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Outline
• Initial motivation

• Preliminary notions and definitions

• Background and explanation of the problem

• Outline of arguments

• Arguments

• Other directions of work and summary
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Source of motivation
• Bifurcation diagram and largest Lyapunov ex-

ponent for n = 4 and d = 64
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• Bifurcation Diagram for n = 64 and d = 64

-30

-20

-10

0

10

20

30

1e-3 2e-3 5e-3 0.01 0.02 0.03 0.06 0.12 0.22 0.42 0.8 1.52 2.9 5.54 10.6 19.8

x t

s log(1.01)

• Lyapunov exponent for n = 64 and d = 64
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Preliminary notions
• Stable (Es), unstable (Eu), and center mani-

folds (Ec): defined with respect to fixed points,

define boundaries between different orbit types,

define the geometry of orbits.

• Pictures
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• Topological conjugacy:

Definition 1 (Topological conjugacy) Consider

two Cr diffeomorphisms f : Rn → Rn and

g : Rn → Rn. f and g are said to be Ck

(k ≥ r) conjugate if there exists a Ck dif-

feomorphism such that g = h ◦ g ◦ h−1. If

k = 0, f and g are said to be topologically

conjugate.

• Structural stability:

Definition 2 (Structural Stability) A Cr

discrete time map, f , is structurally stable

if there is a Cr neighborhood, V , such that

any g ∈ V is topologically conjugate to f ,

i.e. there exists a homeomorphism h such

that f = h−1 ◦ g ◦ h.

• Pictures

• Perturbation: three types - functional form,

parameter variation, initial condition variation
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• Hyperbolicity:

Definition 3 (Hyperbolic linear map) A

linear map of Rn is called hyperbolic if all of

it’s eigenvalues are different from one.

Definition 4 (Hyperbolic periodic point)

p is a hyperbolic periodic point for f if (Dfn)p :

TpM → TpM is a hyperbolic linear map.

It’s orbit will be called a hyperbolic periodic

point.

Definition 5 (Hyperbolic map) A discrete

time map f is said to be hyperbolic on a

compact invariant set Λ if there exists a con-

tinuous splitting of the tangent bundle, TM |Λ =

Es ⊕ Eu, and there are constants C > 0,

0 < λ < 0, such that ||Dfn|Es

x
|| < Cλn and

||Df−n|Eu

x
|| < Cλn for any n > 0 and x ∈ Λ.

where the stable manifold Es [respectively un-

stable Eu] of x ∈ Λ is the set of points p ∈ M

such that |fk(x) − fk(p)| → 0 as k → ∞.
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• Lyapunov exponents: correspond to stable, un-

stable, and center manifolds OF AN ORBIT;

measure rates of expansion and contraction

Definition 6 (Lyapunov Exponents) Define

the discrete dynamical system f : Rn → Rn

and a point in the domain, x ∈ Rn. Sup-

pose there are subspaces V
(1)
i V

(2)
i · · ·V

(n)
i in

the tangent space of f i(x) and scalars χ1 ≤

χ2 ≤ · · · ≤ χn with the properties:

1. Df(V
(j)
i = V

(j)
i+1

2. dimV
(j)
i = n + 1 − j

3. limN→∞ ln ||
√

(DfN)T (DfN) · v|| = χj for

all v ∈ V
(j)
0 − V

(j+1)
0

The numbers χj are called the Lyapunov ex-

ponents of f at x.

χj = lim
N→∞

1

N
ΣN

k=1 ln(< (Dfk·δxj)
T , (Dfk·δxj) >)

(1)

where <, > is the standard inner product, δxj

is the jth component of the x variation and

Dfk is the “orthogonalized” Jacobian of f at

the kth iterate of f(x).
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• Non-wandering set:

Definition 7 (Non-wandering set) A point

x0 is called non-wandering if the following

holds for any neighborhood U of x0 for some

n 6= 0:

gn(U) ∩ U 6= 0 (2)

The set of all such points is called the non-

wandering set.

• Attractor (or orbit):

Definition 8 (Attractor) A closed invari-

ant set Λ ⊂ Rn is called an attracting set if

there is some neighborhood U of Λ such that:

gn(x) ∈ U and gn(x) → Λ as n → ∞ (3)

• Dense periodic orbits: The given the invariant

set (attractor) Λ has dense (maybe not stable)

periodic orbits.

• Strong transversality: YIKES - Mx = Es
x +Eu

x

for all x ∈ M - i.e. a continuous “splitting” of

the manifolds into Es and Eu
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• Axiom A:

Definition 9 (Axiom A) A Cr f satisfies

axiom A if and only if Ω is hyperbolic and

the periodic points of f are dense.

• Structurally stable dynamical systems satisfy

axiom A (most importantly are hyperbolic):

Theorem 1 (Mane - theorem A) Every C1

structurally stable diffeomorphism of a closed

manifold satisfies Axiom A.

• Axiom A and strong transversality guarantees

structural stability:

Theorem 2 (Robbin - Structural Stability Theorem)

A C2 diffeomorphism (on a compact, bound-

aryless manifold) which atisfies axiom A and

the strong transversality conditions is struc-

turally stable.
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• Partially hyperbolic dynamical systems

Definition 10 (Partial hyperbolicity) The

discrete time map f is said to be partially

hyperbolic if the tangent bundle TM splits

as a Tf−invariant sum:

TM = EU ⊕ EC ⊕ ES (4)

where at least two of the sub bundles are

non-trivial, and four constants, a < b < 1 <

c < d, and a Finsler structure || · || on M

such that for all x ∈ M , and all v ∈ TxM :

v ∈ EU(x) ⇒ d||v|| ≤ ||Txfv|| (5)

v ∈ EC(x) ⇒ b||v|| ≤ ||Txfv|| ≤ c||v|| (6)

v ∈ ES(x) ⇒ ||Txfv|| ≤ a||v|| (7)

Where EU , ES, EC are the unstable, stable

and center bundles for f , and a Finsler struc-

ture on the tangent bundle can be defined:

Definition 11 (Finsler structure) A Finsler

strucure on the tangent bundle of a Banach

manifold M is a continuous function || · || :

TM → [0,∞) such that:

(i) For every x ∈ M , the restriction || · ||x =

|| · |||TxM is and euivalent norm on the tan-

gent space TxM ,
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(ii) For every x0 ∈ M , and k > 1, thre is

a trivializing neighborhood U of x0 within

which

1

k
|| · ||x ≤ || · ||x0

≤ k|| · ||x (8)

A C1 Banach manifold M together with a

Finsler structure on it’s tangent bundle is

said to be a Finsler manifold.
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Intution
• Assume Cr one parameter discrete time maps

transforming bounded subsets of Rd to them-

selves
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Outline of arguments: i.e. the in-
gredients
• As d increases we need:

– increasing continuity of Lyapunov exponents

– increase in the maximum number of Lya-

punov exponents

– decrease in the distance between exponent

zero crossings

• With the above trends, given arbitrarily high

d, we can find a subset in parameter space such

that we can approximate violation of the sta-

bility conjecture

• Difference between strict mathematics and com-

putational or experimental observation
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Numerical arguments: i.e. mak-
ing sure we are seeing what we think
we are seeing
• Error in Lyapunov exponent calculation:
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• Continuity of Lyapunov exponents
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• Increase in the number of exponents
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• Decrease in the distance between exponent zero

crossings
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• Upon varying our parameter we see:

– Hyperbolicity violation on an “increasingly”

dense - yet not open and Lebesque measure

zero - set.

– I.e. we can find a subset of parameter space

such that as the dimension is increased, the

“chance” of topological change versus “small”

parameter variation becomes small (zero codi-

mension bifurcation volume)

– With increasing dimension, very low proba-

bility of periodic windows in certain subsets

of parameter space
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Future work
• General: understand the effects of perturbation

of initial conditions and d parameter variation

• Achieve a better understanding of the seem-

ingly robust nature of chaos and the non-existence

of periodic windows - specifically Yorke’s win-

dows conjecture.

• Achieve a better understanding of the basins

of attraction - existence of Milnor attractors,

effects of SRB measures, and partial hyperbol-

icity.

• Achieve an understanding of the route out of

chaos - the “high s” limit
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