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Over one hundred years ago, Poincaré pioneered the concept of the qualitative study of ordinary differ-
ential equations and dynamical systems. The idea was, in a way, revolutionary — instead of studying nature
by studying a particular equation, Poincaré’s vision was to study nature by studying the geometric objects
that were created by sets of time-dependent mappings from the function spaces that formed solutions to the
equations used to model nature. With the formulation of this research program Poincaré gave birth to much
of what has comprised the mathematical study of dynamical systems and ordinary differential equations
for the last one hundred years. Though his framework, it was hoped that a geometric quantification of the
equations that govern nature could be understood. This framework is, in a very fundamental way, interdis-
ciplinary in perspective because the geometric structures are defined by the function spaces and particular
geometric constraints that are largely independent of particular equations. Moreover, this framework, when
applied to particular sets of equations, is independent of the interpretations of the equations imposed by the
various scientific communities. However, because of the level of abstraction, this framework is also difficult
to connect to science in a practical way if one remains solely in an analytical realm. This particular set
of Poincaré’s ideas, in many ways, remained rather removed from the mainstream scientific communities
however, until the advent of the computer. Starting with scientists such as Lorenz in the 1960’s, scientists
began studying physically relevant mappings by solving them with computers. This pursuit has lead to
many important examples of time varying systems of equations — dynamics that were difficult to discover
from a purely analytical perspective. In the 1970’s and early 1980’s, the mathematics and computational
communities enjoyed some limited cross-pollination — many mathematicians undertook the careful study
of particular sets of equations such as the logistic map, the Lorenz equations and the Hénon map which
were originally studied numerically by natural scientists. However, in the 1980’s, computing power remained
rather limited; qualitative studies of spaces of mappings remained out of reach in a computational frame-
work. In the time since the 1980’s, dynamics, as I see it, has split into two rather distinct communities,
the mathematics community and the computational (scientific) community. Of course each of these commu-
nities is very large and diverse, so this is a very course distinction to make; however, as work in the field
has expanded, these two worlds have been getting increasingly distant and have developed what appear to
be disjointed and sometimes contrary views of dynamics. The roots of this problem often lie in differences
language and in tools used for analysis. One of the goals of my work is to help to bring these two communities
closer to each other. I (and my co-authors) try to use language from both fields to explain problems and
their solutions. Moreover, the problems I am studying are directed towards closing the gaps between the
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mathematical and computational viewpoints in an effort to contribute to Poincaré’s original vision.
My research program utilizes the continuing advances in computing resources and is fundamentally a

qualitative, computational study of dynamical systems. This approach lies in between the abstract, pure
math study of dynamical systems and the scientific-minded numerical studies of particular natural systems.
The work is close to mathematics in regards to the problems being addressed and the feature of not focusing
on a particular equation that has a specific physical analogy. However, often the experimental scientific
strategy of problem-solving is employed via statistical studies and broad physical analogies. The approach
is fundamentally of interdisciplinary character because all concrete, deterministic, time-dependent models
have geometric structures carved out in time associated with them that can, in theory, be related to the
abstract mathematical results. While the interpretations of the parameters and features of a mapping
can vary from application to application, the geometry does not. My work focuses in particular on high-
dimensional dynamics. The emphasis is motivated primarily by the outline of Poincaré, to achieve a geometric
understanding of mechanisms that yield persistent types of dynamics, to gain an understanding of the
required ingredients for ergodic-like dynamics to remain stable with perturbations. Moreover, achieving a
geometric understanding of the transitions under parameter variation between dynamical types — between
fixed points, periodic and quasi-periodic orbits, high-entropy hyper-chaos and low-entropy spatially extended
systems — is often fundamental to understanding the stability mechanics of these dynamic types in and of
themselves. These issues are approached in a siege style using whatever tools and methods work best
for unwrapping and understanding the dynamics. Thus, these studies employ both analytical tools and
criteria such as hyperbolicity, entropy and Lyapunov exponents, as well as tools that are traditionally used
in scientific fields such as scaling laws. This allows for the study of classes of systems such as dissipative
(not absolutely continuous) dynamical systems, that are very difficult to handle using only analytical tools.
These methods often do not provide analytical arguments, but can speak to not only what kinds of dynamics
exist, in much the same way that the mappings of Lorenz and Hénon did 30 years ago, but also to the sorts
of assumptions that are reasonable (e.g. hyperbolicity) with respect to analytical arguments. The hope is
that they can also aid in suggesting useful directions of analytical study. The computational and analytical
problems that get addressed range from random matrix theory, bifurcation theory, time-delay dynamical
systems, embedding theorems, functional analysis (as applied to neural networks), neural networks, Lyapunov
exponents, dynamical stability theorems from dynamical systems, and scaling laws of all types. Finally,
because the space of mappings used most commonly in my work are neural networks which form a very general
function space and have many practical training algorithms associated with them, it is hoped that they can
be used to work out a connection between the abstract and computational communities. Training ensembles
of neural networks on the prototypical examples from the computational and mathematical communities can
forge a bridge of understanding and put the work of these respective fields in context with each other. This
is a step in the direction of linking Poincaré’s abstract framework with the physical world he envisioned the
framework resembling.

The framework

Most of my past and current work utilizes the space of feed-forward, scalar, time-delay, artificial neural
networks. There are three reasons for using this space of neural networks. First, there is considerable
theory supporting their generality by combining the time-delay embedding theorems of Takens and Sauer
and Yorke and the neural network approximation theorems of Hornik et. al. Time-delay neural networks can
approximate all Cr mappings and their derivatives (to arbitrary order) on compacta. Second, the space of
neural networks with finitely many parameters can have a probability measure imposed on them. This means
that they form a function space that can approximate the Cr function space but yet yield a manageable
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measure. Thus probabilities and frequencies can be discussed. The existence of a probability measure
induces many invariance-to-measure type problems, but those issues are also present and are key problems
in the more practical world of computational studies. Finally, this type of neural networks are often used
for reconstructing dynamics from time-series data. They can be trained and there are significant practical
tools available to form a bridge for comparison between the mathematics and computational communities.

High-dimensional, high-entropy versus high-dimensional, low-entropy dynamics.

One of the key differences between the mathematics and computation communities are the models they
think of as prototypical. Most often, the computation community draws on the high-dimensional, low-
entropy, spatially extended systems and coupled map lattices for their intuition. The high-dimensional, low-
entropy cases have lots of intermittancy, synchronization, and resemble spatially extended physical systems.
These systems can often be approximated with low-dimensional examples. Moreover, many computation-
alists use the logistic map as a prototypical example of low-dimensional chaos. Recently the mathematics
community has shown that the logistic map has some very particular characteristics, such as dense stable
periodic orbits, that are likely quite unique to this unimodal map. The mathematics community often uses
examples such as Anosov diffeomorphisms, Smale horseshoes, or combinations of these or related diffeomor-
phisms which fall more into the high-dimensional, high-entropy setting. However, Anosov diffeomorphisms,
for example, are mappings with determinant-one, and thus represent a non-dissipative scenario which is a
very uncommon property in most natural systems. Coupled-map lattices and Anosov diffeomorphisms have
very different properties, and this yields very different perspectives about what is common with respect to
dynamics. The neural networks have both phenomena at various parameter settings. Thus, one goal is to
use the neural networks to demonstrate that the geometric stability mechanisms for high-entropy versus
low-entropy systems are very different. Quantifying and qualifying the high-entropy, high-dimensional geo-
metrical mechanisms was begun in my thesis and several subsequent papers. Quantifying and qualifying the
difference between the high-entropy and low-entropy systems is ongoing work.

Accomplished work: The high-entropy region of parameter space has been carefully studied. We have formu-
lated various notions of stability and subsequent stability conjectures regarding a new geometric mechanism
of stability with respect to a dynamics type. This work is discussed in the following papers:

Albers, D. J., Sprott, J. C., Crutchfield, J. P., “Persistent Chaos in High Dimensions” http://arxiv.org/abs/nlin.CD/0504040

Albers, D. J., Sprott, J. C., “Structural Stability and Hyperbolicity Violation in Large Dynamical Systems”
http://arxiv.org/abs/nlin.CD/0408011

Dechert, W. D., Sprott, J. C., Albers, D. J., 1999. “On the Probability of Chaos in Large Dynamical
Systems: A Monte Carlo Study,” J. Econ. Dynamics and Control, 23 1197-1205

Albers, D. J., Sprott, J. C., Dechert, W. D., 1996. “Dynamical Behavior of Artificial Neural Networks
with Random Weights,” in Intelligent Engineering Systems Through Artificial Neural Networks, ed. by C.
H. Dagli, M. Akay C. L. P. Chen, B. R. Fernandez, and J. Grosh, vol. 6 of Artificial Neural Networks in
Engineering, pp. 17-22. ASME Press, New York

Current and future projects: I am currently work on, with various collaborators, a careful characterization
of the low-entropy, high-dimensional, spatially extended region of parameter space with a particular focus
on a geometric comparison with the high-entropy.

Hyperbolicity and center bunching
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The structure of hyperbolicity and center bunching in high-dimensional, high-entropy systems is a very
concrete connection between math and computation communities.

The concept of hyperbolicity is of utmost importance; many of the dynamics stability theorems as well
as theories that prove the existence of Lyapunov exponents (e.g. Pesin theory) rest on various assumptions
about hyperbolic structures. Studying hyperbolicity unlocks the geometry of the attractors in a global
sense. The space of neural networks can approximate nearly any dynamical system. This characteristic
affords the opportunity to study the nature of hyperbolicity for a diverse set of dynamics in a probabilistic
(Monte Carlo) and practical manner. Moreover, it is possible to characterize the prevalence of hyperbolicity
(non-hyperbolicity) and comment on how frequently, and in what dynamical circumstances, the various
hyperbolicity assumptions that are necessary for various important theorems, are satisfied.

The concept of center bunching is an assumption regarding the “degree” of continuity a mapping must
have for it to be ergodic (center bunching is specifically related to the exponent in the definition of Holder
continuity). Center bunching of the derivative is a required assumption for the current proofs of the Pugh-
Shub stable ergodicity theorem. The existence of such an assumption raises several important questions.
First, in general, with respect to common computational frameworks, is center bunching required for ergodic-
like dynamics? Second, how frequently is the center bunching criterion satisfied in practice? Finally, for what
types of dynamical systems is center bunching relevant in a practical sense? Sometimes assumptions required
for theorems have very fundamental “physical” reasons for existing; and sometimes they are required either
because better arguments can’t be found, or because the mathematics is not very relevant to the ”real world”
in a particular circumstance. My feeling and hope is that center bunching is ”physically” relevant because
it is related to the glue that is continuity, but we will have to wait and see what the data says.

Future and current projects: The study of local hyperbolicity variation along particular orbits is in the
computation phase, meaning that the data is currently being collected from Beowulf clusters. The center
bunching experiment is currently being constructed.

Scaling in the Lyapunov spectrum

My collaborators and I have been concerned with two problems regarding scalings with Lyapunov ex-
ponents: 1) the scaling between the individual exponents versus parameter variation, and 2) the scaling in
dimension and number of parameters of a graph of the number of positive exponents versus parameter varia-
tion. The scaling between the individual exponents is something that has long concerned both physicists and
mathematicians. One hope is that in our systems there is a renormalization that will develop, collapsing all
of the positive exponents to a single exponent. Such a finding would aid greatly in explaining the geometric
structure of the dynamical systems we study, under parameter variation. A scaling in the number of positive
Lyapunov exponents that depends on the number of neurons, the number of dimensions, and one of the
parameters (the variance of the weights of the neural networks) allows for an analysis of the asymptotic limit
in the dimension that can address the topological variation under parameter variation.

Accomplished work: A careful study of scaling laws in the number of dimensions and parameters and
quantities such as the maximum Kaplan-Yorke dimension, the maximum entropy, and the maximum number
of positive exponents is complete and is summarized in:

Albers, D. J., Sprott, J. C., Crutchfield, J.P., “High-dimensional dynamics: scaling laws and general dynam-
ics”

Future and current projects: The analysis of the scaling with respect to the number of parameters and the
number of dimensions in the number of positive Lyapunov exponents versus parameter variation is being
performed. The scaling between individual exponents is future work.

4



Transitions between fixed points and high-entropy dynamics

The transition from fixed points to chaos is often referred to as the route to chaos. Currently, for
our mappings, we are concentrating on three particular directions with respect to this transition in high-
dimensional dynamical systems. The first direction involves commenting on the most probable bifurcation
from a fixed point, given our construction. The second direction is with regards to achieving a statistical
understanding of the bifurcation sequences between the first bifurcation from a fixed point and the bifurcation
to chaos. Leading up to the transition from non-chaotic to high-entropy dynamics, we have observed a
decoupling cascade in the strong stable directions that is very similar to what is observed in the transition
to chaos in Hamiltonian systems. Thus, the third direction is a systematic understanding of the geometric
decoupling of the strong stable directions just before the onset of chaos.

Accomplished work: An understanding of the probability of a first bifurcation type as the dimension of the
neural networks increases is given in the following papers:

Albers, D. J., Sprott, J. C., “Probability of local bifurcation type from a fixed point: A random matrix
perspective” http://arxiv.org/abs/nlin.CD/0510060

Albers, D. J., Sprott, J. C., Dechert, W. D., 1998. “Routes to Chaos in Artificial Neural Networks with
Random Weights,” Int. J. Bifurcation and Chaos 8, 1463-1478

Work regarding the sequence of bifurcations between the first bifurcation from a fixed point and the bifur-
cation to chaos in high-dimensional neural networks can be found in:

Albers, D. J., Sprott, J. C., “Routes to chaos in high-dimensional dynamical systems: a qualitative numerical
study” http://www.santafe.edu/ albers/research/papers/bif-seq.pdf

Future and current projects: In the paper entitled “Routes to chaos in high-dimensional dynamical systems:
a qualitative numerical study,” we observed the previously discussed phenomena of the decoupling of the
stable directions before the onset of chaos. Understanding this phenomena in particular is a topic of future
work. Analytical arguments regarding the probability of bifurcation type from a fixed point are being
constructed.

Training the neural networks

Training the neural networks gets to the heart of the mathematics and computational science dilemma.
Using the studies and tools discussed above, the geometry of the dynamics of neural networks can be
characterized by their weight distributions. One can train ensembles of networks on classic dynamical
systems, such as coupled logistic maps and Anosov diffeomorphisms, and then one can discuss dynamics as
determined by weight distributions. Moreover, it is a method of putting the two classic examples in context
with one another and comparing them.

Future and current projects: Training algorithms for the neural networks are currently be written, however,
this project is still in the preliminary, development stages.

Looking forward: Future work

The research I intend to continue working on is targeted at the greater problem of linking abstract
dynamical systems to the natural world — to push forward a geometric understanding of natural processes.
The point of this is to explore the commonality and differences between natural systems without ignoring
the specifics of these systems. To achieve these ends, one must be able to not only piece to together an
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understanding of scientific problems using mathematics, but also form an understanding of mathematics
problems using science. Fundamentally, theorists in all fields who study time-evolving, deterministic systems
in practice are studying dynamical systems. Thus, in the end, the computational results and the mathematics
results must at least not be contradictory and hopefully will be unified into a single picture. However, there
are large gaps between where analytical results leave off and where the computational results begin. For
instance, the computational understanding of the Hénon map and the analytical understanding of the Hénon
map are just beginning to converge after 20 years of work. Aside from connecting the computational with
the analytical, work also needs to be done connecting the theoretical models with scientific results. This
of course includes understanding when the frameworks utilized in theoretical investigations will not apply;
understanding when tools work and when they do not is vital to understanding what the diagnostics are
implying when used. This is fundamentally an interdisciplinary problem, for one must not only understand
and have skills using tools provided by mathematics and computational science, but one must also have an
understanding of fields addressing the measurable, scientific world, such as physics, economics, atmospheric
science (Lorenz equations), space science (Hénon map), and the biological sciences (logistic equation). I feel
that a major strength of my background and education is that I have worked with and have studied under a
variety of academicians, including mathematicians, economists, experimental physicists, physical chemists,
ecologists, and neuro-scientists who have provided me with an understanding of their respective problems
and argument styles. My primary focus is the study of computational dynamical systems that are closely
related to, and that interact with, abstract mathematics. However, the studies are always with goals set in
understanding mathematics as related to natural processes. Thus, my research has thus involved researchers
and influences from many branches of physical, social, mathematical, and computational science, and it will
continue to have the flexibility to interact with a variety of scientific endeavors.
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