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1 Mechanisms for Network Structure

Analyzing the structure of a network, e.g., using centrality measures, degree distributions, relation-
ships between network measures, comparison versus the configuration model, community structure,
etc., allows us to identify a set of empirical patterns that characterize one or several networks.
These patterns provide general insight into the network’s large-scale organizational patterns, for
instance, along what structural dimensions the network exhibits assortative or disassortative pat-
terns, whether connectivity is concentrated among a minority of vertices, and whether those vertices
are in the core or periphery of the network. Similarly, comparing the observed patterns against a
good null model, like the configuration model, allows us to tell whether the pattern is surprising,
given certain assumptions like fixing the degree distribution.

But, these techniques do not necessarily allow us to explain why we see these patterns and not
others. For instance, why do social networks exhibit high clustering coefficients? Why do biolog-
ical networks exhibit degree disassortativity? Why do citation networks exhibit power-law degree
distributions? Why do online social networks also exhibit heavy-tailed degree distributions, while
friendship networks exhibit much lighter tails?

Explaining the origin of a pattern requires identifying the underlying mechanism that generates it,
i.e., the cause or causes that produce it as an effect.1 Establishing causality for network patterns is
a difficult task because typically we only have access to observational data, i.e., data that we observe
passively rather than data we generate through a controlled experiment.2 The central difficulty
is that there are often multiple plausible mechanisms that can produce any particular empirical
pattern, and the observational data alone may not provide the means to distinguish between them.
That is, the data we want is rarely the data we can get. For this reason, caution should be employed
in drawing any conclusions about causality.

Two things can make the mechanism inference task somewhat easier. First, temporal data, i.e.,
data over multiple points in time, allows us to eliminate mechanisms that do not match both the
static and evolving empirical pattern. Second, requiring that a mechanism match multiple empiri-
cal patterns allows us to eliminate mechanisms that only match a subset of these patterns.

In this lecture, we will investigate these ideas in the context of the popular preferential attachment

1It is worth noting that there is a significant bias toward single-cause explanations in the natural sciences, and
toward multiple-cause explanations in the social sciences. The biological sciences are more schizophrenic, with some
fields taking after the natural sciences, and others after the social sciences.

2Social scientists have recently begun examining specific questions about networks and causality in controlled
experiments. These efforts are generally exciting, although sometimes it can be unclear whether the results extend
outside the laboratory setting. For good examples, see Salganik, Dodds, and Watts, “Experimental study of inequality
and unpredictability in an artificial cultural market.” Science 311, 854–856 (2006), and Kearns, Suri, and Montfort,
“Experimental Study of the Coloring Problem on Human Subject Networks.” Science 313, 824–827 (2006).
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mechanism for network growth, whose signature output is a network with a power-law degree distri-
bution. But, a power-law degree distribution can be produced by many network mechanisms. This
implies that observing a power-law degree distribution in some network is a necessary but not a
sufficient condition to conclude that the underlying network dynamics are governed by preferential
attachment.

To make this point clear, consider the following pair of logical diagrams. The left shows the usual
situation with trying to determine whether some empirical network is governed by the preferential
attachment mechanism.3 The right shows an exactly analogous, albeit silly situation. The question
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is whether we can conclude that some network is governed by the preferential attachment mechanism
(or is “scale-free” in the manner implied by that mechanism) on the basis of it having a power-law
degree distribution. Concluding in favor is a logical fallacy of the following sort: Aaron likes honey;
Bears like honey; therefore, Aaron is a Bear. Clearly, this is wrong, but its wrongness highlights
the utility of examining either (or both) temporal observations and multiple patterns as a way to
constrain the space of plausible hypotheses. To determine if I am a Bear, examine whether I share
other features in common with bears, e.g., possess claws, a fuzzy tail and fur, have a habit of eating
moths for extra protein, amble around mostly on all fours, etc.

2 The preferential attachment mechanism

The preferential attachment mechanism is perhaps the best known mechanism for network growth.
At its core, it describes how a new vertex joining a network will distribute any edges it brings with
it. It is purely a model of network growth, and says little about how vertices or edges are removed
from the network. The mechanism itself goes by many other names and has been reinvented (and
renamed) several times over the past 100 years. Here is a brief summary of its storied history.

3Actually, there is a missing step on the left, which is determining that the network degree distribution does indeed
follow a power law, which requires a statistical test of the kind we saw earlier in the semester.
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2.1 A brief history

Mathematically, preferential attachment is equivalent to the Yule process for modeling the distri-
bution of the sizes of biological taxa (for instance, how many species are in a genus), first studied
by the statistician Udny Yule (1871–1951) in 1925. The Yule process is a kind of variation on the
Polya’s urn model, due to the mathematician George Pólya (1887–1985). The Yule process was
named and generalized by the economist Herbert Simon (1916–2001; Turing Award in 1975 and
Nobel Prize in Economics in 1978) to study the distribution of wealth. Simon showed mathemat-
ically that the mechanism produces power-law distributions. The “rich get richer” mechanism of
preferential attachment was also recognized qualitatively by the sociologist Robert Merton (1910–
2003), who called it the Matthew effect, after a passage in Biblical Gospel of Matthew. In the
1970s, the physicist Derek de Solla Price (1922–1983; sometimes called the “father” of scientomet-
rics), inspired by Simon’s work, adapted the Yule process to the study of the evolution of citation
networks and renamed the mechanism cumulative advantage.

More recently, the physicists Albert-Laszlo Barabási and Reka Albert reinvented Price’s network
growth mechanism in a 1999 paper, giving it the name preferential attachment. Work did not
stop there, of course. The vertex-copying models proposed in the past decade for the structure
of gene networks, such as those proposed by the physicist Ricard Solé and colleagues (2002) and
by the mathematician Alexei Vázquez and colleagues (2003), the fitness-based generalization of
preferential attachment, proposed as a model of the WWW by physicists Ginestra Bianconi and
Albert-Laszlo Barabási in 2001, the forest fire model for densification, proposed by the computer
scientist Jure Leskovec and colleagues (2005), and the local-competition mechanism proposed by
the physicist Raissa D’Souza and colleagues (2007), can all be framed as variations, explanations
or generalizations of Price’s model. Given its popularity and its mathematical simplicity, much
is known about the behavior of this mechanism. We will cover a few highlights, returning to the
question of mechanism inference at the end.

2.2 The basic mechanism

Price’s model of a citation network is simple. Assume that papers are published continuously and
that new papers only cite papers that have appeared previously. Because new papers are always
being published and old papers are never destroyed, the network grows monotonically with time.
For simplicity, let each new paper have a bibliography containing an average of c citations. That
is, c is the average out-degree of a vertex joining the network.4

4For the mathematics to work, the distribution of bibliography lengths Pr(c) simply must have a finite variance.
This rules out bibliography lengths distributed according to a power law with α < 3. Fortunately, empirical work
supports this assumption, although it also shows that bibliography lengths vary by field, and have been getting longer
in recent years. Interestingly, the average number of authors on a paper has also been slowly increasing.
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The central question for determining the evolution of the network structure is, How does a new
paper choose which previous papers to cite? Price’s assumption was those papers are chosen at
random with probability proportional to the number of citations those previous papers already
have.5 Thus, highly cited papers are likely to gain additional citations and the “rich get richer.”

For instance, consider an existing network of four vertices to which we will add a single new vertex.
For simplicity, we let this vertex have a single edge to distribute. In the figure, each vertex is
annotated with its fraction of the total degree (2m). To make the new edge, we flip a coin and
connect the new vertex to the lucky existing vertex. We may recalculate the relative share of edge
“wealth” held by each vertex. Repeating this process for each new vertex grows the network.
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Naturally, this model is highly simplified as it ignores contributions such as the quality or impor-
tance of a paper, the fame of the authors, the fame of the publishing journal, the influence of
the peer review process, the paper’s topic, etc. In fact, this model ignores everything about the
papers themselves except for their degree. In reality, the probability that a vertex gains a cita-
tion cannot be precisely proportional to its degree because every paper is born with zero citations.
Price circumvented this problem by letting the probability be proportional to the current number
of citations k plus a constant r, which could be interpreted as a number of “free” citations every
new paper receives or a certain fraction of all citations that are distributed uniformly at random.6

Finally, we must also specify an initial network to which new vertices attach, e.g., two vertices
joined by a single edge.

5This particular assumption is rather unrealistic, however, because it assumes that every scientist who writes a
new paper knows the distribution of citations for all other papers every written. An equivalent and more realistic
mechanism that has the consequences, however, is the following. To choose which paper to cite, a scientist chooses an
arbitrary paper and cites a uniformly random paper listed in its bibliography. This is equivalent to choosing a random
neighbor of a random vertex, which, in a random graph, leads to choosing a vertex with probability proportional to
its degree.

6This constant r thus plays a role similar to the “teleportation” probability in the PageRank model of vertex
centrality. It also implies that the way a paper accumulates citations varies depending on which of these two
mechanisms is larger; for young papers with small degrees, the uniform attachment mechanism should dominate, but
older papers, with larger degrees, will mainly gain new citations from the preferential attachment mechanism.
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2.3 Structural patterns of preferential attachment

With these simple assumptions in place, we can mathematically analyze the entire dynamics of the
model and what kinds of network structures it produces. We will sketch some of this analysis in the
next section. In general, however, the main consequence of Price’s assumptions is that the degree
distribution of papers exhibits a power-law tail Pr(k) = L(x)x−α where α = 2 + r/c, the variable
r is the “uniform attachment” mechanism described above and c is the average degree of a vertex
joining the network. In the special case studied by Barabási and Albert, they chose r = c yielding
a power-law distribution with scaling exponent exactly α = 3.

A second consequence of this model is a strong correlation between the “age” of a vertex, i.e., how
early in the network-growth process it joined the network, and its degree. Basically, the longer a
vertex is in the network, the more chances it has to accumulate additional edges, and further, older
vertices tend to have a larger share of citations and thus they gain additional edges faster. The
result is that the oldest vertices tend to have the largest degrees. This effect is sometimes called
the “first-mover advantage.”

Another consequence is that, like a random graph with heavy-tailed degree distribution, the highest-
degree vertices tend also to have high closeness and betweenness centrality scores. This creates a
kind of global core-periphery structure, in which the high-degree vertices cluster together in the
center of the network, surrounded by a sea of lower degree vertices. This also induces degree dis-
assortativity, with high-degree vertices linking to each other, but mainly to many very low degree
vertices (which tend to be very young).

Finally, many variations of this model have been studied, including alterations to the attachment
function. The traditional version, in which the probability of attachment is proportional to the
degree is called linear preferential attachment. A simple generalization is to take a power of the
attachment probability, like so

qi =

(

r + ki
∑

j(r + kj)

)γ

,

where γ = 1 returns Price’s linear attachment model. When γ > 1, the attachment behavior is
super-linear. It can be shown that in this case a condensation or winner-take-all effect happens,
and asymptotically one vertex (the highest degree one) will gain all new edges. When γ < 1,
the attachment behavior is sub-linear, and the distribution of new connections is more equitable
across the network. In the limit γ → 0, we return to a kind of randomly grown network where the
connection probabilities are iid variables, like in G(n, p).
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2.4 A mathematical sketch of the degree distribution

The full derivation of the degree distribution’s form is given in Networks. Here, we will briefly
sketch the mathematical form predicted by Price’s model. The linear attachment function is given
by

qi =
r + ki

∑

j(r + kj)
=

r + ki
nr + n〈k〉

=
r + ki
n(r + c)

,

where we use the definition of the average degree 〈k〉 = 1
n

∑

j kj and the fact that 〈k〉 = c by
definition. When a new vertex joins the network, it distributes on average c new connections to the
other vertices. We can model the fraction of vertices with degree k, denoted pk, by using the master
equation approach to write down a set of coupled equations that represent how those populations
change over time and then letting the size of the network n → ∞. This yields the expressions

pk =
(

r+(k−1)
(r+1+r/c)+k

)

pk−1 for k ≥ 1 ,

p0 =
(

1+r/c
r+(1+r/c)

)

for k = 0 .

(1)

The second equation is necessary because we are only modeling the in-degree distribution of vertices.
Iterating these recursive equations and recognizing some patterns in their functional form, we find
that they can be expressed as

pk =
B(k + r, 2 + r/c)

B(r, 1 + r/c)
,

where B(x, y) is Euler’s beta function. In this form, it is not obvious that pk follows a power-law
distribution. However, it can be shown7 that a ratio of Beta functions is approximately a shifted
power-law distribution,8

pk ∝ (k + r)−α

≈ k−α for k ≫ r , (2)

where α = 2 + r/c and when r = c, we have pk ≈ k−3.

The full distribution, given by the ratio of the two beta functions is called the Yule-Simon distri-
bution, and was first derived by Herbert Simon9 in 1955.

7First, recall that B(x, y) = Γ(x)Γ(y)/Γ(x + y), where Γ(x) is the gamma function, a continuous-variable gen-
eralization of the standard factorial x! = x(x − 1)(x − 2) . . . . Stirling’s approximation for the gamma function is
Γ(x) ≃

√
2πe−xxx−1/2, which allows us to re-express B(x, y) in closed form. Then applying the approximation

(x+ y)z ≃ xzey , yields B(x, y) ≃ x−yΓ(y), which decays like a power law for x ≫ 1.
8This mathematical structure, the ratio of two slightly offset Gamma functions, appears in the analysis of many

simple models of network structure and always yields a power law form.
9Simon was a giant of an intellect, and was into “complex systems” several decades before the term was coined.

His book The Sciences of the Artificial is highly recommended.

6



Network Analysis and Modeling, CSCI 5352

Lecture 13

Prof. Aaron Clauset

22 October 2013

2.5 Simulation of the model

Price’s model is easy to simulate (Matlab code is at the end of this file). The following figure
shows the results of a single simulation (ignoring the direction of the edges) with r = c = 1 for
n = {5, 50, 1000}. Because the average degree is c = 1, the network is always a tree. Note the large
degree heterogeneity emerging, even at modest values of n.

2.6 Empirical tests of the model

The empirical support for Price’s model largely comes from indirect comparisons of the model with
data. That is, from comparing the predictions of the model on certain structural regularities with
empirical tabulations of those patterns. The first of these was done by Price himself, looking at the
degree distribution of real citation networks. This comparison continues to be the dominant test
of the model. However, since many models of network growth are known to produce heavy-tailed
or even power-law degree distributions, agreement here is not a very powerful test of the model.

Given full bibliographic information about a set of papers, that is, their publication date and the
set of previous papers they cite, the there are no free parameters in the model. However, if we do
not have the arrival times of the vertices, i.e., we only have a current snapshot of the structure of
the network such that we can see which vertices connect to which other ones, Price’s model can
be cast in terms of likelihood functions and fitted directly to the network structure. This leads
to estimates of its free parameters r, c and the arrival times of the vertices. The inference step
is mainly to search through the permutations of the n vertices to find the one under which the
observed topology is most likely.10

10This inference problem was recently formalized by Wiuf et al. in 2006; however, it’s much harder than it sounds
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Figure 1: Empirical measurements in brown; theoretical predictions in black. (a) The ccdf of the
degree distribution. The best fit is achieved for α = 2.28 and r = 6.38. (b) The mean number of
citations received by papers as a function of time from beginning (t = 0) to end (t = 1) of the period
covered. (c), (d) and (e): Probability that a paper with a given number of citations is published
at time t, for papers with (c) 1 or 2 citations, (d) 3 to 5 citations, and (e) 6 to 10 citations at time
t = 1. Figure reproduced from M.E.J. Newman, Eur. Phys. Lett. 86, 68001 (2009).

If the arrival times are known, we can estimate r and c directly from the empirical degree dis-
tribution by fitting the predicted form to the empirical data. We can then make effectively zero-
parameter predictions about the local structure of the network. This was recently done by Mark
Newman in a 2009 paper on the first-mover advantage in which he applied Price’s model to the
evolution of the citation network of papers on the theory of networks. Figure 2 shows some of his

because the structure of a network evolving under the preferential attachment mechanism exhibits a strong dependence
on its past, which makes estimation of the likelihood of the data given a choice of arrival times of the nodes difficult.
In general, all evolving network models exhibit the same problem and thus it becomes easier to work with indirect
comparisons of the model with data.
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Figure 2: (a) The degree distribution of 353,268 papers (which generated 3,110,839 citations)
published in the Physical Review journals from July 1893 – June 2003 (in this case, fitted with a
left-truncated log-normal distribution). (b) An empirical estimate of the attachment rate qk for
this network (denoted Ak in the figure), showing a roughly linear shape, particularly for the first
100 or so citations (inset). The different colors denote different time periods for establishing k:
1990-99 (purple), 1980-99 (green), 1970-99 (red) and 1893–1999 (black). Figures reproduced from
S. Redner, Phys. Today 58, 49–54 (June 2005).

results. In the first step, the Yule-Simon distribution was fitted to the degree distribution via max-
imum likelihood to recover estimates of r and c. This then fully specifies the model and additional
predictions, e.g., of the average citation count of a paper as a function of its age or of the prob-
ability that a paper with k citations was published at some time t, can be derived and compared
with the empirical results. Perhaps unsurprisingly, Newman’s results show a very strong preferen-
tial attachment mechanism among papers on network theory. He goes on, however, to use Price’s
model as a kind of null model and shows that some papers receive more citations than we would
expect, given the age. The implication is that there is some contribution to the citation dynam-
ics from the many aspects not represented by preferential attachment, e.g., the quality of the paper.

These tests mainly focus on testing the outcomes or predictions of the model, however, a crucial
step to validating any hypothesis is to test the validity of its inputs or assumptions. The physicist
Sid Redner conducted such a test in 2005 by analyzing 110 years of bibliographic data for the jour-
nals Physical Review, covering 353,268 papers and 3,110,839 citations. Most notably, he directly
measured the form of the attachment function qk and showed that it exhibits a plausibly linear
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structure, particularly for the first 100 or so citations. Figure 3 illustrates his results. He also
found, however, that citation networks exhibit a host of rich dynamics that have extremely low
probability under Price’s model. For instance, there are “sleeper” classics, which receive very few
citations for a long period of time, but then suddenly begin accumulating large numbers of new
connections, e.g., because an important paper was forgotten and then rediscovered.

Price’s preferential attachment mechanism has been suggested as the underlying explanation of
many other networks’ structure, including the topology of the Internet at the level of Autonomous
Systems, the evolution of the WWW, the structure of online social networks like Facebook and
Twitter, and even some biological networks. However, in most cases, the tests of the model’s ac-
curacy have mainly compared the empirical and predicted degree distributions. Few have tested
whether the attachment function exhibits linear behavior (as Redner did) or whether other predic-
tions also line up (as Newman did).

3 At home

1. Peruse Chapter 14.0–14.4 (pages 486–534) in Networks

2. Next time: more network mechanisms
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4 Matlab code

% the preferential attachment mechanism

n = 1000; % size of network

p = 0.1; % probability of uniform attachment

x = zeros(n,1);

d = zeros(n,1);

% initial condition: pair of reciprocal edges

x(1) = 2; % node 1 points to node 2

x(2) = 1; % node 2 points to node 1

d(1:2) = [1 2]; % each has degree 1

for t=3:n

if rand(1)<p

% uniform attachment

g = ceil((t-1).*rand(1));

else

% preferential attachment

g = d(ceil((t-1).*rand(1)));

end;

x(t) = g;

d(t) = g;

end;

% plot the degree distribution as a ccdf

pdf = hist(x,unique(x));

cdf = [[unique(x); length(pdf)+1] 1-[0 cumsum(pdf./sum(pdf))]’];

cdf(cdf(:,2)<1/n,:) = [];

figure(1);

loglog(cdf(:,1),cdf(:,2),’ro’);

set(gca,’FontSize’,16);
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