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Initial hopes and dreams ofmathemati
ians and others
ientists� Mathemati
al models will represent nature� S
ien
e will be able, given enough time, to havean unlimited and 
omplete understanding ofnature through mathemati
s� Eventually we will be able to predi
t all typesof behaviors with our models
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Formulation of solutions ofdynami
al systems� Existen
e and uniqueness theorems� Polynomial approximation� Other examples
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� Existen
e and uniqueness theoremsdxdt = f(x; t) (1){ f must be 
ontinuous; Cr on U � Rn�R1{ Equation 1 has a solution at (x0; t0) andthe solution for a parti
ular f at(x0; t0) isunique; i.e. any solution of equation 1 at(x0; t0) will be the same on the 
ommoninterval of existen
e; the solution, X is Cr{ Any 
ontinuous fun
tion that evolves in timehas a solution and that solution is unique atthat time and position.{ Fantasti
: nature seems pretty 
ontinuous;if we 
an �gure out the right assumptionsmake and measure the parameters 
orre
tlyto model our system with a fun
tion of thefrom 1 it will have a solution.{ Problem: solution might be hard to �nd
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� Weierstrass polynomial approximationtheorem{ Polynomials are dense in the set of 
ontin-uous fun
tions{ Great: we 
an use these fun
tions as thesolutions to the O.D.E.'s via the existen
eand uniqueness theorems; these are our so-lutions and they are \easy" to �nd{ Problem: solution might not have a 
losedform, approximation might be ne
essary; inreal life the solution is an in�nite series
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� Other approximation theorems{ Neural Networks{ Fourier Series{ PDE's and Spe
ial Fun
tions{ Of 
ourse there are others for various situ-ations{ All follow the same formulation
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Notions of stability and similarity� Robustness� Stru
tural stability� 
�stability� Eigenvalue type equivalen
e
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� Robustness{ Notion: persisten
e of a property relative to
hanges in parameter spa
e{ Property x of obje
t y is robust if x holdson an open set of y (or on an open set in y'sparameter spa
e){ Robust 
haoti
 attra
tor: arbitrary 
hangein parameters 
annot destroy 
haos; attra
-tor is unique (???)
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� Stru
tural stability{ f is topologi
ally 
onjugate to g if 9 home-omorphism h su
h that g = h Æ f Æ h�1{ f is stru
tural stable if 8g 2 N(f) in theC1 topology, g is topologi
ally 
onjugate tof{ A C2 di�eomorphism (on a 
ompa
t man-ifold without boundary) whi
h satis�es ax-iom A and the strong transversality 
ondi-tion
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{ 
(f) - the non-wandering set: for any neigh-borhood U of x0 9 n > 0 su
h that fn(U)\U 6= 0{ Axiom A: f is axiom A if and only if 
(f)is hyperboli
 and periodi
 points of f aredense in 
(f){ Strong transversality: f satis�es the strongtransverality if and only if Esx + Eux = Mx{ Remark: if f is axiom A, then f satis�esthe strong transversality 
onditions if andonly if every stable manifold interse
ts everyunstable manifold transversality
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� 
�stability{ Like stru
tural stability restri
ted to 
(f){ 
�
onjugate: 9 a homeomorphismh : 
(f)! 
(g) su
h that gh = hf{ 
�stable: f is 
�stable if and only if 9N(f) su
h that all g 2 N(f) are 
�
onjugateto f
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� Eigenvalue type equilven
e{ k-jets: equivalent spe
trum of eigenvaluesat a point{ Equivalen
e in Lyapunov exponents{ Note: eigenvalue equivalen
e notions do notimply stru
tural stability and visa versa
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Dis
ussion of low dimensionalmathemati
al models� The real quadrati
 family� The 
ir
le map� Neural networks� Other examples
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� Quadrati
 familyfa(x) = ax(1� x); 0 < a � 4 (2){ Open-dense set of attra
ting periodi
 orbits;i.e. arbitarly 
lose to any periodi
 orbit,�xed point, or 
haoti
 orbit is an attra
tingperiodi
 orbit or �xed point{ Measure of parameter values that give 
haosis positive, i.e. the probability of �nding
haos while sweeping the parameter spa
efrom 0 to 4 is greater than zero{ Same 
an be said of periodi
 orbits and �xedpoints{ Stru
ture of the parameter spa
e: pi
tures
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� Cir
le map: rational versus irrational rotations

� Rational rotations repeat, irrational rotationsdo not repeat� Rational rotations are dense, but measure zero� Sweep 
ontinuously through rotations and youwill observe rational rotations (periodi
 orbits)� Sweep randomly through rotations and you willNEVER observe rational rotations (periodi
 or-bits)
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� Neural networksf(y) = �0 + nXi=1 �i�0�swi0 + s dXj=1 wijyj1A(3){ n, the Number of neurons{ d, the \Dimension" of the network, or thenumber of inputs{ s, the spread of the Gaussian of the w ma-trix of weights, used as the bifur
ation pa-rameter{ Squashing fun
tion � (tanh(x))
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� Observations{ Many types of behavior{ \Robust" 
haos in low dimensional spe
ialaltered networksf(xi) = jtanh(s(xi+a�dj=1wijxi�
)j (4){ Pi
tures
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� Other examples{ Cat map{ Smale's horseshoe
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Dis
ussion of high dimensionalmathemati
al models� Non-generi
ity of stability and similarity� Stru
ture of parameter spa
e� Examples
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� Non-generi
ity of stru
tural stability (the sim-plest 
ounter example was given in R4){ Stru
tural stability is not generi
 in R4{ Map: 
at map 
rossed with the horseshoe(S2 � T 2),{ Condition violated: axiom A, spe
i�
allyhyperboli
ity; violation o

urs on at leasta open set{ Impli
ations: In higher dimensional fun
-tions spa
es (as low as R4), \near-by" fun
-tions don't ne
essarily exhibit the same be-haviors and 
an exhibit wildly di�ering be-haviors (whether they will is still up of 
on-tention)
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� Non-generi
ity of 
-stability{ Attempt to restri
t f{ Point, stru
tural stability wasn't 
ommon,what about restri
ting fun
tions orbits thatstay 
lose to themselves{ 
-stability not generi
{ Map same as the stru
tural stability buster{ Violation: 
-
onjuga
y via approximations{ Impli
ations: Even after restri
ting fun
-tions to bounded orbits that stay near them-selves, bumping that fun
tion 
an, in gen-eral give rise to di�erent phenomenologi
albehaviors
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� Stru
ture of parameter spa
e{ No one really knows yet besides the non-generi
ity of stru
tural stability{ Some possibilities� Persistent 
haos� Persistent periodi
 orbits� Intermixed 
haoti
 and period windows;
an be bizarre, strange basin stru
turemay exist for ea
h set of parameter val-ues; use your imagination to dream uppathologies, they will probability exist{ Fragile 
onje
ture
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{ Fragile� � is a 
haoti
 attra
tor with k positiveLyapunov exponents� � is dispelled for g if ALMOST ALLpoints in a neighborhood of � belong tobasins of attra
ting periodi
 orbits of g� If there exists g 2 N(f) su
h that � isdispelled for g then � is fragile� Given an n-parameter family of di�eo-morphisms; the window set of f , W isthe set of parameter values for whi
h �is dispelled
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{ Windows 
onje
ture: given f : Rn�Rm !Rm with � having k � 1 positive Lya-punov exponents (invariant) that \exhibits"a fragile 
haoti
 attra
tor� Given W is a typi
al window set for faa 2 Rn� If n < k then there exists N(a) entirelyoutside of W� If n = k W is dense in N(a) but W islimited (limited means the \size" of thewi 2W shrinks as a is approa
hed)� n > k W is dense in N(a) and W isextended (extended means not limited)� Number of positive Lyapunov exponents= the number of parameters needed tobe perturbed to remove all the expandingdire
tions� Number of parameters that determine thestability region determine the 
odimen-sion in phase spa
e needed to perturbstability away
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{ Problems� De�ning \typi
al" fa� \Size" if wi� De�ning parameters in an orthogonal way� Counterexamples: 
at map, logisti
 map(?), et
...� Fixed point theorem� The words ALMOST ALL implies g hasa 
haoti
 attra
tor with k positive Lya-punov exponents implies that, with prob-ability 1, every perturbation of n > kparameters of g will result in a periodi
orbit
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� Examples:{ Neural networks� Can approximate any Lebesgue integrablefun
tion (i.e. almost any fun
tion you
an think of, in
luding non-
ontinuousfun
tions) and it's derivatives� Always bounded� Pi
tures
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� Observations from 
omputer simulations� As the dimension is in
reased the num-ber of 
haoti
 
ases in
reases� Many di�erent attra
tors for the sameset of parameters� Possible non-generi
ity of 
 and stru
-tural stability observed; i.e. very neara given fun
tion, there exist qualita-tively di�erent fun
tions� Existen
e of very similar fun
tions (indimension, number of positive Lyapunovexponents, value of the largest Lya-punov exponent) near qualitatively dif-ferent fun
tions� Persisten
e of 
haoti
 dynami
s over alarge portion of parameter spa
e givenhigh enough dimension� For high dimensions periodi
 windowsare not observed for parameter pertur-bations of orders 102 to 10�8
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Con
lusions: some problems withthe 
urrent framework, and somere-assuran
es� Problems:{ When the models are perturbed qualitativelydi�erent behaviors 
an arise{ \Stru
ture of nature," impossible to pi
kout with 
ompli
ated systems, i.e. high pe-riodi
, 
haoti
 orbits and noise{ High dimensional \�tting" of data being rep-resentative of the phenomena; with manyparameters many models 
an be rational-ized{ In high dimensional models, 
onne
tions withreality beyond stylized fa
ts are mu
h harderdue to the diversity of possible behaviors{ Many models begin to push the envelope ofempiri
ism
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� Reassuran
e{ Qualitative e�e
ts 
an be 
aptured{ In neural networks with high dimension andnumber of neurons, while perturbations yieldedqualitatively di�erent behavior, the behav-iors were not pathologi
ally di�erent{ Parameters in a neighborhood that yieldwildly di�erent behaviors might be rare (ro-bust 
haos; extremely high periods vs. quasi-periodi
 or 
haoti
 orbits)
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Questions� How do 
ausal states and ��ma
hines �t intothis framework; are they fundamentally di�er-ent and how might we show this?� Approximation theorems for ��ma
hines� What are notions of equivalen
e between ��ma
hines� Are the result I presented for di�eomorphismsgoing to be fundamentally di�erent for the spa
eof ��ma
hines
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