thoroughly in Fosdick et al., SIAM Review 60 (2018) https://arxiv.org/abs/1608.00607.
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permitted, then we are dealing with the space of random simple graphs. We note that nearly all
of the statements in this section also hold for a configuration model with directed edges, where we
separately specify ~kout and ~kin, but for simplicity we focus on the undirected case.

multigraphs with self-loops

multigraphs 
(no self-loops)

self-loops 
(no multi-edges)

simple graphs

3.1 Properties of configuration model graphs

Configuration models generate more realistic networks because at least they can capture the heavy-
tailed nature of real-world degree distributions, which we saw in Lecture 2. For this reason, they
find uses in a variety of network analyses and models, including as mathematical models, as a sub-
strate for simulating network dynamics, and as null models for constructing reference distributions
for empirical quantities. At a high level, configuration model random graphs have the following
properties, which are similar in many ways to those of an ER graph:

• Four flavors: simple graph or multigraph, both with or without self-loops.

• Connectivity is specified by the degree sequence parameter ~k, and many patterns vary with
the mean 〈k〉 and variance 〈k2〉 of this sequence.

• The diameter and mean geodesic distance are typically O(log n), making configuration model
graphs “small-world-like,” but can shrink further if ~k is extremely heavy-tailed.

• Motif frequencies tend to be O(1/n) when the network is sparse, but can be larger as either
〈k〉 or 〈k2〉 increases.

• The size of the largest connected component (LCC) tends to be O(n) when G is not too
sparse, but a giant component can emergence in sparser settings if either 〈k〉 or 〈k2〉 is large.

3.2 Generating a configuration model network

Unlike an ER graph, generating a configuration model network is mildly non-trivial. This addi-
tional complexity is nearly always worthwhile because of how practically useful they are.
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Two facts constrain how we generate a random graph with specified degree structure ~k: (i) not
every degree sequence ~k is graphical, i.e., realizable as a graph, and (ii) there is no simple procedure
for drawing a network G with degree sequence ~k uniformly at random from the set S of all networks
with the target graph properties, e.g., simple, or a multigraph with self-loops, etc.

But, we can use a Markov chain algorithm to deal with these constraints. To start the chain, we
need to first construct some G0 that has the target graph properties and specified degree sequence
~k. If ~k is not graphical, we will know at this step, and can stop. Once we have this initial graph, the
algorithm then repeatedly applies a simple function g : Gt → Gt+1 to create a sequence of graphs
G0, G1, G2, . . . , Gt, for any t we like. If g has the right properties, this graph sequence (the “chain”)
will correspond to a random walk within the target set S that eventually visits every member with
the same probability. For a sufficiently long chain, the structure of Gt will be independent of G0

and can we output Gt as the generated random graph, or, if we run the chain sufficiently long
between draws, produce as many such random graphs as we like.

Is it graphical? For a degree sequence to be graphical, we must be able to pair every “stub” of
every edge to some other appropriate stub. For instance, the sequence (1, 1, 10) is not graphical,
because the degree 10 node will have 8 unmatched “stubs” after connecting to the two degree
1 nodes. There are two main ways to construct a graphical G0: (i) we generate it synthetically,
e.g., using the Havel-Hakimi algorithm12 if G0 is simple, or using the Molloy-Reed stub-matching
algorithm13 if G0 is a multigraph with self-loops, or (ii) we use an empirical network, e.g., a gene
regulatory network, which clearly represents a graphical sequence.

The double edge swap. Given some Gt ∈ S, we can generate another Gt+1 ∈ S using a simple
double edge swap procedure, as follows:

• choose a uniformly random pair of edges (u, v), (x, y)

• createGt+1 by replacing these edges with either (u, x), (v, y) or (u, y), (v, x) (equal probability)

• finally, if Gt+1 6∈ S, revert to Gt and pick new edges (the sequence exited the target set).

12Havel-Hakimi is straightforward. Sort the nodes in decreasing order of their degree. Without loss of generality,
let that list be L = (vn, vn−1, . . . , v1), with degrees ~k = (kn, kn−1, . . . , k1). Then, recursively apply the following
steps. Take the largest degree vertex vi and connect it to the ki vertices immediately to its right in L, i.e., vertices
vi−1, . . . , vi−ki+1; set ki = 0 and decrement the degrees of each of the right-hand vertices i connected to; finally,

remove all vertices from L and ~k that have degree 0. If ~k is graphical, then we will apply this rule at most n−1 times.
If at any time i > ki, then there are not enough “stubs” left for i to connect to, and the sequence is not graphical.
See also https://en.wikipedia.org/wiki/HavelHakimi_algorithm.

13Molloy-Reed is also straightforward. Allocate an array A of length
∑

i ki. If the length of A is not even, then
~k is not graphical. Then, for every vertex i, write the index i in A exactly ki times. Take a random permutation
of A. Then, for j = 1 : m, add the edge (A[j], A[m + j]) to the graph. See also https://en.wikipedia.org/wiki/

Configuration_model. If we use Molloy-Reed to construct G0, then G0 is already a uniform draw from the set of
multigraphs with self-loops, and no further sampling is needed.
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Figure 3: Double edge swaps. Double edge swaps alter a graph’s structure without changing the
degree sequence. Each pair of edges may be swapped in two di↵erent ways: (left) (u, v), (x, y)  
(u, x), (v, y) and (right) (u, v), (y, x) (u, y), (v, x).

Explicitly labeling stubs emphasizes that the stub-labeled double edge swap di↵ers from its
vertex-labeled version. That said, the notation of tracking stubs is largely unnecessary as the
exact labels of stubs can be inferred in context and standard network analyses (of assortativ-
ity, modularity, etc.) do not consider stub labels. For a pair of edges (u, v) and (x, y) there are
two possible swaps, as shown in Figure 3. As a shorthand, we denote these possible swaps as
(u, v), (x, y) (u, x), (v, y) and (u, v), (y, x) (u, y), (v, x).

In contrast to arbitrary edge rewires [21], double edge swaps preserve the degree distribution of
the graph. Notice, however, that some double edge swaps can create self-loops, e.g. (u, x), (u, y) 
(u, u), (x, y), as well as multiedges, e.g. when any produced edge replicates an existing edge. The
way such swaps are handled has important consequences for the stationary distribution of the
Markov chain.

Many of the properties of the double edge swap can be understood as graphical properties of
the graph of graphs, the state diagram of the Markov chain in the space of graphs. We construct
the graph of graphs associated with a degree sequence by letting each graph with the specified
degree sequence be a vertex and connecting two vertices (i.e. graphs) with an edge if one double
edge swap can transform one graph into the other. We use G(k) or G to generically denote a graph
of graphs with a specified degree sequence k = {ki}i2V . Throughout the text we only consider
graph spaces with a given degree sequence, and as a consequence we almost always suppress the
degree sequence k from the notation, denoting a graph of graphs as simply G. With a few simple
yet crucial modifications, sampling graphs using a random walk on G creates a Markov chain with
a stationary distribution that is uniform over a desired graph space with a given degree sequence.

The statements in the following sections can be stated either in the language of Markov chains
or in the language of graph properties of G. To prove that samples from the Markov chain asymp-
totically obey a uniform distribution over a space of graphs, we show that by correctly specifying
state transition probabilities, the chain satisfies three conditions:

(i) that the transition matrix of the chain is doubly stochastic (G is regular6),

(ii) that the chain is irreducible (equivalently, G is strongly connected7),

(iii) and that the chain is aperiodic (G is aperiodic8).

The regularity of G implies that the stationary distribution is uniform. A Markov chain that is
both irreducible and aperiodic (G is connected and aperiodic) is said to be ergodic. This property

6A weighted directed graph is regular if every vertex has the same total out-degree weight and total in-degree
weight. For unweighted graphs, regularity implies all vertices have equal degree.

7A graph is strongly connected if every vertex can be reached from any other vertex.
8A graph is aperiodic if the greatest common divisor of the lengths of all cycles in the graph is one.

11

The idea here is that the double edge swap incrementally randomizes which nodes connect to each
other, and so applying it repeatedly can transform any Gi ∈ S to any other Gj ∈ S. Crucially, the
double edge swap is degree preserving, meaning that the degrees ku, kv, kx, ky before and after the
swap remain the same. Hence, every graph Gt in the sequence will have the same, specified degree
sequence ~k. The third step of the procedure guarantees that each Gt+1 will also have the target
set of graph properties, and hence so will the final output graph.

Mixing times. Unfortunately, there are few mathematical guarantees for how long to run the
Markov chain before Gt is independent of G0, i.e., when it has “converged” on a uniform distribu-
tion over S, or how long to wait between subsequent samples of the Markov chain. In practice, we
instead rely on heuristics.

A common heuristic is to run the sampler for 2b × m steps, so that in expectation, every edge
has been swapped b times. If we set b = 10 or so, it may be reasonable to assume that the
structures of Gt and G0 are now uncorrelated. A common data-driven heuristic is to measure some
quantity about each graph in the sequence x(t), and continue until the value of x has stabilized,
i.e., appears to fluctuate mildly around a constant value. A sufficient statistic for such an online
test of convergence is not known, and so often we use some kind of non-connectivity-based global
measure, e.g., the clustering coefficient C (see Lecture 2).

Chung-Lu model. Much of the complexity of generating configuration model random graphs
stems from requiring that G have exactly the specified degree sequence ~k. If we relax this con-
straint, requiring only that G have a degree sequence close to ~k, then we can use the Chung-Lu
model14 to generate a simple random graph in much the same way as we generate an ER graph. 15

Suppose that we fix a choice of nodes i and j, with degrees ki and kj . What is the probability
that i, j are connected? For now, let ki = 1, i.e., i only has one edge to connect anywhere. From
i’s perspective, it has kj chances for its one edge “stub” to connect to j. And, across the entire

14Chung and Lu, Annals of Combinatorics 6, 125–145 (2002) http://math.ucsd.edu/~fan/wp/conn.pdf
15It’s possible to draw from the Chung-Lu model in only O(n + m) time, using an algorithm described by Miller

and Hagberg, Proc. Workshop on Algorithms and Models for the Web Graph (WAW 2011)
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-11-01482.
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network, there are 2m− ki possible stubs where its edge could land (we subtract off ki because we
prohibit self-loops). Hence, the probability that i connects to j is kj/(2m − ki). This argument
holds independently for each of i’s stubs,16 implying that a probability that any of i’s stubs connects
to any of j’s stubs

if max
i
ki < 2m− ki then pij = ki

(
kj

2m− ki

)
≈ kikj

2m
, (8)

when 〈k〉 is small compared to m.

The Chung-Lu model calculates this probability for each pair i, j and then adds each edge (i, j) to
G with probability pij :

∀i>j Aij = Aji =

{
1 with probability pij
0 otherwise .

The Chung-Lu model does not produce exactly ~k, and instead generates networks whose degrees
are ~k in expectation, only. In fact, the degree of a node i will be a Poisson-distributed random
variable, with mean equal to the specified degree ki, if the network is sparse and the maximum
degree is not too large. And, because we flip one coin for each pair of nodes, Chung-Lu graphs
are simple, and take the same amount of time to generate as a similarly sized ER graph. They
also generalize naturally to directed networks, when both ~kin and ~kout are specified, by setting
pij ≈ kouti kinj /m, and dropping the requirement that Aij = Aji.

3.3 Descriptive statistics of configuration model random graphs

The precise patterns of various descriptive network statistics, e.g., motif counts like reciprocity or
the clustering coefficient, or positional measures like the diameter or the mean geodesic path length,
depend on the choice of degree sequence.

In general, most of the measures have similar behavior to those of an ER graph, except that in a
configuration model, their precise value can depend on the degree sequence’s mean 〈k〉 and (un-
centered) variance 〈k2〉. We omit the details of the mathematical calculations and instead simply
state the results, which hold for sufficiently large and sparse networks.17

16Such an independence assumption is approximately valid for sparse and large networks, because the probability
of multiple connections between i and j is vanishingly small. Hence, the difference between this argument and the
rigorous one is negligible in most cases of interest.

17The equations here are derived under the multigraph with self-loops flavor of the configuration model, and hold
for the simple graph flavor in the limit. Details of the derivations are in Networks by Mark Newman (2019).
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For example, the expected clustering coefficient C is

C =
1

n

[
〈k2〉 − 〈k〉

]2
〈k〉3 , (9)

which is O(1/n) when 〈k〉 and 〈k2〉 are finite, much like the ER graph.

A giant component, i.e., a largest connected component containing O(n) nodes, appears in the
configuration model when 〈k2〉 − 2〈k〉 > 0 which can be true even when 〈k〉 < 1, if the variance is
large enough.

And, the diameter of a configuration model is also O(log n), just like the ER graph, but can be
even smaller, like O(log log n) for especially heavy-tailed degree sequences (in which the maximum
degree kmax >

√
n).

Finally, the expected number of common neighbors nij for a pair of nodes i, j is

nij = pij
〈k2〉 − 〈k〉
〈k〉 . (10)

Interpretation. The fact that this quantity is proportional to pij implies that not only are high-
degree nodes likely to be connected themselves, they are also likely to have many neighbors in
common. Another calculation shows that high-degree nodes also tend to be located on many short
paths through the network. Taking these facts together, along with the insight that most real-world
networks have heavy-tailed degree distributions, and the most-well-connected nodes have degrees
far higher than the typical node, we arrive at the intuition that high-degree nodes play a special
role in structuring a random graph. But their specialness is no mystery—it’s entirely driven by the
fact that these nodes simply have many more chances for connections, and the randomness of the
graph ensures that these many connections spread very widely. It would be a very unusual network
structure for high-degree nodes to not be connected to each other, have many common neighbors,
and be positioned centrally in the network.

4 Random graphs as null models

Random graphs are remarkably useful as a null model for investigating the structure of a real
network G. They allow us to quantitatively answer the question

How much of an observed pattern is explained by
{edge density or degrees} alone, under randomness?

To make this work, we must first parameterize the random graph model so that the distribution
over graphs Pr(G) that it defines is “centered” on our real network G◦ in some way. Typically, we
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set the model’s free parameters by following a statistical estimation procedure, such as maximum
likelihood. For the ER model, the maximum likelihood parameterization is simply p = 〈k〉/(n− 1).
For the configuration model, we set ~k equal to the degree sequence of G◦.

Doing so allows us to interpret the parameterized random graph as a null model for G◦, i.e., a simple
data generating process, with only a few structural assumptions, that generates a reference point or
distribution for deciding whether some statistic or other pattern in G◦ is large or small, typical or
unusual, relative to the range of such statistics the null produces.18 If the empirical value is typical
under the null, then we may say that it is “explained” by the null’s underlying assumptions, e.g.,
edge density plus randomness (ER model), or the degree structure plus randomness (configuration
model).

4.1 For example

So see how these ideas work in practice, we’ll apply them to understand the structural patterns of
the metabolic network of Archaeoglobus fulgidus,19 which contains n = 315 nodes and 5434 directed
edges. Ignoring edge direction yields m = 3793 undirected edges, a mean degree of 〈k〉 = 24.08, and
a standard deviation σk = 28.17. This edge density value is fairly high, and hence unsurprisingly,
the largest connected component contains the large majority of nodes (296, 94%). Similarly, the
fact that σk > 〈k〉 indicates that the degree distribution is likely heavy-tailed. Let’s dig in more.

4.1.1 What does edge density explain?

The left-hand figure below shows a ridiculogram for this network—super informative, right? The
right-hand figure plots the (undirected) degree distribution of the Archaeoglobus network, as a
simple normalized histogram and as a CCDF, along with the degree distribution predicted by an
ER graph with the same edge density, p = 〈k〉/(n− 1) = 0.0766960. This parameterization allows
us to ask whether a comparable ER random graph model qualitatively matches the empirical Ar-
chaeoglobus network’s statistical structure.

Clearly, it does not: the Poisson distribution places far too much density around the mean de-
gree, and far (far!) too little at either low or high degrees nodes. The highest degree node
in the Archaeoglobus network is kmax = 108, but the probability of generating such a node
under the maximum likelihood ER model is less than 4.3937 × 10−36, or about 1 time every
1,000,000,000,000,000,000,000,000,000,000,000,000 networks, or basically never. If the ER model
were the true data generating process, this node would be rather surprising to see.

18Do you see why it makes no sense to interpret the similarity of the empirical 〈k〉 with the mean degrees of a

parameterized ER graph, or any statistic of the empirical ~k with that of a parameterized configuration model network?
19A sulfur-eating archae: https://microbewiki.kenyon.edu/index.php/Archaeoglobus_fulgidus
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Neither does the edge density explain the path length structure or the clustering coefficient of
the Archaeoglobus network. The top two plots below compare the empirical diameter `max, mean
geodesic distance 〈`〉, and clustering coefficient C vs. the corresponding null distributions (tabulated
from 104 ER networks drawn from the null). In each case, the null distribution dramatically under-
estimates the value of the Archaeoglobus statistic: the empirical diameter is a whopping `max = 10,
compared to an expected value of 3, the empirical mean geodesic distance is 〈`〉 = 2.88, while the
null yields only 〈`〉 = 2.11 (not that far off, all things considered, but still not close enough to
explain anything), and the empirical clustering coefficient is C = 0.61, while the ER graph yields
only C = 0.077.

What we learn by observing that the empirical values are far outside the range produced by an ER
graph null is that there is substantial structure in the Archaeoglobus network that is not explained
by edge density alone.

4.1.2 What does degree structure explain?

By parameterizing a random graph to have the same degree structure as the Archaeoglobus network,
we lose the ability to sensibly compare the degrees between the null and the empirical network. In
other words, we cannot compare the degree distributions like we did above. Instead, we focus on the
other three measures (figures below), which reveals that the degree structure explains more of the
empirical patterns than edge density alone, but it doesn’t explain any of these statistics completely.

Both the diameter and the mean geodesic distance are larger now (concentrated around `max = 5
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and 〈`〉 = 2.31), but still a ways off. The most improved of the three statistics is the clustering
coefficient, which moves up to C = 0.39. Clearly, this metabolic network has more structure than
can be explained by the degrees alone, but the heavy-tailed degree distribution does explain a
substantial portion of the prevalence of triangles in the network.
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5 At home

1. Read Chapters 11 and 12 in Networks
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Appendix: A phase transition in network connectedness

A particularly interesting property of the Erdős-Rényi random graph, is that it exhibits a phase tran-
sition20 in the connectedness of the network G(n, p) as a function of the mean degree c = p(n− 1).

When the mean degree c < 1, graphs drawn from this model are almost surely disconnected, and
composed of O(n) components, the largest of which is still very small, around O(1) nodes, and
all of which are mostly “tree-like.” But, when the mean degree c > 1, although the graph is still
disconnected in the strict sense, the largest connected component is now huge, being O(n) nodes.
As c cross the critical value of c = 1, the networks switches from one “phase” to the other.

Phase transitions are interesting because they represent a qualitative (very large, and very sudden)
change in the fundamental behavior of the system. They are non-linear effects, in which a small
change in the parameter c, i.e., going from just below 1 to just above 1, leads to a big change in
the system’s behavior, i.e., the size of the largest connected component.

?

p = 0 p = 1

Without loss of generality, define p = c/(n−1), i.e., p is just the iid probability that an edge exists.
Now, consider the two limiting cases for the parameter p. If p = 0 we have a fully empty network
with n completely disconnected vertices. Every component in this network has the same size, and
that size is a O(1/n) fraction of the size of the network. In the jargon of physics, the size of the
largest component here is an intensive property, meaning that it is independent of the system size.

On the other hand, if p = 1, then every edge exists and the network is an n-clique. This single
component has a size O(n), proportional to the size of the network. In the jargon of physics, the
size of the largest component here is an extensive property, meaning that it depends on the system

20The term “phase transition” comes from the study of critical phenomena in physics. Classic examples include the
melting of ice, the evaporation of water, the magnetization of a metal, etc. Generally, a phase transition characterizes
a sudden and qualitative shift in the bulk properties or global statistical behavior of a system. In this case, the
transition is discontinuous and characterizes the transition between a mostly disconnected and a mostly connected
networked.
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size n.21 Hence, as we vary p from 0 to 1, the size of the largest component transforms from an
intensive property to an extensive one, and this is the hallmark of a phase transition. Of course,
it could be that the size of the largest component becomes extensive only in the limit p → 1, but
in fact, something much more interesting happens. (When a graph is sparse, what other network
measures are intensive? What measures are extensive?)

The sudden appearance of a “giant” component

In this section, we will mathematically show that a “giant” component, i.e., one whose size is ex-
tensive, emerges at a single critical value of p.

Let u denote the average fraction of vertices in G(n, p) that do not belong to the giant component.
Thus, if there is no giant component (e.g., p = 0), then u = 1, and if there is then u < 1. In other
words, let u be the probability that a vertex chosen uniformly at random does not belong to the
giant component.

For a vertex i not to belong the giant component, it must not be connected to any other vertex that
belongs to the giant component. This means that for every other vertex j in the network, either (i)
i is not connected to j by an edge or (ii) i is connected to j, but j does not belong to the giant com-
ponent. Because edges are iid, the former happens with probability 1−p, the latter with probability
pu, and the total probability that i does not belong to the giant component via vertex j is 1−p+pu.

For i to be disconnected from the giant component, this must be true for all n− 1 choices of j, and
the total probability u that some i is not in the giant component is

u = (1− p+ pu)n−1

=

[
1− c

n− 1
(1− u)

]n−1
(11)

= e−c(1−u) (12)

where we use the identity p = c/(n− 1) in the first step, and the identity limn→∞
(
1− x

n

)n
= e−x

in the second.22

21Other examples of extensive properties in physics include mass, volume and entropy. Other examples of intensive
properties—those that are independent of the size of the system—include the density, temperature, melting point,
and pressure. See https://en.wikipedia.org/wiki/Intensive_and_extensive_properties

22We can sidestep using the second identity by taking the logarithms of both sides of Eq. (11):

lnu = (n− 1) ln

[
1− c

n− 1
(1− u)

]
' −(n− 1)

c

n− 1
(1− u) = −c(1− u)

where the approximate equality becomes exact in the limit of large n. Exponentiating both sides of our approximation
then yields Eq. (12). This should look familiar.
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If u is the probability that i is not in the giant component, then let S = 1 − u be the probability
that i belongs to the giant component. Plugging this expression into Eq. (12) and eliminating u in
favor of S yields a single equation for the size of the giant component, expressed as a fraction of
the total network size, as a function of the mean degree c:

S = 1− e−cS . (13)

Note that this equation is transcendental and there is no simple closed form that isolates S from
the other variables.23
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Figure 1: (a) Graphical solutions to Eq. (13), showing the curve y = 1 − e−cS for three choices of
c along with the curve y = S. The locations of their intersection gives the numerical solutions to
Eq. (13). Any solution S > 0 implies a giant component. (b) The solution to Eq. (13) as a function
of c, showing the discontinuous emergence of a giant component at the critical point c = 1, along
with some examples random graphs from different points on the c axis.

We can visualize the shape of this function by first plotting the function y = 1− e−cS for S ∈ [0, 1]
and asking where it intersects the line y = S. The location of the intersection is the solution to
Eq. (13) and gives the size of the giant component. Figure 1 (above) shows this exercise graphically.
In the “sub-critical” regime c < 1, the curves only intersect at S = 0, implying that no giant
component exists. In the “super-critical” regime c > 1, the lines always intersect at a second point
S > 0, implying the existing of a giant component. The transition between these two “phases”
happens at c = 1, which is called the “critical point”.

23For numerical calculations, it may be useful to express it as S = 1 + (1/c)W(−ce−c) where W(.) is the Lambert
W-function and is defined as the solution to the equation W(z)eW(z) = z.
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Branching processes and percolation

An alternative analysis considers building each component, one vertex at a time, via a branching
process. Here, the mean degree c plays the role of the expected number of additional vertices that
are joined to a particular vertex i already in the component. The analysis can be made entirely
analytical, but here is a simple sketch of the logic.

When c < 1, on average, this branching process will terminate after a finite number of steps, and
the component will have a finite size. This is the “sub-critical” regime. In contrast, when c > 1,
the average number of new vertices grows with each new vertex we add, and thus the branching
process will never end. Of course, it must end at some point, and this point is when the component
has grown to encompass the entire graph, i.e., it is a giant component. This is the “super-critical”
regime. At the transition, when c = 1, the branching process could in principle go on forever, but
instead, due to fluctuations in the number of actual new vertices found in the branching process,
it does terminate. At c = 1, however, components of all sizes are found and their distribution can
be shown to follow a power law.
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