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Abstract

Every researcher using a computer to model any sort of phenomena is se-
lecting their model equations from some set of abstract mappings. Further,
nearly all of these models contain parameters whose variation provides im-
portant and interesting insight. In fact, often the very point of setting up
the model is to discover what can happen upon parameter variation. In this
talk, I will discuss a potpourri of results from mathematicians and numerical
scientists regarding common types of dynamics, common transitions between
dynamics, apparent contradicting results, open questions, and possible solu-
tions - all along curves and surfaces in parameter space. Basically, I will try
to paint a picture of what can happen dynamically in many models and will,
of course, make my best attempt at defusing the techincal lingo whenever
possible in an attempt to remove the obstruction between mathematicians
and applied folks. Thus, this talk should be accessible and useful to a wide
audience.
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The Problem:

We study nature with models.

Our models have parameters.

How does changing the parameters lead to different dynamics, and what are
the specific mechanisms for those changes.

What might typical changes or paths through parameter space be like?

What type of framework do we need so that we can begin making statements
analytically.
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My World

I will only discuss discrete time maps and ODEs.

All maps and ODEs are Cr, r > 0 - i.e. everything is as smooth as we wish.

All mappings are from compact sets to themselves - think squares to squares,
spheres to spheres, tori to tori, etc.

Everything is at least a Riemannian manifold (i.e. has a Riemannian structure)

f : V × U → U (1)

U ⊂ Rn, V ⊂ Rm, U is the state space, V is the parameter space
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Flows versus Maps

Flows: continuous time - parameterized in time by R1 (not to be confused
with the set of “parameters”)

Maps: discrete time steps - parameterized in time by N1

n−dimensional flows can be “cut” by a transverse section forming the “time
one” map which is n−1−dimensional (called a Poincare section). These cross
sections are NOT unique.

n−dimensional discrete time map can be “suspended” to form n + 1 dimen-
sional flows

“Every” map has a suspension to a flow - but every flow does not have a
time one map (e.g. the Reebs foliation). This is important.
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Perturbations

Colloquially: knobs on a radio or some other type of mechanical device

Two types: general (abstract) Cr perturbations, and (concrete) parameter
perturbations

General Cr perturbations are an abstract notion that is very useful for topolog-
ical and geometric arguments (draw picture - close in the Whitney topology)

General Cr perturbations are with respect to the mappings, and may have
not practical or concrete mechanism (a radio with invisible knobs that exist
in parallel dimension and can affect the radio)

Parameter perturbations may or may not be Cr perturbations - but parameter
perturbations are with respect to “concrete” knobs (e.g. viscosity in a fluid)

Often all possible parameter perturbations do not correspond to all possible Cr

perturbations as all Cr perturbations include perturbation of the “functional
form”

I will be speaking about perturbation of parameters.
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Invariant sets and attractors

Sets that are invariant under the parameterization by time - e.g. orbits on
tori, circles, squares, etc.

Invariant sets can be attractive - i.e. invariant once you have waited long
enough for the transients to disappear - think of moth flake water ball things

Invariant sets can be “neutral” (think Yuzuro and Jim’s Hamiltonian matching
pennies cycles) - the “basin of attraction” is the invariant set.

Λ = ∩tf
t(Λ) (2)

For all t > T for some T > 0
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Basins of attraction

Draw picture Davo.

Set of initial conditions corresponding to the given invariant sets.

The basins are subsets of the compact set U ; they partition U .

Each basin can have a very different type of attractor.

Each basin has (hopefully) a measure (used to calculate ergodic properties,
such as Lyapunov exponents) associated with it - an SRB measure.

The partitioning can be very complicated - to the point of being “riddled”

Basins and attractors can “interact,” there exist attractors for with the in-
tersection of the basin boundary and attractor is a measurable set - possibly
with positive measure (Milnor attractors - draw picture).

Often the basin structure varies with parameters - i.e. there can exist basin
bifurcations upon parameter variation (more in a minute).
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Bifurcations

Bifurcations = qualitative changes in the dynamics upon parameter variation.
This is vague - being specific is a bit nasty.

3 types - local, global, basin (such as collisions) - I will refrain from a discussion
of global bifurcations.

Local: flip (period doubles), fold (saddle + node collide and disappear),
Hopf (flows) or Naimark-Sacker (maps) (fixed points to invariant circles with
periods greater than 3 or quasi-periodic orbits).

There are many open questions left about bifurcations of periodic orbits.
These questions are hard.

Basin: Basin collisions, basins vanishing, appearance of “riddled” basin struc-
ture - there are a lot of open questions left - much of the work was done by
physicists. - Milnor attractors are “bifurcation points” in this scheme, only
they might persist under parameter perturbation.

Much of the math required to for a good analysis of the basin type bifurcations
is still in the “developmental” stage - i.e. the SRB measure stuff.
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TWO EXAMPLES:

THE ROUTE TO TURBULENCE

THE ROUTE TO SENSORY BASED LEARNING
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Landau-Hopf route to turbulence in fluids

Bifurcation parameter - viscosity.

Equations: Flows.

Forget that you heard anything about basin style bifurcations - you only know
about local bifurcations.

Cascade of tori - i.e. fixed point → invariant circle → T 2 (two torus) → T 3

→ . . . → turbulence/chaos.

Or: µi is the bifurcation parameter and µi < µi+1, xµ1
(t) = f(ω1, ω2), xµ2

(t) =
f(ω1, ω2, ω3), ..., xµk−1

(t) = f(ω1, ω2, . . . , ωk) where the frequencies are not ra-
tionally related.

Yikes.
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Enter the topologists: Peixoto

Flows on M2 - the only generic (generic = common topologically speaking)
(i.e. a property is generic if it exists on subset E ⊂ B, where E contains
a countable intersection of open sets that are dense in the original set B)
behaviors are fixed points and periodic orbits.

The manifolds must be orientation preserving - i.e. no Mobius strips or Klein
bottles.

Think orbits on tori or spheres.

The same goes for discrete time maps of the circle, the only structurally
stable (and generic) orbits are fixed points and periodic orbits. (in the C1

norm - and again orientation preserving)

12



Ruelle - Takens - Newhouse

Landau was nutty, and his cascade of tori will never (in a topological sense
of common) happen.

R and T Gave an independent proof of the Neimark-Sacker normal form
theorem (Naimark was a Russian who they didn’t know about and Sacker’s
proofs existed on as notes in the New York Library of Science (i.e. this thesis))

I.e. Ruelle and Takens proved a theorem speaking to the bifurcation of a
MAP from a fixed point to a period orbit (of period greater than 5) or a
quasi-periodic orbit.

A bifurcation of a map from a fixed point to a quasi-periodic orbit corresponds
to the bifurcation of an invariant circle of a flow to T 2 - a two torus.

By Peixoto, this bifurcation should be to that of a periodic orbit.

Newhouse, Takens, and Ruelle (a generalization of a result of the T-R paper)
showed that for quasi-periodic orbit of a FLOW on tori of dimension 3 or
greater, there is an open set such that a C2 perturbation will yield a strange
attractor (i.e. a chaotic attractor).
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We understand everything now yes? For flows it goes: fixed
point → periodic orbit → chaos (the quasi-periodic three tori are unstable -

and can be perturbed away)

For maps it goes: fixed point to chaos

Right?

Right?

Of COURSE NOT.
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Enter the Russians, a Frenchman, and a German

(Measure Theorists)

Quasi-periodic orbit on tori play an important roll in the KAM celestial me-
chanics problems - hence K and A (M was German).

For maps of the circle, the measure one (measure = a different notion of
common) dynamics are quasi-periodic orbits.

For FLOWS on a two torus, the orbit is periodic if and only if it’s coordinates
are RATIONAL - and the rational coordinates are a zero measure set. THIS
IS IMPORTANT!

SHOOT. WHAT THE HECK PEIXOTO?

Moral: different notions of common give different answers to the question
“what is common?”

The Russians say for FLOWS, the route should be something like: fixed
point → quasi-periodic orbit on a two torus → who the heck knows, because
bifurcations from quasi-periodic orbits are still hazy and there will not be a
Newhouse-Takens-Ruelle style theorem for T 2.

Of course just because there exists some type of common behavior on T 2

doesn’t imply that a map can bifurcation to that type of behavior.
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Also, all the quasi-periodic orbits are structurally unstable, i.e. they can be
perturbed to period orbits or different quasi-periodic orbits by a perturbation
of any size.



Enter some French guys

Chenciner and Iooss proved that bifurcations of FLOWS from T 2 (with two
frequencies) to T 3 (i.e. three frequencies) is highly non-generic (or very un-
likely topologically speaking.) These bifurcations seem likely from a measure
theoretic standpoint also.

Made some conjectures about routes to turbulence I will refrain from stating.
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Of course I am skipping a lot of stuff.
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Enter a CRAZY Russian, a Chinese man, and an

American

Random Matrix Theory the Circular law

Given a n×n matrix whose elements are drawn from a distribution with a finite
sixth moment (e.g. Gaussian normal distribution), the normalized spectra will
tend toward a uniform distribution on unit disk in the complex plane as n → ∞

Relevance: Naimark-Sacker bifurcations correspond to complex eigenvalues
of the Jacobian of the fixed point hitting and transversally crossing the unit
circle. If the angle is rational, the orbit will be periodic, if the angle is
irrational, the orbit will be quasi-periodic (a la the Russians irrational/rational
coordinates theorems).

Problem: the convergence in distribution is not absolutely continuous with
respect to Lebesgue measure. Oh well.
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Enter: Us (Clint, Dee, Me)

As the dimension of the dynamical system is increased, any time a Jacobian
can be constructed, and the elements have a finite sixth moment, the eigen-
values should be nearly uniform on the unit disc, and thus it SEEMS probable
that the most likely bifurcation will be a Neimark-Sacker to a quasi-periodic
orbit.

For bifurcation from fixed points of maps, this doesn’t seem so bad.

Then what? Suspensions of the map, vector field approximations - it is a
mess, and we (read everybody) don’t know what happens.

What can we manage to observe?

(This is not the original reason we began studying neural networks, just so
you know.)
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Figures...

Dynamical systems: Neural networks - very general discrete time MAPS.

Examples of bifurcation diagrams and Lyapunov spectra, - these cases do not
correspond to each other.

This is the real world - so there are multiple basins, multiple attractors, many
SRB measures (corresponding to different Lyapunov spectra), etc.

Some of this stuff is actually running at the moment.
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Bifurcation diagram for an typical network; n = 32, d = 16.
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Bifurcation diagram for an atypical network; n = 32, d = 32.
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Bifurcation diagram for an typical network; n = 32, d = 64.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

Ly
ap

un
ov

 S
pe

ct
ra

s variation
27



THE ROUTE TO SENSORY BASED LEARNING

A problem with basins - no chaos - just qualitative change along a curve/surface
in parameter space.
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Add dependence of agents upon other agents:

Example: we have no idea what is happening yet - but we have just started:
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Add variable dependence of agents upon other

agents:
Examples: again, we have no idea what is happening yet - but we have just
started:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

S
ym

pl
ex

 p
os

tio
n 

fo
r 

ag
en

t 1

sigma

Transition to sensory based decision making

"2div7"
"3div7"
"4div7"
"5div7"

31



Final Remarks

We are all still pretty confused about how this all goes

Lots of interesting open problems and work to be done...
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