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1 Homophily and assortative mixing

Networks, and particularly social networks, often exhibit a property called homophily or assortative
mixing, which simply means that the attributes of vertices correlate across edges. That is, when I
observe some edge (i, j) in a network and then examine the attributes of i and j, I see that those
attributes are similar to each other.

In social networks, people have a very strong tendency to associate with others who are similar to
them, e.g., in age, nationality, language, socioeconomic status, educational level, political beliefs,
and many others. This property, however, is only a statement of pattern, and does not say much
about the underlying mechanism. For instance, if we observe a pattern of homophily in a social
network, e.g., on political beliefs or obesity, we generally cannot distinguish between (i) the edge
forming as a result of the attributes being similar, or (ii) the attributes becoming more similar as
a result of the edge.

In some networks, the opposite pattern is also seen, which we call disassortative mixing and which
represents a pattern of association between vertices with dissimilar attributes. For instance, dat-
ing or sexual contact networks are largely disassortative, with the large majority of edges running
between men and women, with a smaller number of edges running among men or among women.
Similarly, in food webs, predators tend to be connected to their prey, rather than to each other.

There are two basic ways a network can be assortative, distinguished by where the attribute is a
label or enumerative value (i.e., an unordered type like vertex color or shape) or a scalar value. We
will cover them both, and then consider one type of scalar mixing that is of particular interest.

1.1 Enumerative attributes

Enumerative attributes are those that lack any particular ordering, and are sometimes also called
categorical variables. They represent things like vertex color, shape, ethnicity, gender, etc.

A good measure of this form of assortativity, i.e., the degree to which like things are connected, is
called the modularity. This measure is defined as the sum of the differences between the observed
and expected fractions of edges for each pair of types. There are two cases where this measure
yields zero. The first is the trivial case where all vertices of are the same type. Here, there is
only one type of edge, and thus the observed fraction of edges of this form is exactly the same as
its expected value. The second is when there is no assortativity, i.e., when edges among a given
pair of types occur no more or less frequently than we would expect at random. (Under what
circumstances would this measure yield its maximum value of 1? Note that its minimum value is
not zero, but is in fact −1. Under what circumstances would this value be achieved?)
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In order to calculate the modularity, we must first have a complete labeling of the vertices. Given
such a labeling, the modularity for an undirected network is given by

Q =
1

2m

∑

ij

(

Aij −
kikj
2m

)

δ(ci, cj) , (1)

where A is the adjacency matrix, ki is the degree of vertex i, m is total the number of edges in
the network, ci is the label of vertex i, and δ(ci, cj) is the Kronecker delta function, which equals
1 when its arguments are the same and 0 otherwise.

To briefly dissect this equation, let us begin with the summation. The sum is over all pairs i, j and
thus considers every adjacency in A, including those that do not represent edges in the network.
The delta function serves as a kind of filter, selecting only those pairs i, j whose labels are the same
ci = cj . Thus, the summation is effectively only over edges whose endpoints are of the same type.
The inner term is the difference between the observed fraction of all edges between i and j, which
is Aij/2m, and its expected value under a random graph with the same degree distribution. If the
degrees of vertices i and j are ki and kj , then the probability that i and j are connected, if edges
are distributed at random conditioned on respecting these degrees, is the number of chances they
have to connect kikj divided by the total number of such pairs, which is (2m)2. Because both terms
have a common denominator of 1/2m, we may factor this out, which gives the leading constant.

Notice that the summation is only over edges among vertices of the same type. This allows us
to rewrite and simplify the equation by dropping many of the zeros in the total summation. Let
err be the fraction of edges among vertices of type r and let ar be the fraction of the network’s
total degree associated with vertices of type r. (Note that the normalization is different for err and
ar; in the former case, we count edges once and divide by m, while in the latter case, each edge
contributes to the degree of two vertices and thus we divide by 2m.) The modularity is then simply

Q =
∑

r

(

err − a2r
)

, (2)

where ar is the observed density of edges with type r and a2r is the expected density. This form of
Eq. (1) is more compact, and may be used even when we do not have the full adjacency matrix,
but instead have only a matrix containing the number of connections between vertex types. Note
also that both equations are defined only for undirected graphs. Directed or weighted versions may
be defined, but these are not commonly used.

To illustrate the modularity calculation, consider two distinct labelings of the same small modular
network with m = 7 edges shown below. To begin, we construct a 2 × 2 matrix based on each
labeling, which counts the fraction of edges of a given type:
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labeling 1 red blue

red 3/7 1/14
blue 1/14 3/7

labeling 2 red blue

red 4/7 2/14
blue 2/14 1/7

From these matrices, the modularity is straightforward to calculate, yielding Q1 = 5/14 = 0.357 for
the first, and Q = 6/49 = 0.122 for the second. In this case, labeling 1 yields a higher modularity
than labeling 2 because it has a larger fraction of within-type edges, i.e., it displays more assortative
mixing.

1.2 Scalar attributes

When vertex attributes are scalar values, like age, weight, or income, we may say not only when
two vertices have the same value, as in the previous case, but also when two vertices are close in
value.

A good measure for this form of assortativity is a kind of network-based generalization of the Pear-
son correlation coefficient. We begin by adapting the usual definition of covariance to our network
context, letting xi denote the scalar value associated with vertex i. The mean value observed at
either end of an edge is simply µ = (1/2m)

∑

i kixi, which weights each observed scalar value by
the number of edges in which it participates.

The covariance of x across edges is then

cov(xi, xj) =

∑

ij Aij(xi − µ)(xj − µ)
∑

ij Aij

=
1

2m

∑

ij

Aijxixj − µ2

=
1

2m

∑

ij

(

Aij −
kikj
2m

)

xixj , (3)
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where we have reused the definition of µ, and simplified considerably, to get to the last line. Note
that this form of the covariance is remarkably similar to the definition of the modularity given
in Eq. (1), except that instead of a delta function selecting only edges for which the attribute is
exactly the same, we now weight every edge by the product xixj. When the values of the last term
tend to agree, i.e., small values are multiplied by small values and large values multiplied by large
values, the covariance will be positive, indicating assortative mixing, while when the opposite is
true, the covariance is negative, indicating disassortative mixing.

Finally, just as in the case of the modularity, and in the case of the traditional definition of the
Pearson correlation coefficient, it is useful to normalize the covariance so that it ranges from −1 to
1. This version has the form

r =

∑

ij (Aij − kikj /2m) xixj
∑

ij (kiδij − kikj /2m) xixj
, (4)

which is called the assortativity coefficient, and is exactly the covariance divided by the variance.

1.3 Vertex degrees

Vertex degree is a particular form of scalar attribute that is of particular interest, as it reveals
important insights about the large-scale structure of the network. In this case, we have xi = ki,
which slightly simplifies Eq. (4).

Assortative mixing by degree produces a network in which the high-degree vertices tend to connect
to each other in dense, high-degree core, while the low-degree vertices also connect to each other,
producing a sparse, low-degree periphery. In these networks, degree correlates with centrality. By
contrast, disassortative mixing by degree produces a network in which the high-degree vertices
tend to connect to low-degree vertices, producing star-like structures. In these networks, centrality
correlates less strongly with degree. (See Figure 7.12 in Networks for a good visualization of this
distinction.)

1.4 A few comments

Within social networks, homophily is a nearly overpowering phenomenon. It is sufficiently strong
that merely knowing the attribute labels or values for a subset of a vertex’s neighbors can allow a
researcher (or marketer) to make a fairly good guess about the label or value at the vertex. That is,
knowing your friends’ values tells me a great deal about your value, even if you have not disclosed
it to me. That being said, homophily is merely a correlation, and thus the values of your friends’
friends is only moderately predictive of your value.
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2 Transitivity

Reciprocity and transitivity are two terms that refer to the same idea, at different scales. Transi-
tivity is the more general term, referring to a clique of size ℓ. The idea here is that a transitive
property is one in which if a and b have a relationship, and b and c have one, then a and c also have
one. For a set of ℓ items, transitivity implies a fully connected component or “clique” of size ℓ. The
most commonly studied forms of transitivity are for ℓ = 2 (reciprocity or bidirectional link density)
and ℓ = 3 (“clustering coefficient” or triangle density). Higher-ordered versions of transitivity are
sometimes studied in small social networks, e.g., examining tight-knit groups of friends, but are
rarely studied in other types of networks.

The reason is that perfect transitivity among many vertices is a fairly unusual situation. A more
typical situation is approximate transitivity, where instead of a fully connected component, we see a
largish subgraph that has relatively more edges among its members than to the rest of the network.
(How might this idea of approximate transitivity bump into our notion of sparse networks as the
network gets larger?) Approximate transitivity, however, is a slippery concept as there is only one
way to be perfectly transitivity, but many ways to be approximately so. We will return to this idea
later in the semester, under the name “community structure” or modular networks.

2.1 Reciprocity

In directed networks, not all edges are bidirectional, and the fraction of those edges that are bidi-
rectional can tell us interesting things about the network, depending on what kind of network it is.
For instance, these figures show one reciprocated and one unreciprocated edge.

reciprocated unreciprocated

In social networks, bidirectional or reciprocated edges can indicate whether a friendship is perceived
as being equal or whether one party views it as stronger than the other. That is, reciprocated edges
can tell us something about social status. In transportation networks, they represent reachability,
while in communication networks, they may represent influence.1 Reciprocity can be calculated in

1But, you should be wary of anyone claiming to either measure or test for social influence. In general, most studies

of “influence” are actually studies of correlation, and as with homophily, correlation does not imply causation. Keep

your wits and skepticism about you.
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any directed network, e.g., in food webs, predation and parasitism are directed relationships, as
is genetic regulation in a gene-regulatory network. However, the meaning of a reciprocated link
depends on the context and the underlying processes in that domain. For example, a reciprocated
link in a food web means something different than a reciprocated link in a social network.

The reciprocity of a network is given by the fraction of reciprocated links. To compute this value,
we simply count the relative frequency of cliques of size 2 in a directed network. When edges have
unit weight, a network’s reciprocity is defined as

r =
1

m

∑

ij

AijAji . (5)

In this way, if both the forward and backward direction of a particular edge appear in the network,
the reciprocity score is incremented twice. The normalization factor counts all edges that could be
reciprocated.

Reciprocity may also be defined as a vertex-level measure, in which we count only the fraction of
2-cliques attached to some vertex i:

ri =
1

ki

∑

j

AijAji , (6)

which may be a useful way of estimating a vertex-level covariate for additional analysis (e.g., to
compare with the vertex degree, or centrality score). This measure is sometimes called the local

reciprocity.

In empirical social networks, a value of r ≃ 0.25 is not unusual. While this may like a surprisingly
small value, this value is observed even in very large networks where the probability of two directed
edges forming a bidirectional loop is roughly O(1/n). In some cases, a small value is found in part
because the survey technique limits the number of responses, or because different people interpret
the word “friend” to mean different things. In other cases, a small value may reflect the presence
of status-driven relationships. In undirected networks, reciprocity is always 1.

2.2 Clustering coefficient

Structurally, reciprocity measures the fraction of 2-cliques that appear in a directed network. An-
other commonly used measure counts the fraction of 3-cliques or triangle density in an undirected
network (directed versions also exist, but their calculation is slightly more tricky, as there are many
more ways three vertices could be connected in a directed network), and is called the clustering
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coefficient.2 This measure is defined mathematically as

C =
(number of closed paths of length 2)

(number of paths of length 2)
. (7)

A path of length two has the natural definition, which is a sequence of vertices i, j, k for which the
edges (i, j) and (j, k) are in the network. A “closed path” of length two is simply a path of length
two plus the edge (k, i).

path of length 2 closed path of length 2

Thus, C is a number between 0 and 1, and measures the density of triangles in the network. It
takes the value C = 1 only for a fully connected component, i.e., a clique of size n. The opposite
extreme, a value of C = 0 can occur on a number of different networks, the most obvious being any
bipartite network (including trees).

In the above formulation, as in our discussion of paths for betweenness, we count distinct orderings
of the vertices as being different. If we collapse these counts, we may simplify Eq. (7) in the case of
undirected graphs by counting only closed and “open” triangles. Let us define a “connected triple”
or “open triad” as any trio of nodes i, j, k in which at least two pairs are connected. A “closed
triad” is then any such trio in which we have added the final, missing connection (hence the word
“closed”). The clustering coefficient is then

C =
(number of triangles) × 3

(number of connected triples)
, (8)

where the factor of 3 comes from the symmetry of the triangle.

To illustrate this measure, consider again our simple cycle-and-clique network. The clique has 6
vertices and thus both 20 triangles and 60 connected triples. The cycle contains 6 connected triples
and no triangles. Finally, there are 2 connected triples starting from the cycle and 5 connected

2This name is not a particularly good one, as the term “clustering” is used in several other contexts in the study

of networks and vector data sets. Readers should be wary of these alternative usages when reading the literature.
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triples starting from the clique that use the edge joining the cycle to the clique. Thus, the clustering
coefficient is C = 60/73 = 0.82. This value is relatively large for social networks, which generally
have clustering coefficients of C ≃ 0.20 or so. A non-trivial clustering coefficient is generally a dis-
tinguishing feature of social networks, with most biological and technological networks containing
far fewer triangles, and which exhibit clustering coefficients close to 0.

The clustering coefficient can also be defined as a vertex-level measure:3

Ci =
(number of pairs of neighbors of i that are connected)

(number of pairs of neighbors of i)
, (9)

which is the natural definition of triangle density where we require that vertex i be the middle
vertex of every connected triple. In our cycle-plus-clique example above, the highlighted vertex
has a local clustering coefficient of Ci = 0 because it participates in no triangles. Its immediate
neighbor in the clique is a more interesting case, with Ci = 10/15 = 0.67.

3 Other neighborhood measures

There are many measures of vertex similarity that depend on the network structure, and there
is a steady supply of new measures being developed. Among these others, there are a few that
have achieved widespread usage. One class considers the similarity of the neighbor sets of two
vertices i and j. If these sets are identical, we call the vertices structurally equivalent. Approximate
equivalence is a generally more useful notion, and there are a number of ways to quantify this
idea.4 A common measure of approximate structural equivalence is the Jaccard coefficient, defined
mathematically as

Jij =
|N(i) ∩N(j)|

|N(i) ∪N(j)|
, (10)

where N(i) is the set of vertices with connections to vertex i, i.e., i’s neighbor set. When the
neighbor sets are identical, Jij = 1, and when they are disjoint, Jij = 0. One nice property of

3Two ideas from the sociological literature that are closely related to the local clustering coefficient are structural

holes and redundancy, which we won’t cover here.
4You’ve already encountered one, cosine similarity, in the problem set.
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the Jaccard coefficient is that it naturally controls for the overall size of the neighbor sets, while a
simple count of the number of shared neighbors would not.

4 At home

1. Read Chapter 7.9–7.13 (pages 198–231) in Networks

2. Next time: degree distributions
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