CS 550 Programming Languages Project Writeup
Due: December 10, 2006 Aaron Clauset

Sudoku solvers

My project was to implement a sudoku solver, and within that larger goal, I implemented
two versions. The first is a pure prolog implementation, while the second uses Ciao’s finite
domain (constraint programming) framework. The general structure of each implementation
is the same; thus, only when necessary while I distinguish between the two, i.e., when it is
relevant that one is a finite domain-based solver while the other is a prolog-based solver.

Introduction

The traditional sudoku game is played on a 9x9 board and has the following rules simple
rules: each row, column and sub-matrix must be a permutation of the numbers 1...9. The
sub-matrices are simply the 3x3 matrices that tile the larger board. In the generalization of
sudoku, the board is n? x n? in size, the numbers run from 1...n? and the sub-matrices are
of size n x n. An instance of a sudoku puzzle is a partially completed board, and a solution
is the completed board, in which each entry respects the constraints. Figure 1 illustrates a
sudoku puzzle and a satisfactory solution.

My implementation solves the general sudoku case, and in the files themselves are exam-
ples of 4x4, 9x9 and 16x 16 puzzles, with solutions. Specifically, I implemented a program
in ciao that, when given a partially completed sudoku puzzle, will return a solved version of
it. Variations of my program (also provided) allow the user to ask for only a single solution
or all solutions, for a given input.

As a brief aside, sudoku has garnered some interest from the mathematics and theory of
computer science communities. A Latin square (also called an Euler’s square) has the same
structure as a sudoku puzzle, except that the constraint on the sub-matrices is absent. The
completion of Latin squares is known to be an NP-complete problem, through a connection
with quasigroups [1]. There is also apparently a reduction of the general case of sudoku to the
Latin Squares completion problem, thus putting sudoku completion in the NPC complexity
class [4]. Other work on sudoku has focused on its constraint-satisfaction properties [3], in
which different propagation schemes for sudoku were considered and a technique for deriving
a solution without searching was proposed. Sudoku can also be considered as a SAT prob-
lem [2], which presents the potential to apply a wide variety of well-studied techniques such
as unit propagation to this domain.

One interesting question about sudoku puzzles in general concerns the number valid
solutions for a number £ of given values in the partially completed puzzle. Empirically, the
transition from multiple solutions to a single solution seems to begin around k& = 16, but its
precise value remains an open question. Presumably, as with most constraint satisfaction
problems such as 3-SAT, there is a phase transition, for random puzzles, from almost-always-
satisfiable to almost-always-unsatisfiable, but I'm unaware of any extension of these questions
to sudoku.

CS 550 Programming Languages Project Writeup

Due: December 10, 2006 Aaron Clauset
6 5 2 8|6[(1(4|5[9(|7]|2]|3
3 9 4|/5|2|3|1|7]6|9|8
7 6 1 7/9/3(6|8[2|5|1]|4
6 3 4 2|11/6|8|3|5|4|7|9
4 7 1 9|18|4(2|7|6[|1|3|5
5 9 8 3|/7|15(1|19|4|8|6|2
4 1 6 5/4(719|12|1]|3|8|6
3 8 113|/9|5(6(|8|2(4|7
2 4 5 6|12|8[7|14|13|]9|5|1

(a) (b)

Figure 1: (a) An example 9x9 sudoku puzzle, in which 27 entries are given. (b) A solution
to the puzzle, computed using the sudoku solver described here.

Usage

The main function call is sudoku(P), where P is the partially solved sudoku puzzle. The
function’s output is a pretty-printed version of P, in which any variable or unknown values
have been replaced with integers that satisfy the sudoku constraints.

sudoku/1: PREDICATE
Usage: sudoku(Puzzle)

— Description: Puzzle is a list of numbers, of length n*, in which variables in the list
correspond to unknown values in the sudoku puzzle. For example,

7- SU-d0ku([—:6;—:—:5:—:—:2;—:—:—:—:3:—:—:—:9;—:7:—:—:6;—:—:—:1:—:—:—:6;—:3;—:4:—:—:—:
—:4;—:7;—:1:—:—:—:—:5;—:9:—:8;—:—:—:4:—:—:—:1;—:—:6:—:3;—:—:—:8:—:—:—:—:2;—:—:4:—:—:5;—]) .

corresponds to the function call for the puzzle shown in Figure 1, and produces the following
as output.

CS 550 Programming Languages Project Writeup
Due: December 10, 2006 Aaron Clauset

S 00
[S2Be))

[N
w D
= Ol
~ ©
o
O N
o W

©
N
N
~
(o))
[N
w
(¢}

[
w
©
ol
(o))
[09]
N
N
~

yes

sudoku_noprint/1: PREDICATE
Usage: sudoku noprint (Puzzle)

— Description: Puzzle is as above; in this version, no output is written to the top-level of
the interpreter. This predicate is intended for use with the findall predicate, for counting
the number of solutions to a particular instance. For example,

?- findall(X,SudOku—noprint([—X,G,—:—:5:—,—,2,—:—:—:—,3,—,—,—:9:—:7:—,—,6,—:—:—:1:
—:—:—:6,—:3:—:4,—:—:—:—:4:—:7:—:1,—:—:—:—:5:—:9,—:8:—:—:—:4,—:—:—31:—:—:6,—:3:—:—3—:8,
—:—:—:—:2,—3—34:—:—:5,—]):—L): 1ength(—L>N)'

N=17 ;
no
sudokul/1: PREDICATE

Usage: sudokul (Puzzle)
— Description: Puzzle is as above; in this version, at most a single solution is given. This
predicate is only available in the prolog implementation, aaron_sudoku_pl.

Extensive examples can be found within the project files themselves, including various
potentially interesting queries using these predicates.

CS 550 Programming Languages Project Writeup
Due: December 10, 2006 Aaron Clauset

Internals

As mentioned above, there are two modules in my project: aaron_sudoku_pl implements the
prolog version of the sudoku solver, while aaron_sudoku_fd implements the finite domain
version. Each is a stand-alone module that implements everything necessary for support-
ing the predicates described above (except where noted). Because my application is quite
specific, I'll briefly discuss “the internals” of the solver by discussing its computation in the
context of its internal predicates. The general program structure is as follows:

sudoku(P) :-
(initialize variables or constraints) ,
check_rows(X,P),
check_cols(X,P),
check_blks(X,P),
(write to top-level, if necessary) .

In the finite-domain version, the initialization step extracts the value of n from the list and
establishes the initial constraints on the variables, i.e., that each is an integer from [1...n?].
In the prolog version, the initialization step constructs the list [1...n%. The respective
check_* functions in both work roughly the same — they traverse the list P to extract the n?
vectors, each of length n?, that contain the elements of each row, column or sub-matrix, and
then enforce the requirement that it be a permutation of the integers [1...n?]. In order to
account for the variable length of the input list P, the check_cols and check_blks functions
use a complicated indexing scheme in order to determine how many initial elements of P to
discard between copying a value or variable into the output vector.

Discussion

The most surprising difference in my two implementations is their respective running times.
In the prolog version, even nearly completed, e.g., perhaps only 25 unknowns, 9x9 puzzles
require more than a reasonable amount of time (I let it run for almost a day). In contrast,
the finite domain version can solve a 16x16 with 154 unknowns in a few minutes. The
efficiency of the finite domain version is particular surprising given that Ciao does not have
a very efficient fd-solver implementation.

In general, the differences between the two implementations are quite small. The prolog
version uses a more obtuse method for enforcing the constraint that rows, columns and
sub-matrices are proper permutations — specifically, it passes a sorted version of each to a
predicate permutation — while the finite-domain version uses the constraint-programming
function all_different to accomplish the same goal. The bulk of the internals of the
solvers actually concern themselves with traversing the list data structure to extract lists
that correspond to rows, columns and sub-matrices. Because my solver works with the
general puzzle with n? x n? entries, these internal predicates are somewhat complicated.

4

CS 550 Programming Languages Project Writeup
Due: December 10, 2006 Aaron Clauset

Finally, an interesting extension of this work might be to try to tackle the question
of where the transition from multiple solutions to a single solution occurs. It should be
relatively easy to write a simple program that generates sudoku instances with & known
values and search over these for the minimum k& such that sudoku finds a single solution.

References

[1] C. Gomes and D. Shmoys. Completing Quasigroups or Latin Squares: A Structured
Graph Coloring Problem. In Proc. of the Comp. Symp. on Graph Coloring and Ezten-
sions (2002).

[2] I. Lynce and J. Ouaknine. Sudoku as a SAT problem. In Proc. of the 9th International
Symposium on Artificial Intelligence and Mathematics (January 2006).

[3] H. Simonis. Sudokku as a constraint problem. In Proc. of the CP Workshop on Modeling
and Reformulating Constraint Satisfaction Problems, p13-27 (October, 2005).

[4] T. Yato and T. Seta. Complexity and completeness of finding another solution and its
application to puzzles. In Proc. of the National Meeting of the Info. Processing Soc. of
Japan (IPSJ) (2002).

