Structural Stability and
Robustness in Dynamical Systems

D. J. Albers*

10/22/02

*Department of Physics, University of Wisconsin, Madison. E-mail: al-
bers@cow.physics.wisc.edu



Introduction

e Background: Initial Hopes and Dreams of Math-
ematicians and Other Scientists

e Formulation of solutions to dynamical systems
e Notions of stability and similarity

e Discussion of low dimensional mathematical mod-
els

e Discussion of high dimensional mathematical
models

e (Questions

e Conclusions



Initial hopes and dreams of
mathematicians and other
scientists

e Mathematical models will represent nature

e Science will be able, given enough time, to have
an unlimited and complete understanding of
nature through mathematics

e Fiventually we will be able to predict all types
of behaviors with our models



Formulation of solutions of
dynamical systems

e bixistence and uniqueness theorems
e Polynomial approximation

e Other examples



e bixistence and uniqueness theorems

= fw (1)

— f must be continuous; C" on U C R" x R!

— Equation 1 has a solution at (zg,%;) and
the solution for a particular f at(xzg,ty) is
unique; i.e. any solution of equation 1 at
(xo,tp) will be the same on the common
interval of existence; the solution, X is C"

— Any continuous function that evolves in time
has a solution and that solution is unique at
that time and position.

— Fantastic: nature seems pretty continuous;
if we can figure out the right assumptions
make and measure the parameters correctly
to model our system with a function of the
from 1 it will have a solution.

— Problem: solution might be hard to find



e Weierstrass polynomial approximation
theorem

— Polynomials are dense in the set of contin-
uous functions

— Great: we can use these functions as the
solutions to the O.D.E.’s via the existence
and uniqueness theorems; these are our so-
lutions and they are “easy” to find

— Problem: solution might not have a closed
form, approximation might be necessary; in
real life the solution is an infinite series



e Other approximation theorems

— Neural Networks
— Fourier Series
— PDE’s and Special Functions

— Of course there are others for various situ-
ations

— All follow the same formulation



Notions of stability and similarity
e Robustness

e Structural stability

o ()—stability

e Eigenvalue type equivalence



e Robustness

— Notion: persistence of a property relative to
changes in parameter space

— Property x of object y is robust if x holds
on an open set of y (or on an open set in y’s
parameter space)

— Robust chaotic attractor: arbitrary change
in parameters cannot destroy chaos; attrac-
tor is unique (777)



e Structural stability

— f is topologically conjugate to ¢ if 4 home-
omorphism h such that g =ho foh !

— f is structural stable if Vg € N(f) in the
C' topology, ¢ is topologically conjugate to
f

— A (C? diffeomorphism (on a compact man-
ifold without boundary) which satisfies ax-
iom A and the strong transversality condi-
tion



— Q(f) - the non-wandering set: for any neigh-
borhood U of 2y 3 n > 0such that f"(U)N
U#0

— Axiom A: f is axiom A if and only if Q(f)

is hyperbolic and periodic points of f are

dense in Q(f)

— Strong transversality: f satisfies the strong
transverality if and only if ) + B! = M,

L

— Remark: if f is axiom A, then f satisfies
the strong transversality conditions if and
only if every stable manifold intersects every
unstable manifold transversality
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e ()—stability
— Like structural stability restricted to €2(f)

— {J—conjugate: 4 a homeomorphism
h:Q(f) — Q(g) such that gh = hf

— ()—stable: f is (2—stable if and only if 3
N(f)suchthatall g € N(f)are Q—conjugate

to f
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e Eigenvalue type equilvence
— k-jets: equivalent spectrum of eigenvalues
at a point
— Equivalence in Lyapunov exponents

— Note: eigenvalue equivalence notions do not
imply structural stability and visa versa
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Discussion of low dimensional
mathematical models

e The real quadratic family
e The circle map
e Neural networks

e Other examples
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e Quadratic family
folx)=ax(l—2z), 0<a <4 (2)

— Open-dense set of attracting periodic orbits;
i.e. arbitarly close to any periodic orbit,
fixed point, or chaotic orbit is an attracting
periodic orbit or fixed point

— Measure of parameter values that give chaos
is positive, i.e. the probability of finding
chaos while sweeping the parameter space
from 0 to 4 is greater than zero

— Same can be said of periodic orbits and fixed
points

— Structure of the parameter space: pictures
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e Circle map: rational versus irrational rotations

e Rational rotations repeat, irrational rotations
do not repeat

e Rational rotations are dense, but measure zero

e Sweep continuously through rotations and you
will observe rational rotations (periodic orbits)

e Sweep randomly through rotations and you will
NEVER observe rational rotations (periodic or-

bits)
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e Neural networks

n d
Fy)=Bo+ > Big | swio+s > wiy
i-1

J=1
(3)
— n, the Number of neurons

— d, the “Dimension” of the network, or the
number of inputs

— s, the spread of the Gaussian of the w ma-
trix of weights, used as the bifurcation pa-
rameter

— Squashing function ¢ (tanh(z))
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e Observations

— Many types of behavior

— “Robust” chaos in low dimensional special
altered networks

f(x;) = |tanh(s(xi+a2?:1wijxi—c)\ (4)

— Pictures
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e Other examples

— Cat map

— Smale’s horseshoe
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Diagrams of Scalar versus Vector Networks

V ector Networks

Input layer  Hidden layer Vector Inputlayer  Higden layer  Vector
of source of neurons  output of source of neurons  output
nodes nodes
Timet Timet+1
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Scalar Networks
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Discussion of high dimensional
mathematical models

e Non-genericity of stability and similarity
e Structure of parameter space

e Fxamples
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e Non-genericity of structural stability (the sim-
plest counter example was given in R?)

— Structural stability is not generic in R*

— Map: cat map crossed with the horseshoe
(52 x T?),

— Condition violated: axiom A, specifically
hyperbolicity; violation occurs on at least
a open set

— Implications: In higher dimensional func-
tions spaces (as low as R*), “near-by” func-
tions don’t necessarily exhibit the same be-
haviors and can exhibit wildly differing be-
haviors (whether they will is still up of con-
tention)
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e Non-genericity of (2-stability
— Attempt to restrict f

— Point, structural stability wasn’t common,
what about restricting functions orbits that
stay close to themselves

— ()-stability not generic

— Map same as the structural stability buster

— Violation: {2-conjugacy via approximations

— Implications: Even after restricting func-
tions to bounded orbits that stay near them-
selves, bumping that function can, in gen-

eral give rise to different phenomenological
behaviors
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e Structure of parameter space

— No one really knows yet besides the non-
genericity of structural stability

— Some possibilities
* Persistent chaos
x Persistent periodic orbits

* Intermixed chaotic and period windows;
can be bizarre, strange basin structure
may exist for each set of parameter val-
ues; use your imagination to dream up
pathologies, they will probability exist

— Fragile conjecture
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— Fragile

x A\ is a chaotic attractor with £ positive
Lyapunov exponents

x A\ is dispelled for g if ALMOST ALL
points in a neighborhood of A belong to
basins of attracting periodic orbits of g

* If there exists g € N(f) such that A is
dispelled for g then A is fragile

x Given an n-parameter family of diffeo-
morphisms; the window set of f, W is
the set of parameter values for which A
is dispelled
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— Windows conjecture: given f : R" X R —
R™ with A having £ > 1 positive Lya-
punov exponents (invariant) that “exhibits”
a fragile chaotic attractor

x Given W is a typical window set for f,
a € R"

« If n < k then there exists N(a) entirely
outside of W

x If n =k W is dense in N(a) but W is
limited (limited means the “size” of the
w; € W shrinks as a is approached)

xn > k W is dense in N(a) and W is
extended (extended means not limited)

x Number of positive Lyapunov exponents
= the number of parameters needed to
be perturbed to remove all the expanding
directions

x Number of parameters that determine the
stability region determine the codimen-
sion in phase space needed to perturb
stability away
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— Problems
x Defining “typical” f,
x “Size” 1if w;
x Defining parameters in an orthogonal way
x Counterexamples: cat map, logistic map
(7), etc...
* Fixed point theorem

x The words ALMOST ALL implies g has
a chaotic attractor with k positive Lya-
punov exponents implies that, with prob-
ability 1, every perturbation of n > k&
parameters of g will result in a periodic
orbit
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e Fixamples:

— Neural networks

+x Can approximate any Lebesgue integrable
function (i.e. almost any function you
can think of, including non-continuous
functions) and it’s derivatives

x Always bounded

* Pictures
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x Observations from computer simulations

- As the dimension is increased the num-
ber of chaotic cases increases

- Many different attractors for the same
set of parameters

- Possible non-genericity of €2 and struc-
tural stability observed; i.e. very near
a given function, there exist qualita-
tively different functions

- Existence of very similar functions (in
dimension, number of positive Lyapunov
exponents, value of the largest Lya-
punov exponent) near qualitatively dif-
ferent functions

- Persistence of chaotic dynamics over a
large portion of parameter space given
high enough dimension

- For high dimensions periodic windows

are not observed for parameter pertur-
bations of orders 10% to 108
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Conclusions: some problems with
the current framework, and some
re-assurances

e Problems:

— When the models are perturbed qualitatively
different behaviors can arise

— “Structure of nature,” impossible to pick
out with complicated systems, i.e. high pe-
riodic, chaotic orbits and noise

— High dimensional “fitting” of data being rep-
resentative of the phenomena; with many
parameters many models can be rational-
ized

— In high dimensional models, connections with
reality beyond stylized facts are much harder
due to the diversity of possible behaviors

— Many models begin to push the envelope of
empiricism
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e Reassurance

— Qualitative effects can be captured

— In neural networks with high dimension and
number of neurons, while perturbations yielded
qualitatively different behavior, the behav-
iors were not pathologically different

— Parameters in a neighborhood that yield
wildly different behaviors might be rare (ro-
bust chaos; extremely high periods vs. quasi-
periodic or chaotic orbits)
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(Questions

e How do causal states and e—machines fit into
this framework; are they fundamentally differ-
ent and how might we show this?

e Approximation theorems for e—machines
e What are notions of equivalence between € —machines

e Are the result I presented for diffeomorphisms
going to be fundamentally different for the space
of e—machines
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