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Introdution� Bakground: Initial Hopes and Dreams of Math-ematiians and Other Sientists� Formulation of solutions to dynamial systems� Notions of stability and similarity� Disussion of low dimensional mathematial mod-els� Disussion of high dimensional mathematialmodels� Questions� Conlusions
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Initial hopes and dreams ofmathematiians and othersientists� Mathematial models will represent nature� Siene will be able, given enough time, to havean unlimited and omplete understanding ofnature through mathematis� Eventually we will be able to predit all typesof behaviors with our models
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Formulation of solutions ofdynamial systems� Existene and uniqueness theorems� Polynomial approximation� Other examples
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� Existene and uniqueness theoremsdxdt = f(x; t) (1){ f must be ontinuous; Cr on U � Rn�R1{ Equation 1 has a solution at (x0; t0) andthe solution for a partiular f at(x0; t0) isunique; i.e. any solution of equation 1 at(x0; t0) will be the same on the ommoninterval of existene; the solution, X is Cr{ Any ontinuous funtion that evolves in timehas a solution and that solution is unique atthat time and position.{ Fantasti: nature seems pretty ontinuous;if we an �gure out the right assumptionsmake and measure the parameters orretlyto model our system with a funtion of thefrom 1 it will have a solution.{ Problem: solution might be hard to �nd
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� Weierstrass polynomial approximationtheorem{ Polynomials are dense in the set of ontin-uous funtions{ Great: we an use these funtions as thesolutions to the O.D.E.'s via the existeneand uniqueness theorems; these are our so-lutions and they are \easy" to �nd{ Problem: solution might not have a losedform, approximation might be neessary; inreal life the solution is an in�nite series
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� Other approximation theorems{ Neural Networks{ Fourier Series{ PDE's and Speial Funtions{ Of ourse there are others for various situ-ations{ All follow the same formulation

6



Notions of stability and similarity� Robustness� Strutural stability� 
�stability� Eigenvalue type equivalene
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� Robustness{ Notion: persistene of a property relative tohanges in parameter spae{ Property x of objet y is robust if x holdson an open set of y (or on an open set in y'sparameter spae){ Robust haoti attrator: arbitrary hangein parameters annot destroy haos; attra-tor is unique (???)
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� Strutural stability{ f is topologially onjugate to g if 9 home-omorphism h suh that g = h Æ f Æ h�1{ f is strutural stable if 8g 2 N(f) in theC1 topology, g is topologially onjugate tof{ A C2 di�eomorphism (on a ompat man-ifold without boundary) whih satis�es ax-iom A and the strong transversality ondi-tion
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{ 
(f) - the non-wandering set: for any neigh-borhood U of x0 9 n > 0 suh that fn(U)\U 6= 0{ Axiom A: f is axiom A if and only if 
(f)is hyperboli and periodi points of f aredense in 
(f){ Strong transversality: f satis�es the strongtransverality if and only if Esx + Eux = Mx{ Remark: if f is axiom A, then f satis�esthe strong transversality onditions if andonly if every stable manifold intersets everyunstable manifold transversality
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� 
�stability{ Like strutural stability restrited to 
(f){ 
�onjugate: 9 a homeomorphismh : 
(f)! 
(g) suh that gh = hf{ 
�stable: f is 
�stable if and only if 9N(f) suh that all g 2 N(f) are 
�onjugateto f
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� Eigenvalue type equilvene{ k-jets: equivalent spetrum of eigenvaluesat a point{ Equivalene in Lyapunov exponents{ Note: eigenvalue equivalene notions do notimply strutural stability and visa versa
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Disussion of low dimensionalmathematial models� The real quadrati family� The irle map� Neural networks� Other examples
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� Quadrati familyfa(x) = ax(1� x); 0 < a � 4 (2){ Open-dense set of attrating periodi orbits;i.e. arbitarly lose to any periodi orbit,�xed point, or haoti orbit is an attratingperiodi orbit or �xed point{ Measure of parameter values that give haosis positive, i.e. the probability of �ndinghaos while sweeping the parameter spaefrom 0 to 4 is greater than zero{ Same an be said of periodi orbits and �xedpoints{ Struture of the parameter spae: pitures
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� Cirle map: rational versus irrational rotations

� Rational rotations repeat, irrational rotationsdo not repeat� Rational rotations are dense, but measure zero� Sweep ontinuously through rotations and youwill observe rational rotations (periodi orbits)� Sweep randomly through rotations and you willNEVER observe rational rotations (periodi or-bits)
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� Neural networksf(y) = �0 + nXi=1 �i�0�swi0 + s dXj=1 wijyj1A(3){ n, the Number of neurons{ d, the \Dimension" of the network, or thenumber of inputs{ s, the spread of the Gaussian of the w ma-trix of weights, used as the bifuration pa-rameter{ Squashing funtion � (tanh(x))
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� Observations{ Many types of behavior{ \Robust" haos in low dimensional speialaltered networksf(xi) = jtanh(s(xi+a�dj=1wijxi�)j (4){ Pitures
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� Other examples{ Cat map{ Smale's horseshoe
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Disussion of high dimensionalmathematial models� Non-generiity of stability and similarity� Struture of parameter spae� Examples
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� Non-generiity of strutural stability (the sim-plest ounter example was given in R4){ Strutural stability is not generi in R4{ Map: at map rossed with the horseshoe(S2 � T 2),{ Condition violated: axiom A, spei�allyhyperboliity; violation ours on at leasta open set{ Impliations: In higher dimensional fun-tions spaes (as low as R4), \near-by" fun-tions don't neessarily exhibit the same be-haviors and an exhibit wildly di�ering be-haviors (whether they will is still up of on-tention)
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� Non-generiity of 
-stability{ Attempt to restrit f{ Point, strutural stability wasn't ommon,what about restriting funtions orbits thatstay lose to themselves{ 
-stability not generi{ Map same as the strutural stability buster{ Violation: 
-onjugay via approximations{ Impliations: Even after restriting fun-tions to bounded orbits that stay near them-selves, bumping that funtion an, in gen-eral give rise to di�erent phenomenologialbehaviors
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� Struture of parameter spae{ No one really knows yet besides the non-generiity of strutural stability{ Some possibilities� Persistent haos� Persistent periodi orbits� Intermixed haoti and period windows;an be bizarre, strange basin struturemay exist for eah set of parameter val-ues; use your imagination to dream uppathologies, they will probability exist{ Fragile onjeture
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{ Fragile� � is a haoti attrator with k positiveLyapunov exponents� � is dispelled for g if ALMOST ALLpoints in a neighborhood of � belong tobasins of attrating periodi orbits of g� If there exists g 2 N(f) suh that � isdispelled for g then � is fragile� Given an n-parameter family of di�eo-morphisms; the window set of f , W isthe set of parameter values for whih �is dispelled
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{ Windows onjeture: given f : Rn�Rm !Rm with � having k � 1 positive Lya-punov exponents (invariant) that \exhibits"a fragile haoti attrator� Given W is a typial window set for faa 2 Rn� If n < k then there exists N(a) entirelyoutside of W� If n = k W is dense in N(a) but W islimited (limited means the \size" of thewi 2W shrinks as a is approahed)� n > k W is dense in N(a) and W isextended (extended means not limited)� Number of positive Lyapunov exponents= the number of parameters needed tobe perturbed to remove all the expandingdiretions� Number of parameters that determine thestability region determine the odimen-sion in phase spae needed to perturbstability away
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{ Problems� De�ning \typial" fa� \Size" if wi� De�ning parameters in an orthogonal way� Counterexamples: at map, logisti map(?), et...� Fixed point theorem� The words ALMOST ALL implies g hasa haoti attrator with k positive Lya-punov exponents implies that, with prob-ability 1, every perturbation of n > kparameters of g will result in a periodiorbit
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� Examples:{ Neural networks� Can approximate any Lebesgue integrablefuntion (i.e. almost any funtion youan think of, inluding non-ontinuousfuntions) and it's derivatives� Always bounded� Pitures
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� Observations from omputer simulations� As the dimension is inreased the num-ber of haoti ases inreases� Many di�erent attrators for the sameset of parameters� Possible non-generiity of 
 and stru-tural stability observed; i.e. very neara given funtion, there exist qualita-tively di�erent funtions� Existene of very similar funtions (indimension, number of positive Lyapunovexponents, value of the largest Lya-punov exponent) near qualitatively dif-ferent funtions� Persistene of haoti dynamis over alarge portion of parameter spae givenhigh enough dimension� For high dimensions periodi windowsare not observed for parameter pertur-bations of orders 102 to 10�8
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Conlusions: some problems withthe urrent framework, and somere-assuranes� Problems:{ When the models are perturbed qualitativelydi�erent behaviors an arise{ \Struture of nature," impossible to pikout with ompliated systems, i.e. high pe-riodi, haoti orbits and noise{ High dimensional \�tting" of data being rep-resentative of the phenomena; with manyparameters many models an be rational-ized{ In high dimensional models, onnetions withreality beyond stylized fats are muh harderdue to the diversity of possible behaviors{ Many models begin to push the envelope ofempiriism
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� Reassurane{ Qualitative e�ets an be aptured{ In neural networks with high dimension andnumber of neurons, while perturbations yieldedqualitatively di�erent behavior, the behav-iors were not pathologially di�erent{ Parameters in a neighborhood that yieldwildly di�erent behaviors might be rare (ro-bust haos; extremely high periods vs. quasi-periodi or haoti orbits)
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Questions� How do ausal states and ��mahines �t intothis framework; are they fundamentally di�er-ent and how might we show this?� Approximation theorems for ��mahines� What are notions of equivalene between ��mahines� Are the result I presented for di�eomorphismsgoing to be fundamentally di�erent for the spaeof ��mahines
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