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Problem Set 6, due 11/18

1. (100 pts total) Recall that the Kernighan-Lin heuristic begins with a random partition of the
vertices into k groups and proceeds in rounds, iteratively choosing a pair i, j with different
labels, neither of which has yet been swapped in this round, and swapping their labels. At the
end of a round, when no more swappable pairs remain, the heuristic chooses the best-scoring
partition from within the round and begins a new round at that state.

(a) (50 pts) Let a (j, n− j)-partition denote a division of the network into k = 2 groups, one
containing j vertices and the other containing the remaining n− j vertices. Because the
KL heuristic swaps the labels of a pair of vertices, it can only explore (j, n−j)-partitions
for a given choice of j. However, we can explore the full range of group sizes by running
the KL heuristic for each value of j and then taking the best partition across these
different values for a given round.

Use the following KL-based algorithm to fit the stochastic block model with k = 2 to
the karate club network.

for each of j=1 to n/2,

P(j,0) = choose a random (j,n-j)-partition

L(j,0) = log-likelihood of P

for t=1 to O(n) rounds

initialize KL heuristic with P(j,t-1) and L(j,t-1)

run the KL heuristic until no swappable pairs remain

[L(j,t),P(j,t)] = [best log-likelihood, corresponding partition]

end

end

for t=1 to O(n) rounds

bestL(t) = maximum over all j for L(j,t)

bestP(t) = corresponding P

end

Make (i) a figure showing the best log-likelihood, averaged over several runs of the above
algorithm, as a function of t, the number of rounds considered, and (ii) a figure showing
the best-scoring partition at the end of the algorithm. Discuss your results with respect
to the social division (which is given in the PS6 data file).

(b) (50 pts) Now suppose that we know the “true” labels of several vertices, and want
to estimate the remaining unknown group labels conditioned on what we know. This
situation can arise because we have spent some resources to measure the latent variables
for some vertices, and now we want to make educated, model-based guesses as to the
remaining values.

To investigate this idea, use the same algorithm from part (a) to fit the SBM with k = 2
to the karate club. Now, however, fix the labels of the five vertices with highest degree to
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be their “true” values according to the social division. (You can do this by permanently
marking these vertices as already swapped.) Make the same figures as in (a) and discuss
any differences in the resulting partition and log-likelihood scores.

2. (30 pts extra credit) Suppose that we restrict the stochastic block matrix M so that all
diagonal elements have the same value pin, and all off-diagonal elements have a different
value pout. Furthermore, let the number of vertices ni with a particular label i be a random
variable with a geometric distribution of the form pni = Ce−λni , where C is a normalization
constant and λ is a parameter. These assumptions reduce the SBM to a 3-parameter model,
given a choice of k.

Derive a mathematical expression in terms of k, pin, pout and λ for the expected degree
distribution of the entire graph. Show your work and then show a figure comparing your
theoretical expression to the empirical distribution for networks generated from this model.

Hint: Start with the expected degree for a particular vertex.

3. (60 pts extra credit) In a spatial network, each of the n vertices is assigned some position
within a metric space, e.g., zi ∈ RN where typically N = 2. In many such networks, the
vertices’ locations are fixed and our task is to build a network that both connects them and
minimizes some kind of cost function over the properties of the network. For instance, in
an airline network, the locations of airports are fixed but we can choose which airports to
connect by flights. Cost functions are typically some tradeoff of the total length of all edges
in the network (which we seek to minimize) against the efficiency of the network (which we
seek to maximize).

Consider the following spatial network growth mechanism. Place n − 1 points (vertices)
uniformly at random on the unit square (i.e., 0 ≤ zx, zy ≤ 1) and one point (vertex) in the
exact center. This point is vertex 0. Now, add n− 1 edges, one at a time, so that each edge
connects one of the still disconnected vertices to the growing network. At each time step, add
the edge (i, j) that has minimum weight under the function

wij = dij + α

(
dij + `j0
di0

)
,

where dij is the Euclidean distance between vertices i and j, `ij is the distance along the
shortest path in the network between i and j, and α is a free parameter. This cost function
represents the sum of the length of the prospective edge (the first term) and the routing time
to the center of the network (second term).

Study the functional relationship between the route factor, defined as

q =
1

n

n∑
i=1

`i0
di0

,

and the free parameter α in the weight function. Present your results on a single figure.
Include example visualizations of the networks grown for a few values of α.
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