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Lecture 9 26 September 2013

1 Navigable networks

Recall from the last lecture that Milgram’s small-world experiment demonstrated two interesting
properties of social networks. First, short paths exist between arbitrary pairs of individuals, and
second, these paths may often be found using only local information, i.e., no global search algorithm
(like Dijkstra or BFS) is required in order to route a packet from one vertex to another. Instead,
each vertex can make a reasonably accurate guess about which of its neighbors is “closer” to an
arbitrary destination in the network. Repeating this process at each vertex serves to route the
packet across the network.

In the last lecture, we found that even slightly disordered lattices exhibit short paths between pairs
of vertices. In fact, nearly every network exhibits a small diameter, and only special cases like
lattices (which are terribly unrealistic models of real networks) exhibit a “big world” in terms of
their diameter. In this lecture, we will investigate the second property, that of network navigability.

1.1 The Kleinberg model

To study this idea, Jon Kleinberg took the Watts-Strogatz model and modified the way the rewired
links were rewired so that they improved the navigability of the network.

Unlike the Watts-Strogatz model, this model assumes that the underlying lattice network was fixed
in place, and that these “local” links cannot be rewired. On top of this lattice (whose presence
guarantees that some path, albeit likely a long one, always exists between some pair of vertices)
is layered a set of “long-range links” that provided routing short cuts. In the simplest version of
the model, we assume a k-dimensional lattice, in which each vertex connects to all of its nearest
neighbors. Thus, a vertex has 2k local connections, and these connections are bidirectional: if
u connects to some v, then v also connects back to w. In addition, each vertex u has a single
long-range link (u,x), where x is chosen uniformly among the vertices some distance d away (see
Figure 1 on the next page).! If we choose d uniformly at random, then this model is very similar
to the Watts-Strogatz model.

Kleinberg showed that when the probability distribution for link lengths follows a power law with
exponent r = k, i.e., the scaling exponent r equals the dimensionality of the lattice, then a greedy
routing algorithm will deliver packets in O(log® n) steps. (While this time is not O(logn), it is still
quite fast, even for large networks.) The greedy routing algorithm is simply the same procedure
Milgram gave his participants: examine all of your neighbors (the 2k local neighbors and the 1

!This and the last figure in these notes reprinted from J. Kleinberg, “The Small-World Phenomenon: An Algo-
rithmic Perspective.” Proc. 32nd ACM Symposium on Theory of Computing (2000).
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Figure 1: The Kleinberg model, showing (A) the fixed local, bidirectional connections and (B) the
neighbors for a particular vertex u, which includes (directed) long-range connections.

long-range neighbor) and forward the packet to the neighbor whose remaining distance to the tar-
get is smallest; repeat at the new location until the destination is reached.

The general outline of this result can be seen as follows. For some source u and target v, we want
to route a packet between the two. At each intermediate vertex x, we will make the greedy choice,
choosing to forward the packet to the vertex among x’s neighbors that minimizes the remaining
distance to v. We divide the total routing time into a sequence of “phases,” where the jth phase
ends when the packet is within 27 steps of the target. Thus, there can be at most log, n phases in
the routing. If the probability is 1/logn that some z in the current phase has a long-range link to
a vertex in the next phase, then the expected total number of steps will be O(log2 n).

To begin, we set the probability distribution for the length of a long-range connection to follow a
power law form:

d(u,v)™"
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where we define the distance measure d(u,v) to be the Manhattan distance on the lattice between
uw and v, i.e., d(u,v) = Zle |u; — vi|, and r is the exponent (called « in previous lectures). For the
remainder of the analysis, we will assume a k = 2 dimensional lattice, and thus the optimal routing
occurs when r =k = 2.

Pr(u —v) =

(1)

This choice fixes Eq. (1) and allows us to simplify its denominator:
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where the first term counts the number of vertices at a distance j in a k = 2 lattice, and the second
term is the probability that u links to a vertex at a distance j. Simplifying further yields

2n—2
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This expression then allows us to rewrite Eq. (1) as

d(u,v)™"
> S —
Pr(u —v) > 6

which provides a normalized distribution.

Now consider a packet traveling from some u to some v, which we divide into a set of “phases,”
where phase j is defined as the packet being at some vertex x such that 2/ < d(x,v) < 27+, Thus,
the Oth phase begins when d(z,v) < 2, and the packet is at most two steps away from the target. In
general, a phase ends when the distance between the packet and the destination has been halved.
In this way, we are modeling the routing as a kind of binary search, and j < logn.

When does the jth phase end? From the above definition, the jth phase ends when d(z,v) < 27.
Fach time the packet is passed along a local connection, it gains a new chance to find a long-range
link that will end the phase, i.e., link to a vertex within a distance 27 of the target v. Each such
long-range link is independent of any other, and thus the probability that such an event happens
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is the probability that x connects to some w € Bj, where B; is the set of vertices within distance
27 of the target v. The vertex = could connect to any of those vertices, of which there are

27
L4y i=2Y" 42 41
=1
1 . 1.
= 2% 4 ~97 41
527+ 52+
> 2%~ 1 (4)

Furthermore, each of these vertices is within a distance 2771 427 < 22 of zz. Thus, the probability
that z links to some w € Bj is

Cd(z,w)” w) ™2
> d(z,w)2
> [(22]+4) (4In6n)]

Pr(z —» w) =

-1

This therefore implies that the probability the phase comes to an end at vertex z is

Pr(jth phase ends at z) > (2%71) [(2% ) (41n6n)]

1

T 128In6n (5)

How many steps are there in the jth phase? Let X; count the number of such steps in the jth
phase. The expected value of X; is thus

= ipr(xj > 4)
= Z ( 1281n6n)_1

= 128 In6n .

which is exactly equal to 1/ Pr(jth phase ends at x).

Finally, the total number of steps to deliver the packet is the sum of the lengths of each of the
phases. Recall that because each phase halves the remaining distance to the target, there can be
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Figure 2: Kleinberg’s general result on the routing time, as a function of the link-length distribution
exponent r, showing that only for » = k£ do we achieve optimal routing.

at most log, n phases. Thus, expected total time is

log, n

EX]=E| ) X,

logy n
= > ElX]]
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Kleinberg’s analysis treated the more general case of unspecified r, and he showed that r = k is a
special value. If r < k, i.e., if the power-law link-length distribution is more heavy tailed than is
optimal, then routing slows down, because most of the links at x overshoot the target area B;. In
the other direction, if r > k, i.e., if the power-law link-length distribution is less heavy tailed than
necessary, then routing also slows down, not because most of the links at « undershoot the target
area. Figure 2 shows the general pattern.
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1.2 What about real networks?

Although Kleinberg’s result is for a toy model with highly unrealistic structure, its central assump-
tion, that the link-length distribution in social networks should follow a power-law distribution
with a particular structure in order to produce the efficient routing observed by Milgram, holds up
when we examine real social networks.

David Liben-Nowell and a number of colleagues tested this idea using data from a large and public
social network from the early 2000s called LiveJournal. In this social network, each node is a kind
of blog, which links to other blogs in the LiveJournal network. Crucially, many blogs list a zip code,
which gives us an estimate of the author’s physical location. For each pair of blogs connected by
an edge, if both listed a zip code, we may estimate the physical “length” of the link between them.
One difference between the LiveJournal network and the Kleinberg model is that each vertex in
this network can have many long-range links, which thereby increases the probability that some x
has a link that takes us closer to some destination.?

Taking this information, the empirical link-length distribution does indeed very roughly follow a
power-law distribution (Figure 3, left).? However, the approximate exponent for this distribution
is closer to 1.2, which is significantly heavier-tailed than expected from Kleinberg’s result, which
predicts a ~ k = 2.

The reason is that the physical locations of individuals are not arranged in a lattice or distributed
uniformly across the 2-dimensional surface of the Earth. Instead, they tend to clump together in
cites and other urban/suburban areas, and along the coasts of the US. This non-uniform distribu-
tion implies that a different number of individuals are within some distance § from w, depending
on where on the map wu is located.

Liben-Nowell et al. showed that this difference leads to efficient routing occurring at a slightly dif-
ferent value of the scaling exponent.? In Kleinberg’s model, the number of individuals a distance §
away grows linearly. In a non-uniform density situation, however, the number of individuals within
a distance 0 can vary considerably. However, for every vertex, we may rank other individuals by
their distance to u. By redefining Pr(u — v) to be inversely proportional to the rank of v in u’s

2This difference may be important. If the long-range out-degree distribution follows a certain pattern, we can still
achieve efficient routing even with a non-nice link-length distribution. I don’t think this has been worked out exactly,
but perhaps it should be. It does imply that even if the link-length distribution doesn’t follow exactly the pattern
Kleinberg showed is necessary, we may be able to compensate with the out-degree distribution.

3Both figures reprinted from D. Liben-Nowell et al., “Geographic routing in social networks.” PNAS 102(33),
11623-11628 (2005).

4With some differences: there is a connection here with fractals, and Liben-Nowell et al. estimate the fractal
dimension of the LiveJournal network to be close to 0.8, which means the underlying geography is non-linear, in
contrast to Kleinberg’s model.



Network Analysis and Modeling, CSCI 5352 Prof. Aaron Clauset
Lecture 9 26 September 2013

lll!l L] L] lll'([] L) T |1l[[l| L] LI
1603 paa. P() o 1/5 + & ====-
A I T PRI

z 1e-04 Lt h

5 r
1e-05

LA
1e-06 £ B 1e-03 ¢
1e-03 F=CT 12 1e-04 F

= g P(8) - goc 1/5 7 ===== E Sua,
1e-04 £ W)~ R L L W R

w o =) Sen

' 1e05 I‘Ie-OS = 05 T

S 1006 | P = 1805 -

o E [ West Coast .
1e-07 - B 1e-08 = East Coast « ..
1e-08 Bl 4 4 a sl L5 IP(&S)oc 1/8 - I'

= 100 o e
distance & (km) distance & (km)

Figure 3: (left) The empirical link-length distribution for vertices in the LiveJournal blog network,
when both ends of an edge can be approximately geolocated. (right) The same, but now with a
correction for the non-uniform population density.

list (raised to some power), Liben-Nowell et al. recover the same kind of model that Kleinberg
studied, but adapted to the non-uniform case. When population is uniform, this model reduces to
Kleinberg’s model exactly, while for a non-uniform population, the probability that « connects to
v depends on the number of people within some distance d(u,v).

The result is that efficient routing is the result of combining a rank-distance relationship (how far
away is the jth closest neighbor) and the link-length distribution. In the LiveJournal network, the
former is roughly linear and the latter is roughly inversely related, which gives us something close
to the value of 2 expected for routing in a social network embedded on a 2-dimensional surface.

2 At home

1. Reread Chapter 8.2 (pages 241-242)
2. Read Chapter 15.1 (pages 552-564) in Networks

3. Next time: random graph models



