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Source of motivation

e Bifurcation diagram and largest Lyapunov ex-
ponent for n = 4 and d = 64
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e Bifurcation Diagram for n = 64 and d = 64
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e Lyapunov exponent for n = 64 and d = 64
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Preliminary notions

e Stable (E*), unstable (E"), and center mani-
folds (E¢): defined with respect to fixed points,
define boundaries between different orbit types,
define the geometry of orbits.

e Pictures



e Topological conjugacy:

Definition 1 (Topological conjugacy) Consider
two C" diffeomorphisms f : R" — R" and

g: R" — R". f and g are said to be C*

(k > r) conjugate if there exists a C* dif-
feomorphism such that ¢ = hogoh . If

k=0, f and g are said to be topologically
conjugate.

e Structural stability:

Definition 2 (Structural Stability) A C"
discrete time map, f, is structurally stable
if there 1s a C" meighborhood, V', such that
any g € V 1s topologically conjugate to f,
1.e. there exists a homeomorphism h such

that f =h logoh.
e Pictures

e Perturbation: three types - functional form,
parameter variation, initial condition variation



e Hyperbolicity:

Definition 3 (Hyperbolic linear map) A
linear map of R" is called hyperbolic if all of
it’s ergenvalues are different from one.

Definition 4 (Hyperbolic periodic point)
p is a hyperbolic periodic point for f if (D f"), :
I,M — T,M 1is a hyperbolic linear map.
It’s orbit will be called a hyperbolic periodic
point.

Definition 5 (Hyperbolic map) A discrete
time map [ is said to be hyperbolic on a
compact invariant set A if there exists a con-
tinuous splitting of the tangent bundle, T M|y =
E® @& EY, and there are constants C > 0,
0 < A <0, such that ||D f"|gs|| < CA" and
|1 Df7"|gu|| < CA" for anyn > 0 and x € A.

where the stable manifold E* [respectively un-
stable E"] of x € A is the set of points p € M
such that | f*(z) — f¥(p)| — 0 as k — oo.



e Lyapunov exponents: correspond to stable, un-
stable, and center manifolds OF AN ORBIT;
measure rates of expansion and contraction

Definition 6 (Lyapunov Exponents) Define
the discrete dynamical system f : R" — R"
and a point in the domain, r € R". Sup-
pose there are subspaces ‘/;(1)\/;(2) ce V,L»(") in

the tangent space of f'(x) and scalars x1 <
X2 < - < x, with the properties:

L DfVY =V

2. dimVY =n+1—j

3. limy oo In |[\/(DfN)T(DfN) -0]| = x; for
adl v e %(]) . %(]+1)

The numbers x; are called the Lyapunov ex-
ponents of f at x.

X = Jim 5N (< (D b)), (Dficbr,) >
1)

where <, > is the standard inner product, dx;

is the j component of the z variation and

D fi. is the “orthogonalized” Jacobian of f at

the k' iterate of f(x).



e Non-wandering set:

Definition 7 (Non-wandering set) A point
xo 1s called non-wandering if the following
holds for any neighborhood U of x( for some
n #0:

g"(U)NU #0 (2)

The set of all such points is called the non-
wandering set.

e Attractor (or orbit):

Definition 8 (Attractor) A closed invari-
ant set A C R" is called an attracting set if
there 1s some neighborhood U of A such that:

g"(x) €U and ¢"(x) = N asn — oo (3)

e Dense periodic orbits: The given the invariant
set (attractor) A has dense (maybe not stable)
periodic orbits.

e Strong transversality: YIKES - M, = ES+ EY
for all x € M - i.e. a continuous “splitting” of
the manifolds into £* and E"



e Axiom A:

Definition 9 (Axiom A) A C" f satisfies
axiom A if and only if € is hyperbolic and
the periodic points of f are dense.

e Structurally stable dynamical systems satisfy
axiom A (most importantly are hyperbolic):

Theorem 1 (Mane - theorem A) Every C'
structurally stable diffeomorphism of a closed
manifold satisfies Axiom A.

e Axiom A and strong transversality guarantees
structural stability:

Theorem 2 (Robbin - Structural Stability Theorem)
A C? diffeomorphism (on a compact, bound-

aryless manifold) which atisfies aziom A and

the strong transversality conditions is struc-

turally stable.



e Partially hyperbolic dynamical systems

Definition 10 (Partial hyperbolicity) The
discrete time map f 1s said to be partially
hyperbolic if the tangent bundle T M splits
as a T f—invariant sum.:

TM =EY @ EC ¢ E° (4)
where at least two of the sub bundles are
non-trivial, and four constants, a < b <1 <

c < d, and a Finsler structure || - || on M
such that for all x € M, and all v € T, M:

v € EV(x) = d||| < || fol| (5)

v e E(x) = bllo]| < ||Tefol] < clfol] (6)
ve E%(x) = ||T.fol| < allv]] (7)

Where EY, E°, EC are the unstable, stable

and center bundles for f, and a Finsler struc-
ture on the tangent bundle can be defined:

Definition 11 (Finsler structure) A Finsler
strucure on the tangent bundle of a Banach
manifold M is a continuous function || || :
TM — [0,00) such that:

(1) For every x € M, the restriction || ||, =

| - |||7,a7 is and euivalent norm on the tan-
gent space T, M,
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(11) For every xy € M, and k > 1, thre is
a trivializing neighborhood U of xy within
which

1
2l e < A1 oy < K- [l (8)

A C' Banach manifold M together with a
Finsler structure on it’s tangent bundle s
said to be a Finsler manifold.
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Intution

e Assume C" one parameter discrete time maps
transforming bounded subsets of R? to them-
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Outline of arguments: i.e. the in-
oredients

e As d increases we need:

— increasing continuity of Lyapunov exponents

— increase in the maximum number of Lya-
punov exponents

— decrease in the distance between exponent
ZE€ro CrossIngs

e With the above trends, given arbitrarily high
d, we can find a subset in parameter space such
that we can approximate violation of the sta-
bility conjecture

e Difference between strict mathematics and com-
putational or experimental observation
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Numerical arguments: i.e. mak-
ing sure we are seeing what we think
we are seeing

e Error in Lyapunov exponent calculation:

Mean deviation from the mean Lyapunov exponent
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e Continuity of Lyapunov exponents

n-continuity along peak
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e Increase in the number of exponents

Maximum number of positive LCEs
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e Decrease in the distance between exponent zero
CTossings

Asympotitc Density versus zero crossing
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e Upon varying our parameter we see:

— Hyperbolicity violation on an “increasingly”
dense - yet not open and Lebesque measure
zero - set.

— [.e. we can find a subset of parameter space
such that as the dimension is increased, the
“chance” of topological change versus “small”
parameter variation becomes small (zero codi-
mension bifurcation volume)

— With increasing dimension, very low proba-
bility of periodic windows in certain subsets
of parameter space
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Future work

e General: understand the effects of perturbation
of initial conditions and d parameter variation

e Achieve a better understanding of the seem-
ingly robust nature of chaos and the non-existence
of periodic windows - specifically Yorke’s win-
dows conjecture.

e Achieve a better understanding of the basins
of attraction - existence of Milnor attractors,
effects of SRB measures, and partial hyperbol-
icity.

e Achieve an understanding of the route out of
chaos - the “high s” limit
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