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1 Comparing networks, and why social networks are different

The various measures of network structure that we have encountered so far allow us mainly to un-
derstand the structure of a single particular network. In many cases, however, we wish to compare
the structure of two or more networks. For example, are some pair of social (or biological) networks
similar? Are there general patterns in network structure that distinguish different entire classes or
groups of networks? Are social networks different from non-social networks?

The question of how to compare networks remains an important and unresolved task in network
science. That being said, a common approach is to compare networks across a consistent set of
scalar measures, such as those we have seen so far. This approach effectively takes each element of
a set of graphs G = {G1, G2, . . . , Gr}, each of which is a complicated, non-Euclidean mathematical
object, and projects them into some vector space. Given r vectors in the space defined by the
network measures, we may apply conventional measures of similarity and distance. A particular
graph’s coordinates within this space is determined by the values of its network measures.

Crucially, not all such vector spaces are equal. Many network measures are correlated, as we saw
with centrality measures. The implication is that correlation is not sufficient to identify interesting
underlying properties of some class of networks or to identify general differences among classes of
networks.

The Table on the next page1 lists a number of different empirical networks, drawn from social,
informational, technological, and biological systems, and their values along a number of network
measures. The field has progressed greatly since this paper was published in 2003, but there are
relatively few other or newer “big tables” showing a specific set of network statistics for a large and
diverse set of real-world networks. As such, it remains an instructive list with many lessons to teach.

In particular, notice the differences between social and non-social networks in both the clustering
coefficients2 and the degree correlation coefficient (degree assortativity).

In particular, the clustering coefficient to away from zero in social networks, but very close to zero
in non-social networks, and similarly the degree correlation coefficient tends to be positive in social
networks, and negative in non-social networks. This is indeed, one of the main differences between
social and biological networks: in social networks, we observe that vertices with similar degrees
tend to be connected, while in biological networks, vertices of unlike degrees tend to be connected.

1Reprinted from M.E.J. Newman, “The structure and function of complex networks.” SIAM Review 45, 167–256
(2003).

2The first clustering coefficient C(1) represents the version given in a previous lecture: the fraction of connected
triples that are themselves triangles. The second clustering coefficient C(2) is the mean local clustering coefficient,
i.e., C(2) = n−1 ∑

i Ci, which is not a common definition of clustering, but is sometimes used.
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network type n m z ! α C(1) C(2) r Ref(s).

so
ci

al

film actors undirected 449 913 25 516 482 113.43 3.48 2.3 0.20 0.78 0.208 20, 416

company directors undirected 7 673 55 392 14.44 4.60 – 0.59 0.88 0.276 105, 323

math coauthorship undirected 253 339 496 489 3.92 7.57 – 0.15 0.34 0.120 107, 182

physics coauthorship undirected 52 909 245 300 9.27 6.19 – 0.45 0.56 0.363 311, 313

biology coauthorship undirected 1 520 251 11 803 064 15.53 4.92 – 0.088 0.60 0.127 311, 313

telephone call graph undirected 47 000 000 80 000 000 3.16 2.1 8, 9

email messages directed 59 912 86 300 1.44 4.95 1.5/2.0 0.16 136

email address books directed 16 881 57 029 3.38 5.22 – 0.17 0.13 0.092 321

student relationships undirected 573 477 1.66 16.01 – 0.005 0.001 −0.029 45

sexual contacts undirected 2 810 3.2 265, 266

in
fo

rm
at

io
n WWW nd.edu directed 269 504 1 497 135 5.55 11.27 2.1/2.4 0.11 0.29 −0.067 14, 34

WWW Altavista directed 203 549 046 2 130 000 000 10.46 16.18 2.1/2.7 74

citation network directed 783 339 6 716 198 8.57 3.0/– 351

Roget’s Thesaurus directed 1 022 5 103 4.99 4.87 – 0.13 0.15 0.157 244

word co-occurrence undirected 460 902 17 000 000 70.13 2.7 0.44 119, 157

te
ch

n
ol

og
ic

al

Internet undirected 10 697 31 992 5.98 3.31 2.5 0.035 0.39 −0.189 86, 148

power grid undirected 4 941 6 594 2.67 18.99 – 0.10 0.080 −0.003 416

train routes undirected 587 19 603 66.79 2.16 – 0.69 −0.033 366

software packages directed 1 439 1 723 1.20 2.42 1.6/1.4 0.070 0.082 −0.016 318

software classes directed 1 377 2 213 1.61 1.51 – 0.033 0.012 −0.119 395

electronic circuits undirected 24 097 53 248 4.34 11.05 3.0 0.010 0.030 −0.154 155

peer-to-peer network undirected 880 1 296 1.47 4.28 2.1 0.012 0.011 −0.366 6, 354

b
io

lo
gi

ca
l

metabolic network undirected 765 3 686 9.64 2.56 2.2 0.090 0.67 −0.240 214

protein interactions undirected 2 115 2 240 2.12 6.80 2.4 0.072 0.071 −0.156 212

marine food web directed 135 598 4.43 2.05 – 0.16 0.23 −0.263 204

freshwater food web directed 92 997 10.84 1.90 – 0.20 0.087 −0.326 272

neural network directed 307 2 359 7.68 3.97 – 0.18 0.28 −0.226 416, 421

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex–vertex distance !; exponent α of degree distribution if the distribution follows a power law (or “–” if not; in/out-degree
exponents are given for directed graphs); clustering coefficient C(1) from Eq. (3); clustering coefficient C(2) from Eq. (6); and degree correlation coefficient r, Sec. III.F.
The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

And, we observe highly non-trivial amounts of localized transitive closure in social networks, in
which friends of mine also tend to also be friends with each other.

To visualize these correlations and patterns more clearly, the figures on the next page show the
pairwise scatter plots of the mean geodesic distance `, clustering coefficient C(1), and degree cor-
relation coefficient r for networks in this table. (Networks missing data on any one of these three
are omitted.) Important thresholds, such as a C(1) < 0.1 or r = 0 are shown as dashed lines.
Most notably, social networks show positive degree correlations, while technological and biological
networks show negative correlations; social networks show the highest clustering coefficients (but
also some small ones), while technological networks have small coefficients.

There is generally less agreement or difference along other network measures (including those shown
in the table, but also on a wide variety of other measures). For instance, networks of all different
types exhibit small or large mean geodesic distances, and tend to come in a wide variety of sizes.
Similarly, while some networks exhibit power-law degree distributions, many seem to exhibit non-
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power-law distributions. (However, nearly all networks exhibit heavy-tailed degree distributions.)
There has not been a recent systematic survey of network measures with respect to classes of
networks, but these above insights seem to have been borne out by more recent analyses.

2 Small worlds, navigability, and social networks

An important, and arguably under appreciated property that distinguishes social networks from
other types of networks is their “navigability,” a property that is related to a network’s diameter
and the “small world” property.

The idea of a small-world network comes from a seminal study in social networks by the American
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sociologist Stanley Milgram (1933–1984).3 Milgram mailed letters to “randomly selected” individ-
uals in Omaha, Nebraska and Wichita, Kansas with instructions asking them to please pass the
letter (and instructions) to a close friend of theirs who either knew or might be likely to know a
particular doctor in Boston (see figure above).4 Before doing so, they should also write their name
on a roster to record the chain of message passing. Of the 64 letters that eventually reached the
doctor—a small fraction of those sent out—the average length was only 5.5, and a legend was born.

There are two interesting things about Milgram’s study.5 First, if we näively expected a “big world”
social network, then the number of steps between the source and the target should be something
much larger than 5.5. Imagine that people were only friends with individuals a few miles down
their road. In this case, the social network’s structure would be similar to that of a 2d lattice.
The path length between Omaha/Wichita and Boston would then be proportional to the number
of people living between those points on the map, and which would yield a length of hundreds or
more individuals, not a handful. This idea, that the network has small average pairwise distance,
is the informal notion of a “small world,” which is usually formalized mathematically as a diameter
that grows like O(log n) with the size of the network.

Second, despite each individual in the chain having only local information about their own neighbors
in the social network, some letters somehow managed to arrive at the destination. The letters that

3The term “six degree of separation” is not due to Milgram, but comes from a play written by John Guare in
1990. The play was subsequently made into a movie of the same name starring Will Smith in 1993, and, ironically,
not starring Kevin Bacon.

4Figure reprinted from S. Milgram, “The Small-World Problem.” Psychology Today 1(1), 61–67 (1967).
5Milgram is famous for another study, as well, on obedience and authority. For a shocking overview of his results,

see this http://www.youtube.com/watch?v=Jqr5-dWk6Gw .
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failed to arrive could not find a path from the source to the target, because some individual on the
path failed to forward the letter (perhaps because they did not know anyone “closer” to the target
or because they weren’t interested in participating in the study). Thus, the arrival of a non-trivial
number of letters demonstrates that not only do short paths exist (small diameter), but these paths
can also be found by individuals using only local network information. We call this property called
navigability, and we will return to it in the next lecture.

2.1 The Watts-Strogatz model

The first of these properties, the existence of short paths, was not all that surprising by itself.
In fact, the classic model of random graphs, which we will learn more about starting next week,
exhibits the small world property and has a diameter of O(log n). However, random graphs exhibit
almost no local clustering. In contrast, lattices exhibit high local clustering, but have large diame-
ters. How can a graph have both small diameter and high clustering?

In an early paper in network science, Duncan Watts and Steve Strogatz studied this specific ques-
tion using a simply toy model6 that interpolates between these two types of networks. This model
is sometimes called the “small world” model.

In this model, n vertices are arranged on a 1-dimensional circular lattice (a “ring” network) and
each vertex is connected to its k nearest neighbors. The left-most network in the figure above7

shows such a lattice with k = 4. Given this starting point, for each lattice edge (i, j), we then

6A “toy” model is a simple mathematical construct that is useful for building intuition and studying specific
phenomena. It is not meant to be a realistic model of real-world networks. Toy models are popular in Physics.

7This figure, and the one on the next page, both reprinted from Watts and Strogatz, “Collective dynamics of
‘small-world’ networks.” Nature 393, 440–442 (1998).
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“rewire” it uniformly at random with probability p. (By rewire, we mean change j to k, where k
is chosen uniformly at random from among all vertices.) As p → 1, all edges are rewired, and we
have a classic random graph, with no local clustering but small diameter. When p → 0, we have
the original lattice, with high local clustering but large diameter.

The interesting behavior emerges as we move p between these two limiting cases (see the figure
below). When only a small fraction (p) of edges have been randomly rewired, the diameter of the
network collapses from O(n) to O(log n). This happens, however, long before the local clustering
decreases. Thus, the intermediate, “partially disordered” states are those in which the network ex-
hibits high local clustering and short paths between vertices. This is exactly the counter-intuitive
behavior of social networks, which exhibit very strong local clustering at the same time as, from
Milgram’s study, showing short paths.

Nature © Macmillan Publishers Ltd 1998
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

Figure 1: As a function of the rewiring rate p, the clustering coefficient C (normalized by the
original clustering coefficient C(0)) and the mean geodesic path length L (also normalized by the
original mean geodesic path length L(0)).

In addition to being an early example of network science, this result is interesting for another
reason. In particular, it shows that some measures of network structure are extremely sensitive
to small variations in network structure. For the small-world toy model, with less than 1% of the
original edges have been randomly rewired, the diameter has already fallen to roughly 20% of its
original value, while the clustering coefficient has barely budged. Thus, path lengths are extremely
sensitive to the presence (or absence) of some edges, while clustering coefficients are highly robust
to such variation. Thus, if an empirical network is sampled, i.e., each node and/or edge is observed
with some probability, we may have a dramatically incorrect view of the true network structure.
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3 At home

1. Reread Chapter 8.2 (pages 241–242)

2. Read Chapter 15.1 (pages 552–564) in Networks

3. Next time: navigable networks
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