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1 Mechanistic and generative models of network structure

There are many models of network structure, and these largely can be divided into two classes:
mechanistic models and generative or probabilistic models. The boundaries between these classes,
however, are not sharp.

A mechanistic model, generally speaking, codifies or formalizes a notion of causality via a set of
rules (often mathematical) that produces certain kinds of networks. Identifying the mechanism for
some empirically observed pattern allows us to better understand and predict networks — if we see
that pattern again, we can immediately generate hypotheses about what might have produced it.
In network models, the mechanisms are often very simple (particularly for mechanisms proposed by
physicists), and these produce specific kinds of topological patterns in networks. We will explore
examples of such mechanisms later in the semester, including the preferential attachment mecha-
nism, which is known to underlie the evolution of scientific citation networks and the World Wide
Web.

Generative models, on the other hand, often represent weaker notions of causality and generate
structure via a set of free parameters that may or may not have specific meanings. The most basic
form of probabilistic network model is called the random graph (sometimes also the Erdös-Rényi
random graph, after two of its most famous investigators, or the Poisson or Binomial random
graph). In this and other generative models, edges exist probabilistically, where that probability
may depend on other variables. The random graph model is the simplest such model, where every
edge is an iid random variable from a fixed distribution. In this model, a single parameter deter-
mines everything about the network.

The attraction of simple generative models is that nearly every question about their structure, e.g.,
the network measures we have encountered so far, may be calculated analytically. This provides a
useful baseline for deciding whether some empirically observed pattern is surprising. Let G denote
a graph, and let Pr(G) be a probability distribution over all such graphs. The typical or expected
value of some network measure is then given by

〈x〉 =
∑
G

x(G)× Pr(G) ,

where x(G) is the value of the measure x on a particular graph G. This equation has the usual
form of an average, but is calculated by summing over the combinatoric space of graphs.1 In this
lecture, we will study the simply random graph and derive several of its most important properties.

1We may also be interested not only in the mean value, but in the full distribution of x, although this can be
trickier to calculate.
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2 The Erdös-Rényi random graph

This network model is the original random-graph model, and was studied extensively by the Hun-
garian mathematicians Paul Erdös (1913–1996)2 and Alfréd Rényi (1921–1970)3 although it was
studied earlier, as well.

This model is typically denoted G(n, p) for its two parameters: n the number of vertices and p the
probability that an edge (i, j) exists, for all i, j,4 and these parameter specify everything about the
model. The utility of the random graph model lies mainly with its mathematical simplicity, not in
its realism. Virtually none of its properties resemble those of real-world networks, but they provide
a useful baseline for our expectations and provide a warmup for more complicated generative models.

To be precise G(n, p) defines an ensemble or collection of networks, which is equivalent to the
distribution over graphs Pr(G). When we calculate properties of this ensemble, we must be clear
that we are not of individual instances of the ensemble, but rather making statements about the
typical member.

2.1 Mean degree and degree distribution

In the G(n, p) model, every edge exists independently and with the same probability. The total
probability of drawing a graph with m edges from this ensemble is

Pr(m) =

((n
2

)
m

)
pm(1− p)(

n
2)−m , (1)

which is a binomial distribution choosing m edges out of the
(
n
2

)
possible edges. (Note that this form

implies that G(n, p) is an undirected graph.) The mean value can be derived using the Binomial
Theorem:

〈m〉 =

(n2)∑
m=0

m Pr(m)

=

(
n

2

)
p . (2)

That is, the mean degree is the expected number of the
(
n
2

)
possible ties that exist, given that each

edge exists with probability p.

2http://xkcd.com/599/
3“A mathematician is a machine for turning coffee into theorems.”
4Another version of this model is denoted G(n,m) which places exactly m edges on n vertices. This version has

the advantage that m is no longer a random variable.
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For any network with m edges, the mean degree of a vertex is 〈k〉 = 2m/n. Thus, the mean degree
in G(n, p) may be derived, using Eq. (2), as

〈k〉 =

(n2)∑
m=0

2m

n
Pr(m)

=
2

n

(
n

2

)
p

= (n− 1)p . (3)

In other words, each vertex has n − 1 possible partners, and each of these exists with the same
independent probability p. The product, by linearity of expectations, gives the mean degree, which
is sometimes denoted c. (Sometimes, it is mathematically convenient to use the asymptoticly equiv-
alent expression pn.)

Because edges are iid random variables, the entire degree distribution has a simple form

Pr(k) =

(
n− 1

k

)
pk(1− p)n−1−k , (4)

which is a binomial distribution with parameter p for n − 1 independent trials. What value of p
should we choose? Commonly, we set p = c/(n − 1), where c is the target mean degree and is a
finite value. (Verify using Eq. (3) that the expected value is indeed c under this choice for p.) That
is, we choose the regime of G(n, p) that produces sparse networks, where c = O(1), which implies
p = O(1/n).

When p is very small, the binomial distribution may be simplified. When p is small, the last term
in Eq. (4) may be approximated as

ln
[
(1− p)n−1−k

]
= (n− 1− k) ln

(
1− c

n− 1

)
' (n− 1− k)

−c
n− 1

' −c , (5)

where we have used a first-order Taylor expansion of the logarithm5 and taken the limit of large n.
Taking the exponential of both sides yields the approximation (1 − p)n−1−k ' e−c, which is exact
as n→∞. Thus, the expression for our degree distribution becomes

Pr(k) '
(
n− 1

k

)
pke−c , (6)

5A useful approximation: ln(1 + x) ' x, when x is small.
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which may be simplified further still. The binomial coefficient is(
n− 1

k

)
=

(n− 1)!

(n− 1− k)! k!

' (n− 1)k

k!
. (7)

Thus, the degree distribution is, in the limit of large n

Pr(k) ' (n− 1)k

k!
pke−c

=
(n− 1)k

k!

(
c

n− 1

)k

e−c

=
ck

k!
e−c , (8)

which is called the Poisson distribution. This distribution has mean and variance c, and is slightly
asymmetric. The figure below shows examples of several Poisson distributions, all with c ≥ 1.
Recall, however, that most real-world networks exhibit heavy-tailed distributions. The degree
distribution of the random graph model decays rapidly for k > c and is thus highly unrealistic.
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2.2 Clustering coefficient, triangles and other loops

The density of triangles in G(n, p) is easy to calculate because very edge is iid. The clustering
coefficient is

C =
(number of triangles)

(number of connected triples)
∝
(
n
3

)
p3(

n
3

)
p2

= p =
c

n− 1
.

In the sparse case, this further implies that C = O(1/n), i.e., the density of triangles in the network
decays toward zero in the limit of large graph.

This calculation can be generalized to loops of longer length or cliques of larger size and produces
the same result: the density of such structures decays to zero in the large-n limit. This implies
that G(n, p) graphs are locally tree-like (see figure below), meaning that if we build a tree outward
from some vertex in the graph, we rarely encounter a “cross edge” that links between two branches
of the tree.

This property is another that differs sharply from real-world networks, particularly social networks,
which we have seen exhibit fairly high clustering coefficients, even in very large graphs.

2.3 The giant component

This random graph model exhibits one extremely interesting property, which is the sudden ap-
pearance, as we vary the mean degree c, of a giant component, i.e., a component whose size is
proportional to the size of the network n. This sudden appearance is called a phase transition.6

6The term “phase transition” comes from the study of critical phenomena in physics. Classic examples include the
melting of ice, the evaporation of water, the magnetization of a metal, etc. Generally, a phase transition characterizes
a sudden and qualitative shift in the bulk properties or global statistical behavior of a system. In this case, the
transition is discontinuous and characterizes the transition between a mostly disconnected and a mostly connected
networked.
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Consider the two limiting cases for the parameter p. If p = 0 we have a fully empty network with
n completely disconnected vertices. Every component in this network has the same size, and that
size is a O(1/n) fraction of the size of the network. In the jargon of physics, the size of the largest
component here is an intensive property, meaning that it is independent of the size of the network.

On the other hand, if p = 1, then every edge exists and the network is an n-clique. This single
component has a size that is a O(1) fraction of the size of the network. In the jargon of physics, the
size of the largest component here is an extensive property, meaning that it depends on the size of
the network.7 Thus, as we vary p, the size of the largest component transforms from an intensive
property to an extensive one, and this is the hallmark of a phase transition. Of course, it could
be that the size of the largest component becomes extensive only in the limit p → 1, but in fact,
something much more interesting happens. (When a graph is sparse, what other network measures
are intensive? What measures are extensive?)

2.3.1 A phase transition

Let u denote the average fraction of vertices in G(n, p) that do not belong to the giant component.
Thus, if there is no giant component (e.g., p = 0), then u = 1, and if there is then u < 1. In other
words, let u be the probability that a vertex chosen uniformly at random does not belong to the
giant component.

For a vertex i not to belong the giant component, it must not be connected to any other vertex that
belongs to the giant component. This means that for every other vertex j in the network, either (i)
i is not connected to j by an edge or (ii) i is connected to j, but j does not belong to the giant com-
ponent. Because edges are iid, the former happens with probability 1−p, the latter with probability

7Other examples of extensive properties in physics include mass, volume and entropy. Other examples of intensive
properties—those that are independent of the size of the system—include the density, temperature, melting point,
and pressure.

6



Network Analysis and Modeling, CSCI 5352
Lecture 10

Prof. Aaron Clauset
1 October 2013

pu, and the total probability that i does not belong to the giant component via vertex j is 1−p+pu.

For i to be disconnected from the giant component, this must be true for all n− 1 choices of j, and
the total probability u that some i is not in the giant component is

u = (1− p + pu)n−1

=

[
1− c

n− 1
(1− u)

]n−1
(9)

= e−c(1−u) (10)

where we use the identity p = c/(n− 1) in the first step, and the identity limn→∞
(
1− x

n

)n
= e−x

in the second.8

If u is the probability that i is not in the giant component, then let S = 1 − u be the probability
that i belongs to the giant component. Plugging this expression into Eq. (10) and eliminating u in
favor of S yields a single equation for the size of the giant component, expressed as a fraction of
the total network size, as a function of the mean degree c:

S = 1− e−cS . (11)

Note that this equation is transcendental and there is no simple closed form that isolates S from
the other variables.9

We can visualize the shape of this function by first plotting the function y = 1− e−cS for S ∈ [0, 1]
and asking where it intersects the line y = S. The location of the intersection is the solution
to Eq. (11) and gives the size of the giant component. Figure 1 (next page) shows this exercise
graphically (and Section 4 below contains the Matlab code that generates these figures). In the
“sub-critical” regime c < 1, the curves only intersect at S = 0, implying that no giant component
exists. In the “super-critical” regime c > 1, the lines always intersect at a second point S > 0,
implying the existing of a giant component. The transition between these two “phases” happens
at c = 1, which is called the “critical point”.

8We can sidestep using the second identity by taking the logarithms of both sides of Eq. (9):

lnu = (n− 1) ln

[
1− c

n− 1
(1− u)

]
' −(n− 1)

c

n− 1
(1− u) = −c(1− u)

where the approximate equality becomes exact in the limit of large n. Exponentiating both sides of our approximation
then yields Eq. (10). This should look familiar.

9For numerical calculations, it may be useful to express it as S = 1 + (1/c)W(−ce−c) where W(.) is the Lambert
W-function and is defined as the solution to the equation W(z)eW(z) = z.
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Figure 1: (a) Graphical solutions to Eq. (11), showing the curve y = 1 − e−cS for three choices of
c along with the curve y = S. The locations of their intersection gives the numerical solutions to
Eq. (11). Any solution S > 0 implies a giant component. (b) The solution to Eq. (11) as a function
of c, showing the discontinuous emergence of a giant component at the critical point c = 1.

2.3.2 Branching processes and percolation

An alternative analysis considers building each component, one vertex at a time, via a branching
process. Here, the mean degree c plays the role of the expected number of additional vertices that
are joined to a particular vertex i already in the component. The analysis can be made entirely
analytical, but here is a simple sketch of the logic.

When c < 1, on average, this branching process will terminate after a finite number of steps, and
the component will have a finite size. This is the “sub-critical” regime. In contrast, when c > 1,
the average number of new vertices grows with each new vertex we add, and thus the branching
process will never end. Of course, it must end at some point, and this point is when the component
has grown to encompass the entire graph, i.e., it is a giant component. This is the “super-critical”
regime. At the transition, when c = 1, the branching process could in principle go on forever, but
instead, due to fluctuations in the number of actual new vertices found in the branching process,
it does terminate. At c = 1, however, components of all sizes are found and their distribution can
be shown to follow a power law.

2.4 A small world with O(log n) diameter

The branching-process argument for understanding the component structure in the sub- and super-
critical regimes can also be used to argue that the diameter of a G(n, p) graph should be small,
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growing like O(log n) with the size of the graph n. Recall that the structure of the giant component
is locally tree-like and that in the super-critical regime the average number of offspring in the
branching process c > 1. Thus, the largest component is a little like a big tree, containing O(n)
nodes and thus, with high probability, has a depth O(log n), which will be the diameter of the
network. This informal argument can be made mathematically rigorous, but we won’t cover that
here.

2.5 Drawing networks from G(n, p)

Generating instances of G(n, p) is straight forward. There are at least two ways to do it: (i) loop
over the upper triangle of the adjacency matrix, checking if a new uniform random deviate rij < p,
which takes time O(n2); or (ii) generate a vector of length n(n− 1)/2 of uniform random deviates,
threshold them with respect to p, and then use a pair of nested loops to walk the length of the
vector, which still takes time O(n2). A third way, which does not strictly generate an instance of
G(n, p), is to draw a degree sequence from the Poisson distribution to construct the network, which
takes time O(n + m logm). In the sparse limit, the latter approach is essentially linear in the size
of the network, and thus substantially faster for very large networks.

3 At home

1. Reread Chapter 12 (pages 397–425) in Networks

2. Next time: more random graphs

9



Network Analysis and Modeling, CSCI 5352
Lecture 10

Prof. Aaron Clauset
1 October 2013

4 Matlab code

Matlab code for generating Figure 1a,b.

% Figure 1a

c = [0.5 1 1.5]; % three choices of mean degree

S = (0:0.01:1); % a range of possible component sizes

figure(1);

plot(0.583.*[1 1],[0 1],’k:’,’LineWidth’,2); hold on;

plot(S,1-exp(-c(1).*S),’r-’,’LineWidth’,2); % c = 0.5 curve

plot(S,1-exp(-c(2).*S),’r-’,’LineWidth’,2); % c = 1.0 curve

plot(S,1-exp(-c(3).*S),’r-’,’LineWidth’,2); % c = 1.5 curve

plot(S,S,’k--’,’LineWidth’,2); hold off % y = S curve

xlabel(’S’,’FontSize’,16);

ylabel(’y’,’FontSize’,16);

set(gca,’FontSize’,16);

h1=text(0.7,0.26,’c = 0.5’); set(h1,’FontSize’,16,’Rotation’,14);

h1=text(0.7,0.47,’c = 1.0’); set(h1,’FontSize’,16,’Rotation’,18);

h1=text(0.2,0.32,’c = 1.5’); set(h1,’FontSize’,16,’Rotation’,38);

% Figure 1b

S = (0:0.0001:1); % a range of component sizes

c = (0:0.01:4); % a range of mean degree values

Ss = zeros(length(c),1);

for i=1:length(c)

g = find(S - (1-exp(-c(i).*S))>0, 1,’first’); % find the intersection point

Ss(i) = S(g); % store it

end;

figure(2);

plot(c,Ss,’r-’,’LineWidth’,2);

xlabel(’Mean degree c’,’FontSize’,16);

ylabel(’Size of the giant component S’,’FontSize’,16);

set(gca,’FontSize’,16,’XTick’,(0:0.5:4));
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