Structural Stability and Partial Hyperbolicity in Large Dynamical Systems

D. J. Albers* 7/22/03

^{*}Department of Physics, University of Wisconsin, Madison. E-mail: albers@cow.physics.wisc.edu

Outline

- Initial motivation
- Preliminary notions and definitions
- Background and explanation of the problem
- Outline of arguments
- Arguments
- Other directions of work and summary

Source of motivation

• Bifurcation diagram and largest Lyapunov exponent for n = 4 and d = 64

• Bifurcation Diagram for n = 64 and d = 64

• Lyapunov exponent for n = 64 and d = 64

Preliminary notions

- Stable (E^s) , unstable (E^u) , and center manifolds (E^c) : defined with respect to fixed points, define boundaries between different orbit types, define the geometry of orbits.
- Pictures

• Topological conjugacy:

Definition 1 (Topological conjugacy) Consider two C^r diffeomorphisms $f : R^n \to R^n$ and $g : R^n \to R^n$. f and g are said to be C^k $(k \ge r)$ conjugate if there exists a C^k diffeomorphism such that $g = h \circ g \circ h^{-1}$. If k = 0, f and g are said to be topologically conjugate.

• Structural stability:

Definition 2 (Structural Stability) $A C^r$ discrete time map, f, is structurally stable if there is a C^r neighborhood, V, such that any $g \in V$ is topologically conjugate to f, i.e. there exists a homeomorphism h such that $f = h^{-1} \circ g \circ h$.

- Pictures
- Perturbation: three types functional form, parameter variation, initial condition variation

• Hyperbolicity:

Definition 3 (Hyperbolic linear map) Alinear map of \mathbb{R}^n is called hyperbolic if all of it's eigenvalues are different from one.

Definition 4 (Hyperbolic periodic point) p is a hyperbolic periodic point for f if $(Df^n)_p$: $T_pM \rightarrow T_pM$ is a hyperbolic linear map. It's orbit will be called a hyperbolic periodic point.

Definition 5 (Hyperbolic map) A discrete time map f is said to be hyperbolic on a compact invariant set Λ if there exists a continuous splitting of the tangent bundle, $TM|_{\Lambda} = E^s \oplus E^u$, and there are constants C > 0, $0 < \lambda < 0$, such that $||Df^n|_{E_x^s}|| < C\lambda^n$ and $||Df^{-n}|_{E_x^u}|| < C\lambda^n$ for any n > 0 and $x \in \Lambda$.

where the stable manifold E^s [respectively unstable E^u] of $x \in \Lambda$ is the set of points $p \in M$ such that $|f^k(x) - f^k(p)| \to 0$ as $k \to \infty$. • Lyapunov exponents: correspond to stable, unstable, and center manifolds OF AN ORBIT; measure rates of expansion and contraction

Definition 6 (Lyapunov Exponents) Define

the discrete dynamical system $f : \mathbb{R}^n \to \mathbb{R}^n$ and a point in the domain, $x \in \mathbb{R}^n$. Suppose there are subspaces $V_i^{(1)}V_i^{(2)}\cdots V_i^{(n)}$ in the tangent space of $f^i(x)$ and scalars $\chi_1 \leq \chi_2 \leq \cdots \leq \chi_n$ with the properties: 1. $Df(V_i^{(j)} = V_{i+1}^{(j)})$ 2. $\dim V_i^{(j)} = n + 1 - j$ 3. $\lim_{N\to\infty} \ln ||\sqrt{(Df^N)^T (Df^N)} \cdot v|| = \chi_j$ for all $v \in V_0^{(j)} - V_0^{(j+1)}$ The numbers χ_i are called the Lyapunov er

The numbers χ_j are called the Lyapunov exponents of f at x.

$$\chi_j = \lim_{N \to \infty} \frac{1}{N} \Sigma_{k=1}^N \ln(\langle (Df_k \cdot \delta x_j)^T, (Df_k \cdot \delta x_j) \rangle)$$
(1)

where \langle , \rangle is the standard inner product, δx_j is the j^{th} component of the x variation and Df_k is the "orthogonalized" Jacobian of f at the k^{th} iterate of f(x). • Non-wandering set:

Definition 7 (Non-wandering set) A point x_0 is called non-wandering if the following holds for any neighborhood U of x_0 for some $n \neq 0$:

$$g^n(U) \cap U \neq 0 \tag{2}$$

The set of all such points is called the nonwandering set.

• Attractor (or orbit):

Definition 8 (Attractor) A closed invariant set $\Lambda \subset \mathbb{R}^n$ is called an attracting set if there is some neighborhood U of Λ such that:

$$g^n(x) \in U \text{ and } g^n(x) \to \Lambda \text{ as } n \to \infty$$
 (3)

- Dense periodic orbits: The given the invariant set (attractor) Λ has dense (maybe not stable) periodic orbits.
- Strong transversality: YIKES $M_x = E_x^s + E_x^u$ for all $x \in M$ - i.e. a continuous "splitting" of the manifolds into E^s and E^u

• Axiom A:

Definition 9 (Axiom A) $A C^r f$ satisfies axiom A if and only if Ω is hyperbolic and the periodic points of f are dense.

• Structurally stable dynamical systems satisfy axiom A (most importantly are hyperbolic):

Theorem 1 (Mane - theorem A) Every C^1 structurally stable diffeomorphism of a closed manifold satisfies Axiom A.

• Axiom A and strong transversality guarantees structural stability:

Theorem 2 (Robbin - Structural Stability Theorem) $A C^2$ diffeomorphism (on a compact, boundaryless manifold) which atisfies axiom A and the strong transversality conditions is structurally stable. • Partially hyperbolic dynamical systems

Definition 10 (Partial hyperbolicity) The discrete time map f is said to be partially hyperbolic if the tangent bundle TM splits as a Tf-invariant sum:

$$TM = E^U \oplus E^C \oplus E^S \tag{4}$$

where at least two of the sub bundles are non-trivial, and four constants, a < b < 1 < c < d, and a Finsler structure $|| \cdot ||$ on Msuch that for all $x \in M$, and all $v \in T_x M$:

- $v \in E^{U}(x) \Rightarrow d||v|| \le ||T_x fv|| \quad (5)$
- $v \in E^{C}(x) \Rightarrow b||v|| \le ||T_x fv|| \le c||v|| \quad (6)$
 - $v \in E^S(x) \Rightarrow ||T_x fv|| \le a||v|| \quad (7)$

Where E^U , E^S , E^C are the unstable, stable and center bundles for f, and a Finsler structure on the tangent bundle can be defined:

Definition 11 (Finsler structure) A Finsler structure on the tangent bundle of a Banach manifold M is a continuous function $|| \cdot || :$ $TM \rightarrow [0, \infty)$ such that:

(i) For every $x \in M$, the restriction $|| \cdot ||_x =$ $|| \cdot |||_{T_xM}$ is and euivalent norm on the tangent space T_xM , (ii) For every $x_0 \in M$, and k > 1, thre is a trivializing neighborhood U of x_0 within which

$$\frac{1}{k}||\cdot||_{x} \le ||\cdot||_{x_{0}} \le k||\cdot||_{x}$$
(8)

A C^1 Banach manifold M together with a Finsler structure on it's tangent bundle is said to be a Finsler manifold.

Intution

• Assume C^r one parameter discrete time maps transforming bounded subsets of R^d to themselves

Outline of arguments: i.e. the ingredients

- As d increases we need:
 - increasing continuity of Lyapunov exponents
 - increase in the maximum number of Lyapunov exponents
 - decrease in the distance between exponent zero crossings
- With the above trends, given arbitrarily high d, we can find a subset in parameter space such that we can approximate violation of the stability conjecture
- Difference between strict mathematics and computational or experimental observation

Numerical arguments: i.e. making sure we are seeing what we think we are seeing

• Error in Lyapunov exponent calculation:

• Continuity of Lyapunov exponents

• Increase in the number of exponents

• Decrease in the distance between exponent zero crossings

- Upon varying our parameter we see:
 - Hyperbolicity violation on an "increasingly" dense - yet not open and Lebesque measure zero - set.
 - I.e. we can find a subset of parameter space such that as the dimension is increased, the "chance" of topological change versus "small" parameter variation becomes small (zero codimension bifurcation volume)
 - With increasing dimension, very low probability of periodic windows in certain subsets of parameter space

Future work

- General: understand the effects of perturbation of initial conditions and d parameter variation
- Achieve a better understanding of the seemingly robust nature of chaos and the non-existence of periodic windows - specifically Yorke's windows conjecture.
- Achieve a better understanding of the basins of attraction - existence of Milnor attractors, effects of SRB measures, and partial hyperbolicity.
- Achieve an understanding of the route out of chaos the "high s" limit