Structural Stability and Robustness in Dynamical Systems

D. J. Albers*

10/22/02

^{*}Department of Physics, University of Wisconsin, Madison. E-mail: albers@cow.physics.wisc.edu

Introduction

- Background: Initial Hopes and Dreams of Mathematicians and Other Scientists
- Formulation of solutions to dynamical systems
- Notions of stability and similarity
- Discussion of low dimensional mathematical models
- Discussion of high dimensional mathematical models
- Questions
- Conclusions

Initial hopes and dreams of mathematicians and other scientists

- Mathematical models will represent nature
- Science will be able, given enough time, to have an unlimited and complete understanding of nature through mathematics
- Eventually we will be able to predict all types of behaviors with our models

Formulation of solutions of dynamical systems

- Existence and uniqueness theorems
- Polynomial approximation
- Other examples

• Existence and uniqueness theorems

$$\frac{dx}{dt} = f(x,t) \tag{1}$$

- -f must be continuous; C^r on $U \subset \mathbb{R}^n \times \mathbb{R}^1$
- Equation 1 has a solution at (x_0, t_0) and the solution for a particular f at (x_0, t_0) is unique; i.e. any solution of equation 1 at (x_0, t_0) will be the same on the common interval of existence; the solution, X is C^r
- Any continuous function that evolves in time has a solution and that solution is unique at that time and position.
- Fantastic: nature seems pretty continuous;
 if we can figure out the right assumptions make and measure the parameters correctly to model our system with a function of the from 1 it will have a solution.
- Problem: solution might be hard to find

- Weierstrass polynomial approximation theorem
 - Polynomials are dense in the set of continuous functions
 - Great: we can use these functions as the solutions to the O.D.E.'s via the existence and uniqueness theorems; these are our solutions and they are "easy" to find
 - Problem: solution might not have a closed form, approximation might be necessary; in real life the solution is an infinite series

- Other approximation theorems
 - Neural Networks
 - Fourier Series
 - PDE's and Special Functions
 - Of course there are others for various situations
 - All follow the same formulation

Notions of stability and similarity

- Robustness
- Structural stability
- Ω -stability
- Eigenvalue type equivalence

- Robustness
 - Notion: persistence of a property relative to changes in parameter space
 - Property x of object y is robust if x holds on an open set of y (or on an open set in y's parameter space)
 - Robust chaotic attractor: arbitrary change in parameters cannot destroy chaos; attractor is unique (???)

- Structural stability
 - f is topologically conjugate to g if \exists homeomorphism h such that $g=h\circ f\circ h^{-1}$
 - $-\;f$ is structural stable if $\forall g \in N(f)$ in the C^1 topology, g is topologically conjugate to f
 - A C^2 diffeomorphism (on a compact manifold without boundary) which satisfies axiom A and the strong transversality condition

- $-\Omega(f)$ the non-wandering set: for any neighborhood U of $x_0 \exists n > 0$ such that $f^n(U) \cap U \neq 0$
- Axiom A: f is axiom A if and only if $\Omega(f)$ is hyperbolic and periodic points of f are dense in $\Omega(f)$
- Strong transversality: f satisfies the strong transverality if and only if $E_x^s + E_x^u = M_x$
- Remark: if f is axiom A, then f satisfies the strong transversality conditions if and only if every stable manifold intersects every unstable manifold transversality

- Ω -stability
 - Like structural stability restricted to $\Omega(f)$
 - $-\Omega$ -conjugate: \exists a homeomorphism $h: \Omega(f) \to \Omega(g)$ such that gh = hf
 - Ω -stable: f is Ω -stable if and only if \exists N(f) such that all $g \in N(f)$ are Ω -conjugate to f

- Eigenvalue type equilvence
 - k-jets: equivalent spectrum of eigenvalues at a point
 - Equivalence in Lyapunov exponents
 - Note: eigenvalue equivalence notions do not imply structural stability and visa versa

Discussion of low dimensional mathematical models

- The real quadratic family
- The circle map
- Neural networks
- Other examples

• Quadratic family

$$f_a(x) = ax(1-x), \ 0 < a \le 4$$
 (2)

- Open-dense set of attracting periodic orbits;
 i.e. arbitarly close to any periodic orbit,
 fixed point, or chaotic orbit is an attracting
 periodic orbit or fixed point
- Measure of parameter values that give chaos is positive, i.e. the probability of finding chaos while sweeping the parameter space from 0 to 4 is greater than zero
- Same can be said of periodic orbits and fixed points
- Structure of the parameter space: pictures

• Circle map: rational versus irrational rotations

- Rational rotations repeat, irrational rotations do not repeat
- Rational rotations are dense, but measure zero
- Sweep continuously through rotations and you will observe rational rotations (periodic orbits)
- Sweep randomly through rotations and you will NEVER observe rational rotations (periodic orbits)

• Neural networks

$$f(y) = \beta_0 + \sum_{i=1}^n \beta_i \phi \left(sw_{i0} + s \sum_{j=1}^d w_{ij} y_j \right)$$
(3)

- -n, the Number of neurons
- -d, the "Dimension" of the network, or the number of inputs
- $-\ s,$ the spread of the Gaussian of the w matrix of weights, used as the bifurcation parameter
- Squashing function ϕ (tanh(x))

- Observations
 - Many types of behavior
 - "Robust" chaos in low dimensional special altered networks

$$f(x_i) = |tanh(s(x_i + a\Sigma_{j=1}^d w_{ij}x_i - c)| \ (4)$$

– Pictures

- Other examples
 - $-\operatorname{Cat}$ map
 - Smale's horseshoe

Diagrams of Scalar versus Vector Networks

Vector Networks

Discussion of high dimensional mathematical models

- Non-genericity of stability and similarity
- Structure of parameter space
- Examples

- Non-genericity of structural stability (the simplest counter example was given in R^4)
 - Structural stability is not generic in \mathbb{R}^4
 - Map: cat map crossed with the horseshoe $(S^2 \times T^2),$
 - Condition violated: axiom A, specifically hyperbolicity; violation occurs on at least a open set
 - Implications: In higher dimensional functions spaces (as low as R^4), "near-by" functions don't necessarily exhibit the same behaviors and can exhibit wildly differing behaviors (whether they will is still up of contention)

- Non-genericity of Ω -stability
 - Attempt to restrict f
 - Point, structural stability wasn't common, what about restricting functions orbits that stay close to themselves
 - Ω -stability not generic
 - Map same as the structural stability buster
 - Violation: Ω -conjugacy via approximations
 - Implications: Even after restricting functions to bounded orbits that stay near themselves, bumping that function can, in general give rise to different phenomenological behaviors

- Structure of parameter space
 - No one really knows yet besides the nongenericity of structural stability
 - Some possibilities
 - * Persistent chaos
 - * Persistent periodic orbits
 - * Intermixed chaotic and period windows; can be bizarre, strange basin structure may exist for each set of parameter values; use your imagination to dream up pathologies, they will probability exist
 - Fragile conjecture

– Fragile

- * Λ is a chaotic attractor with k positive Lyapunov exponents
- * Λ is dispelled for g if ALMOST ALL points in a neighborhood of Λ belong to basins of attracting periodic orbits of g
- * If there exists $g \in N(f)$ such that Λ is dispelled for g then Λ is fragile
- * Given an *n*-parameter family of diffeomorphisms; the window set of f, W is the set of parameter values for which Λ is dispelled

- Windows conjecture: given $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ with Λ having $k \geq 1$ positive Lyapunov exponents (invariant) that "exhibits" a fragile chaotic attractor
 - * Given W is a typical window set for f_a $a \in \mathbb{R}^n$
 - * If n < k then there exists N(a) entirely outside of W
 - * If n = k W is dense in N(a) but W is limited (limited means the "size" of the $w_i \in W$ shrinks as a is approached)
 - * n > k W is dense in N(a) and W is extended (extended means not limited)
 - Number of positive Lyapunov exponents
 = the number of parameters needed to be perturbed to remove all the expanding directions
 - * Number of parameters that determine the stability region determine the codimension in phase space needed to perturb stability away

– Problems

- * Defining "typical" f_a
- * "Size" if w_i
- $\ast\,$ Defining parameters in an orthogonal way
- * Counterexamples: cat map, logistic map (?), etc...
- * Fixed point theorem
- * The words ALMOST ALL implies g has a chaotic attractor with k positive Lyapunov exponents implies that, with probability 1, every perturbation of n > kparameters of g will result in a periodic orbit

- Examples:
 - Neural networks
 - * Can approximate any Lebesgue integrable function (i.e. almost any function you can think of, including non-continuous functions) and it's derivatives
 - * Always bounded
 - * Pictures

- * Observations from computer simulations
 - \cdot As the dimension is increased the number of chaotic cases increases
 - \cdot Many different attractors for the same set of parameters
 - Possible non-genericity of Ω and structural stability observed; i.e. very near a given function, there exist qualitatively different functions
 - Existence of very similar functions (in dimension, number of positive Lyapunov exponents, value of the largest Lyapunov exponent) near qualitatively different functions
 - Persistence of chaotic dynamics over a large portion of parameter space given high enough dimension
 - \cdot For high dimensions periodic windows are not observed for parameter perturbations of orders 10^2 to 10^{-8}

Conclusions: some problems with the current framework, and some re-assurances

- Problems:
 - When the models are perturbed qualitatively different behaviors can arise
 - "Structure of nature," impossible to pick out with complicated systems, i.e. high periodic, chaotic orbits and noise
 - High dimensional "fitting" of data being representative of the phenomena; with many parameters many models can be rationalized
 - In high dimensional models, connections with reality beyond stylized facts are much harder due to the diversity of possible behaviors
 - Many models begin to push the envelope of empiricism

- Reassurance
 - Qualitative effects can be captured
 - In neural networks with high dimension and number of neurons, while perturbations yielded qualitatively different behavior, the behaviors were not pathologically different
 - Parameters in a neighborhood that yield wildly different behaviors might be rare (robust chaos; extremely high periods vs. quasiperiodic or chaotic orbits)

Questions

- How do causal states and ϵ -machines fit into this framework; are they fundamentally different and how might we show this?
- Approximation theorems for ϵ -machines
- What are notions of equivalence between $\epsilon-{\rm machines}$
- Are the result I presented for diffeomorphisms going to be fundamentally different for the space of ϵ -machines