
Network Analysis and Modeling, CSCI 5352

Lecture 11

Prof. Aaron Clauset

8 October 2013

1 The configuration model

A particularly unrealistic aspect of the random graph model G(n, p) is its degree distribution, which
we showed follows a Poisson distribution when the graph is sparse. In contrast, most real-world
graphs exhibit heavy-tailed degree distributions. We can improve this aspect of our random graph
model by using a generalization called the “configuration model.” Although there is no standard
abbreviation by which we refer to the configuration model, reusing the notation from the Erdős-
Rényi model, we might say G(n,~k) where ~k = {ki} is a degree sequence and ki is the degree of
vertex i.

The degree sequence ~k can be any sequence so long as
∑

ki is an event integer (do you see why?).
This means we may, if we like, choose ~k to be a sequence of values drawn iid from some degree
distribution Pr(k). When k ∼ Poisson(c/(n − 1)), the configuration model reduces to something
very similar to the Erdős-Rényi random graph. When k is drawn from some other distribution, we
get different networks. When working with empirical data, a particularly common choice of ~k is
the particular degree sequence observed in the empirical network.

Given a degree sequence, we may construct a random graph by choosing a uniformly random match-
ing on the degree “stubs” (half edges). The result is an instance of the ensemble corresponding
to G(n,~k). Unlike the random graph model, the configuration model does not construct simple
networks. Instead, self-loops and multi-edges are allowed. But, these represent a tiny fraction of
all edges, and we typically lose little by just discarding or collapsing them.

As an example of what the configuration model produces, here are visualizations of our old friend
the karate club and a random graph with the same degree sequence (via the configuration model).
Note that the original group structure has been randomized.

1



Network Analysis and Modeling, CSCI 5352

Lecture 11

Prof. Aaron Clauset

8 October 2013

1.1 Generating networks using the configuration model

Given a degree sequence ~k = {k1, k2, . . . , kn}, we can generate a random graph with exactly that
set of degrees, but which is otherwise random, by taking a uniformly random matching on the
“stubs” attached to vertices. Each such matching thus occurs with equal probability. This does
not, however, imply that each network will occur with equal probability, as some matchings produce
the same network.

Consider the set of matchings on six edges that form a triangle. The following figure illustrates the
fact that distinct labelings of the edge stubs, and hence distinct matches, form exactly the same
network. In the configuration model, we choose each of these with equal probability.

a b

c

d

e

f

a

c

d

e

f

b a b

a ba b ab ab

ab

c

d

c

d

c

d

c

d

c

d

c

d

e

f

e

f

e

f

e

f

e

f

e

f

However, these are not the only possible matchings on these six edge stubs. The following figure
shows three other distinct matchings, which produce non-simple networks, i.e., networks with self-
loops and/or multi-edges.

a b ab a b

c

d

c d

e

f e f

d f c e

In practice, the fraction of edges involved in either self-loops or multi-edges is vanishingly small in
the large-n limit, and thus we may generally ignore them without much impact. (However, there are
applications in which these features are important, and so it is worth remembering that they exist.)

Once a degree sequence ~k has been chosen, e.g., by taking the degree sequence in some empirical
network or by drawing a sequence from a degree distribution, to draw a network from the corre-
sponding configuration model, we simply need an efficient method by which to choose a uniformly
random matching on the

∑

i ki stubs.

2



Network Analysis and Modeling, CSCI 5352

Lecture 11

Prof. Aaron Clauset

8 October 2013

Let v be an array of length 2m and let us write the index of each vertex i exactly ki times in
the vector v. Each of these entries will represent a single edge stub attached to vertex i. Then,
we take a random permutation of the entries of v and read the contents of the array in order, in
pairs. For each pair that we read, we add the corresponding edge to the network. (Once we have
taking a random permutation of the stubs, we could choose the pairs in any other way, but read-
ing them in order allows us to write down the full network with only a single pass through the array.)

For instance, the following figure shows an example of this “stub matching” construction of a
configuration model random graph. On the left is shown both the vertices with their stubs, which
shows the degree sequence graphically, and the initial contents of the array v. On the right is shown
the wired up network defined by the in-order sequence of pairs given in the array, which has been
replaced with a random permutation of v. In this case, the random permutation produces both
one self-loop and one multi-edge.

1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 6 7 1 4 1 2 2 3 2 5 1 2 3 7 3 4 3 5 1 1 4 6

Standard mathematical libraries often provide the functionality to select a uniformly random per-
mutation on the contents of v. However, it is straightforward to do it manually, as well: to each
entry vi, associate a uniformly random variable ri ∼ U(0, 1) (which most good pseudorandom
number generators will produce). Sorting the ri values produces a random permutation1 on the
associated vi values, which can be done using QuickSort in time O(m logm).

1Each of these permutations occurs with probability equal to 1/n!, and because there are n! such permutations,
we are choosing uniformly from among them. If we choose the ri values uniformly at random, then the probability
that any particular element vi has the smallest ri is 1/n. Similarly, the probability that vi has the ith smallest value
is 1/(n− i+ 1). By induction, the probability of choosing any particular ordering is

∏n

i=1
(n− i+ 1)−1 = 1/n!. It is

possible to choose a random permutation in O(m) time using an in-place randomizer. Instead of sorting the uniform
deviates, we instead loop from i = 1 to n within v and swap vi with a uniformly randomly chosen element vj where
i ≤ j ≤ n. The proof that this produces a random permutation follows the proof above.

3



Network Analysis and Modeling, CSCI 5352

Lecture 11

Prof. Aaron Clauset

8 October 2013

1.2 Mathematical properties

The precise mathematical properties for a configuration model random graph depend on the degree
sequence. In the version of the model where we draw the degree sequence from some distribution,
we may often calculate properties of the configuration model ensemble analytically (often using
powerful techniques called generating functions).2 Common choices of random graph models in-
clude the k-regular random graph, where every degree is exactly k, and the power-law random
graph, where Pr(k) ∝ x−α.

The central mathematical property of the configuration model (and indeed, all random-graph mod-
els) is the probability that two vertices i, j are connected. Let ki, kj denote the degrees of two
particular vertices in the network, and for convenience assume that both are positive integers (if
either is zero, then the probability of the edge is zero). Under a random matching on the edge stubs,
for a particular stub attached to vertex i, there are kj possible stubs, out of 2m− 1 (excluding the
stub on i under consideration), attached to j to which it could connect. And, there are ki chances
that this could happen. Thus, the probability that i and j are connected is

pij =
kikj

2m− 1

≃
kikj
2m

, (1)

where the second form holds in the limit of large m. Notice that this immediately implies that the
higher the degrees are of i and j, the greater the probability that they connect under the configu-
ration model.

Expected number of multi-edges.
Eq. (1) gives the probability that one edge appears between i and j. A closely related quantity is
the probability that a second edge appears between i and j, and this quantity allows us to calculate
the expected number of multi-edges in the entire network. The construction is very similar to that
above, except that we must update our counts of stubs to account for the existence of the first edge
between i and j.

The probability that a second edge appears is (ki − 1)(kj − 1)/2m, because we have used one stub
from each of i and j to form the first edge. Thus, the probability of both a first and a second edge
appearing is kikj(ki − 1)(kj − 1)/(2m)2. Summing this expression over all distinct pairs gives us

2For a good introduction to this technique, see Wilf generatingfunctionology, AK Peters (2006).

4



Network Analysis and Modeling, CSCI 5352

Lecture 11

Prof. Aaron Clauset

8 October 2013

the expected number of multi-edges in the entire network:

∑

distinct i,j

(

kikj
2m

)(

(ki − 1)(kj − 1)

2m

)

=
1

2

1

(2m)2





n
∑

i=1

ki(ki − 1)

n
∑

j=1

kj(kj − 1)





=
1

2〈k〉2n2

(

∑

i

k2i − ki

)





∑

j

k2j − kj





=
1

2〈k〉2

(

1

n

∑

i

k2i −
1

n

∑

i

ki

)





1

n

∑

j

k2j −
1

n

∑

j

kj





=

(

〈k2〉 − 〈k〉
)2

2〈k〉2

=
1

2

[

〈k2〉 − 〈k〉

〈k〉

]2

. (2)

In this derivation, we used several identities: 2m = 〈k〉n, which relates the number of edge stubs
to the mean degree and number of vertices, and 〈km〉 = 1

n

∑

i k
m
i , which is the mth (uncentered)

moment of the degree sequence.

The result, Eq. (2), is a compact expression that depends only on the first and second moments of
the degree sequence, and not on the size of the network. Thus, the expected number of multi-edges
is a constant3 implying a vanishingly small O(1/n) fraction of all edges in the large-n limit.

Expected number of self-loops.
This argument works almost the same for self-loops, except that the number of pairs of possible
connections is

(

ki
2

)

instead of kikj . Thus, the probability of a self-loop is pii = ki(ki − 1) /4m , and
the expected number of self-loops is

〈k2〉 − 〈k〉

2〈k〉
,

which is a constant depending only on the first and second moments of the degree sequence. Thus,
just as with multi-edges, self-plops are a vanishingly small O(1/n) fraction of all edges in the large-n
limit when 〈k2〉 is finite.

3So long as the first and second moments of the distribution producing ~k are finite, which is not the case if the
degree distribution follows a power law with α < 3. We are also ignoring the fact that we treated the i = j case, i.e.,
self-loops, identically to the i 6= j case, but this difference is small, as the next section shows.

5



Network Analysis and Modeling, CSCI 5352

Lecture 11

Prof. Aaron Clauset

8 October 2013

2 At home

1. Read Chapter 13.0–13.2 (pages 428–445) in Networks

2. Next time: more configuration model

6


