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1 More stochastic block model

Recall that the stochastic block model (SBM) is a generative model for network structure and thus
defines a probability distribution over networks Pr(G | θ), where θ represents the SBM’s parameters.
If we choose the values of θ, we can draw instances from the corresponding distribution. On the
other hand, if we are given a network G, we can use techniques from statistical inference to estimate
the values of θ that best explain or reproduce the observed pattern of connectivity.

generation

inference

model

G=(V, E)

data

Pr(G | θ)

For now, we will assume that the number of groups k is fixed.

1.1 Model definition

Recall that in its most basic version, the SBM is defined by a scalar value and two simple data
structures:

• k : a scalar value denoting the number of groups or modules in the network,

• ~z : a n× 1 vector where z` [or z(`)] gives the group index of vertex `,

• M : a k × k stochastic block matrix, where Mij gives the probability that a vertex of type i
is connected to a vertex of type j.

1.2 Fitting the model to data

Given a choice of k and an observed network G, we can use the SBM to infer the latent community
assignments z and stochastic block matrix M . There are several ways of doing this, the simplest of
which is to use maximum likelihood. That is, we aim to choose z and M such that we maximum
the likelihood of generating exactly the edges observed in G. The likelihood of the data, given the
model is

L(G |M, z) =
∏
u,v

Pr(u, v |M, z)

L(G |M, z) =
∏

(u,v)∈E

Pr(u, v |M, z)
∏

(u,v)6∈E

1− Pr(u, v |M, z) ,
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where we have separated the terms corresponding to edges we observe (u, v) ∈ E and those we do
not (u, v) 6∈ E. Thus, every pair u, v appears in the likelihood function, and the function contains
O(n2) terms.1

Maximum likelihood choice.
In general, z and M can assume any values and the likelihood remains well defined. However,
because we aim to maximize the probability of the SBM generating G, only one particular choice
of M corresponds to this choice, which is the maximum likelihood choice of M conditioned on the
partition z. This simplifies the inference considerably.

Observe that each pair of group labels i, j identifies a “bundle” of edges, i.e., edges that run from
group i to group j.2 Under the SBM, each of these edges is iid with parameter Mij , implying that
the number of edges we actually observe in this bundle is binomial distributed. For simplicity, let
Nij be the number of possible edges between groups i and j, and let Ni be the number of vertices
with label i.

In the case where i 6= j, the number of possible edges is always Nij = NiNj .

The case of i = j depends on they type of network we are modeling: if it is a directed network
with self-loops, then Nii = N2

i , while if we prohibit self-loops then it is Nii = Ni(Ni − 1). If the
network is simple (no self-loops and undirected), then Nii =

(
Ni
2

)
. In the equations below, we will

use the more general term Nij , but this should be replaced with the appropriate expression when
the model is applied to real data.

Suppose that for some particular choice of i and j, we observe Eij edges in the i, j bundle. Because
this number is binomially distributed, the maximum likelihood choice for the probability Mij that
any particular edge in this bundle exists is simply the MLE for a binomial with expected value Eij ,
that is, M̂ij = Eij/Nij , which can easily be derived by counting the edges in a bundle, given the
network G and a particular partition z.

This choice allows us to simplify the likelihood function by substituting the MLE for Mij into the

1Whether it is n2 or n2 − n or
(
n
2

)
terms depends on whether we are modeling a directed network with self-

loops, directed without self-loops, or a simple network. That is, if an edge cannot exist between a pair of vertices
by definition of the network type, then that pair mustn’t contribute to the total likelihood of the observed data.
Furthermore, if the existence of an edge is already accounted for by some other pair of groups, e.g., j, i and i, j when
the network is undirected, then it cannot contribute a second time to the likelihood.

2Note: the pair j, i only denotes a distinct edge bundle from that of i, j if the network is directed. If the network
is undirected, the calculation only runs over the

(
k
2

)
unique pairs of group labels.
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previous equation:

L(G |M, z) =
∏

(u,v)∈E

Mzuzv

∏
(u,v) 6∈E

(1−Mzuzv)

=
∏
i,j

M
Eij

ij (1−Mij)
Nij−Eij (1)

=
∏
i,j

(
Eij

Nij

)Eij
(

1− Eij

Nij

)Nij−Eij

. (2)

Taking the logarithm yields the log-likelihood function

lnL =
∑
i,j

Eij ln
Eij

Nij
+ (Nij − Eij) ln

(
Nij − Eij

Nij

)
.

Applying the rules of logarithms and collecting like terms yields

lnL =
∑
i,j

Eij lnEij − Eij lnNij + (Nij − Eij) (ln (Nij − Eij)− lnNij)

=
∑
i,j

Eij lnEij − Eij lnNij +Nij ln (Nij − Eij)−Nij lnNij − Eij ln (Nij − Eij) + Eij lnNij

=
∑
i,j

Eij lnEij +Nij ln (Nij − Eij)−Nij lnNij − Eij ln (Nij − Eij)

=
∑
i,j

Eij lnEij + (Nij − Eij) ln (Nij − Eij)−Nij lnNij , (3)

which is a function that depends only on the counts induced by z.3

1.3 An example

Returning to the simple network of two triangles joined by a single edge, we can tabulate the max-
imum likelihood stochastic block matrix M for each of the usual two partitions, and thus compute
their likelihoods. To do so, we use the version of the SBM that generates simple networks, i.e.,
we restrict the summation to exclude self-loops and we count edges between groups only once.
Applying Eq. (3) to the corresponding matrices shows that the “good” partition is about 177 times
more likely to generate the observed data than the “bad” partition.

Although the qualitative results are the same as for using the modularity function—the good
partition is better—this likelihood-based approach provides additional information in the form of

3Where we define 00 = 1. This choice is necessary to prevent the numerical calculation from failing when either 0
edges run between, or 0 edges do not run between, a pair of groups.
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Lgood = 0.043304 . . . Lbad = 0.000244 . . .
lnLgood = −3.1395 . . . lnLbad = −8.3178 . . .

Mgood red blue

red 3/3 1/9
blue 1/9 3/3

Mbad red blue

red 4/6 2/8
blue 2/8 1/1

the likelihood ratio. That is, we now know just how much better, in probabilistic terms, the better
partition is.

1.4 Choosing the number of groups k

Recall that we fixed k the number of groups. In many applications, we would like to allow k to
vary and thus decide whether some choice k′ > k is better.

Because k determines the “size” of the model, allowing k to vary presents a difficulty: the larger
a value of k we choose, the more parameters we have in M , which may lead to over fitting. In
the limit of k = n, every vertex is in a group by itself, the matrix M becomes identical to the
adjacency matrix A and the likelihood is maximized at L = 1. That is, the model has memorized
the data exactly. Thus, as we increase k, the SBM distribution over networks becomes increasingly
concentrated around the empirically observed network G.

Thus, the SBM has a downside relative to modularity maximization, which had no free parameter
controlling its model complexity.4 There are, however, statistically principled ways of choosing k,
but these require additional steps as increasing k directly increases the number of parameters in the
model, which increases the risk of over fitting the data. A method for regularization or complexity
control is thus necessary in order to penalize larger models for their additional flexibility. That is,
we would only want to use a larger model (larger k) if the additional flexibility was statistically

4The downside is not as great as you may imagine, however, as the modularity function has a built in preference
for modules with certain characteristics, which the SBM lacks.
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warranted. Popular choices for regularization include Bayesian marginalization, Bayes factors,
various information criteria (BIC, AIC, etc.), minimum description length (MDL) approaches, and
likelihood ratio tests. We will not cover any of these techniques here.

1.5 Correcting for degree heterogeneity

In recent years, the SBM has become a popular model upon which to build more sophisticated
generative models of community structure, with many variations.

One particularly nice variation is the so-called “degree corrected” SBM, by Karrer and Newman,
which was motivated by the fact that when you apply the SBM to networks with skewed degree
distributions, the model tends to group vertices by degree. For instance, consider the karate club
network. Setting k = 2 yields the following labeling of the vertices, which does not correspond to
the “true” or socially observed groups. 6

given i and r can thus be done in time O(K(K + 〈k〉)).
Because these computations can be done quickly for a
reasonable number of communities, local vertex switch-
ing algorithms, such as single-vertex Monte Carlo, can be
implemented easily. Monte Carlo, however, is slow, and
we have found competitive results using a local heuristic
algorithm similar in spirit to the Kernighan–Lin algo-
rithm used in minimum-cut graph partitioning [27].

Briefly, in this algorithm we divide the network into
some initial set of K communities at random. Then we
repeatedly move a vertex from one group to another, se-
lecting at each step the move that will most increase the
objective function—or least decrease it if no increase is
possible—subject to the restriction that each vertex may
be moved only once. When all vertices have been moved,
we inspect the states through which the system passed
from start to end of the procedure, select the one with the
highest objective score, and use this state as the starting
point for a new iteration of the same procedure. When
a complete such iteration passes without any increase in
the objective function, the algorithm ends. As with many
deterministic algorithms, we have found it helpful to run
the calculation with several different random initial con-
ditions and take the best result over all runs.

IV. RESULTS

We have tested the performance of the degree-
corrected and uncorrected blockmodels in applications
both to real-world networks with known community as-
signments and to a range of synthetic (i.e., computer-
generated) networks. We evaluate performance by quan-
titative comparison of the community assignments found
by the algorithms and the known assignments. As a met-
ric for comparison we use the normalized mutual infor-
mation, which is defined as follows [7]. Let nrs be the
number of vertices in community r in the inferred group
assignment and in community s in the true assignment.
Then define p(X = r, Y = s) = nrs/n to be the joint
probability that a randomly selected vertex is in r in the
inferred assignment and s in the true assignment. Using
this joint probability over the random variables X and
Y , the normalized mutual information is

NMI(X, Y ) =
2 MI(X, Y )

H(X) + H(Y )
, (26)

where MI(X, Y ) is the mutual information and H(Z) is
the entropy of random variable Z. The normalized mu-
tual information measures the similarity of the two com-
munity assignments and takes a value of one if the as-
signments are identical and zero if they are uncorrelated.
A discussion of this and other measures can be found in
Ref. [28].

(a) Without degree correction

(b) With degree-correction

FIG. 1: Divisions of the karate club network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The dashed line indicates the
split observed in real life.

A. Empirical networks

We have tested our algorithms on real-world networks
ranging in size from tens to tens of thousands of ver-
tices. In networks with highly homogeneous degree distri-
butions we find little difference in performance between
the degree-corrected and uncorrected blockmodels, which
is expected since for networks with uniform degrees the
two models have the same likelihood up to an additive
constant. Our primary concern, therefore, is with net-
works that have heterogeneous degree distributions, and
we here give two examples that show the effects of het-
erogeneity clearly.

The first example, widely studied in the field, is the
“karate club” network of Zachary [29]. This is a social
network representing friendship patterns between the 34
members of a karate club at a US university. The club
in question is known to have split into two different fac-
tions as a result of an internal dispute, and the members
of each faction are known. It has been demonstrated
that the factions can be extracted from a knowledge
of the complete network by many community detection
methods.

Applying our inference algorithms to this network, us-

karate club, with SBM k = 2

It is not hard to compute the stochastic block matrices corresponding to this division, which places
the five highest-degree vertices in one group and all other vertices in the other group, and to the
socially observed division. Given these, we can then compute the log-likelihood scores for the two
partitions. The following tables show the results, indicating that, indeed, the SBM division is
more likely (more positive log-likelihood), by a substantial margin. In fact, the SBM division is
exp(198.50−179.39) ≈ 108 times more likely to generate the observed edges than the social division.

Msocial A (17) B (17)

A (17) 35/136 11/289
B (17) 11/289 32/136

A (17) 0.2574 0.0381
B (17) 0.0381 0.2353

MSBM A ( 5) B (29)

A ( 5) 5/10 54/145
B (29) 54/145 19/406

A ( 5) 0.5000 0.3724
B (29) 0.3724 0.0468

social division, lnL = −198.50 SBM division, lnL = −179.39
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Why does the SBM do this? Recall that the SBM can only decompose a network into combinations
of random bipartite graphs and Erdős-Rényi random graphs, each of which has a Poisson degree
distribution with mean MijNi. Thus, if a network exhibits a more skewed degree distribution, as in
the case of the karate club, the model correctly recognizes that in order to reproduce this pattern,
it should place those high-degree vertices in a small group together with a large probability of
connecting to other larger groups. In short, the likelihood function is maximized when each Mij

value is close to either 0 or 1, and the SBM thus prefers partitions that produce this kind of pat-
tern. When a graph is sparse, a large but very weakly connected group is better, from the SBM’s
perspective, than two moderately sized but denser groups. Hence, the observed SBM division.

The downside of this tendency of the SBM is that a skewed degree distribution, like the one we see
in the karate club, is a kind of violation of the SBM’s particular assumption of edge independence,
and the SBM seeks to explain it over other kinds of latent group structure that we might care about.

The degree-corrected SBM modifies the generative model in a way that allows vertices to have ar-
bitrary degrees without having to force the combination of z and M to produce them. In addition
to the usual SBM parameters, we add to each vertex a “propensity” parameter γu that controls
the expected degree of vertex u. Recall that the model for the number of edges between a pair of
vertices u and v in the SBM is a Bernoulli distribution. In the degree-corrected SBM, we simply
replace this Bernoulli distribution with a Poisson distribution with mean γuγvMzuzv .

The probability of observing the network G with adjacency matrix A is then

P (G | γ,M, z) =
∏
u,v

Poisson(γuγvMzuzv)

=
∏
u<v

(γuγvMzuzv)Auv

Auv!
exp (−γuγvMzuzv)

×
∏
u

(
1
2γ

2
uMzuzu

)Auu/2

(Auu/2)!
exp

(
−1

2
γ2uMzuzu

)
, (4)

where the composite likelihood appears because we assume an undirected network, and thus need
to count edges within groups differently from edges between groups. When the Poisson mean
γuγvMzuzv is typically very small, i.e., close to 0, we get a network that is sparse. This reformu-
lation also implies that the networks produced are no longer simple, but are instead undirected
multigraphs, as occasionally we will produce multiple edges between a pair u, v.

The propensity parameters in the Poisson mean are arbitrary to within a multiplicative constant,
which we can absorb into the stochastic block matrix M . This observation allows us to normalize
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the propensity scores ∑
u

γuδi,zu = 1 , (5)

for all group labels i, and where δ(i, j) = 1 if i = j and 0 otherwise. This constraint implies that
γu is equal to the probability that an edge emerging from the group zu will connect to vertex u,
and allows us to simplify Eq. (4) as

P (G | γ,M, z) = C
∏
u

γkuu
∏
i,j

M
Eij/2
ij exp

(
−1

2
Mij

)
, (6)

where ku is the degree of vertex u, C is a constant (see below), and Eij is the total number of edges
between groups i and j or twice that number for i = j (again, because we assume an undirected
network),

Eij =
∑
uv

Auvδi,zuδj,zv . (7)

The constant C depends only on the adjacency matrix A, and includes the various factorials that
come out of the Poisson distributions in Eq. (4)

C =

(∏
u<v

Auv!
∏
u

2Auu/2(Auu/2)!

)−1
. (8)

Taking derivatives of the log-likelihood function (derived from Eq. (6)) allows us to write down
the maximum likelihood estimators5 for the model parameters, given a partition z. These have a
particular nice form:

γ̂u =
ku
κzu

M̂ij = Eij , (9)

where κi is the sum of the degrees in group i, i.e., the total degree of the community. As with the
SBM, we can further simplify the form of the likelihood function by substituting these MLEs into
its form. The result is a fairly compact expression that again depends only on the counts induced
by the choice of partition z:

lnL(G | z) =
∑
ij

Eij

2m
ln

Eij/2m

(κi/2m)(κj/2m)
. (10)

Notably, this form is similar in some ways to the modularity function, which includes terms for
the expected number of edges between a pair of groups, conditioned on the fraction of all edges

5Try this at home.
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attached to those groups. Thus, the degree corrected SBM (or DC-SBM, if you like acronyms)
can be thought of as seeking a partition that maximizes the “information” contained in the labels
relative to a random graph with a given degree sequence, while the SBM seeks the same relative to
a different null model, the Erdős-Rényi random graph.

Applying the DC-SBM to the karate club allows the propensity parameters to generate more skewed
degrees within communities, and yields an inferred division that is much closer to the truth.6

6

given i and r can thus be done in time O(K(K + 〈k〉)).
Because these computations can be done quickly for a
reasonable number of communities, local vertex switch-
ing algorithms, such as single-vertex Monte Carlo, can be
implemented easily. Monte Carlo, however, is slow, and
we have found competitive results using a local heuristic
algorithm similar in spirit to the Kernighan–Lin algo-
rithm used in minimum-cut graph partitioning [27].

Briefly, in this algorithm we divide the network into
some initial set of K communities at random. Then we
repeatedly move a vertex from one group to another, se-
lecting at each step the move that will most increase the
objective function—or least decrease it if no increase is
possible—subject to the restriction that each vertex may
be moved only once. When all vertices have been moved,
we inspect the states through which the system passed
from start to end of the procedure, select the one with the
highest objective score, and use this state as the starting
point for a new iteration of the same procedure. When
a complete such iteration passes without any increase in
the objective function, the algorithm ends. As with many
deterministic algorithms, we have found it helpful to run
the calculation with several different random initial con-
ditions and take the best result over all runs.

IV. RESULTS

We have tested the performance of the degree-
corrected and uncorrected blockmodels in applications
both to real-world networks with known community as-
signments and to a range of synthetic (i.e., computer-
generated) networks. We evaluate performance by quan-
titative comparison of the community assignments found
by the algorithms and the known assignments. As a met-
ric for comparison we use the normalized mutual infor-
mation, which is defined as follows [7]. Let nrs be the
number of vertices in community r in the inferred group
assignment and in community s in the true assignment.
Then define p(X = r, Y = s) = nrs/n to be the joint
probability that a randomly selected vertex is in r in the
inferred assignment and s in the true assignment. Using
this joint probability over the random variables X and
Y , the normalized mutual information is

NMI(X, Y ) =
2 MI(X, Y )

H(X) + H(Y )
, (26)

where MI(X, Y ) is the mutual information and H(Z) is
the entropy of random variable Z. The normalized mu-
tual information measures the similarity of the two com-
munity assignments and takes a value of one if the as-
signments are identical and zero if they are uncorrelated.
A discussion of this and other measures can be found in
Ref. [28].

(a) Without degree correction

(b) With degree-correction

FIG. 1: Divisions of the karate club network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The dashed line indicates the
split observed in real life.

A. Empirical networks

We have tested our algorithms on real-world networks
ranging in size from tens to tens of thousands of ver-
tices. In networks with highly homogeneous degree distri-
butions we find little difference in performance between
the degree-corrected and uncorrected blockmodels, which
is expected since for networks with uniform degrees the
two models have the same likelihood up to an additive
constant. Our primary concern, therefore, is with net-
works that have heterogeneous degree distributions, and
we here give two examples that show the effects of het-
erogeneity clearly.

The first example, widely studied in the field, is the
“karate club” network of Zachary [29]. This is a social
network representing friendship patterns between the 34
members of a karate club at a US university. The club
in question is known to have split into two different fac-
tions as a result of an internal dispute, and the members
of each faction are known. It has been demonstrated
that the factions can be extracted from a knowledge
of the complete network by many community detection
methods.

Applying our inference algorithms to this network, us-

with degree correction

2 At home

1. Read Chapter 8 (pages 359–418) in Pattern Recognition

2. Next time: hierarchical block models

6There is a fun story associated with the one misclassified vertex, which has an equal number of connections to
each of the two groups. In the original club, this person apparently had a karate exam coming up soon, and when
the club split in two, they chose to go with the instructor’s faction instead of the president’s in order to be better
prepared for the exam.
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