Recent results regarding geometric variation in high-dimensional dynamical systems
D. J. Albers

September 12, 2006

Roadmap

- discuss Poincaré's vision to qualitatively study nature;
- discuss practical difficulties with this vision: the dichotomy between the study of nonlinear science in traditional math and scientific communities;
- outline a framework to resolve these difficulties - identification of "sufficiently general" function spaces endowed with measures;
- present an application: quantification of the variation of the geometric structure for a function space relative to a measure;

Poincare's vision: Study nature via a qualitative geometric study of the space of all models, in particular, C^{r} diffeomorphisms (discrete-time maps) and C^{r} vector fields (ODEs)

Practical difficulties

- Concretely specifying difference: turbulence versus spatio-temporal dynamics (e.g., chaotic itinerancy)
- Relationships between examples and (complete) function spaces: example - the space of polynomials and coupled-map lattices
- Broken stability dream

Moral: nature is extremely diverse and difficult to specify

The Ianguage problem

- numerical and traditional experiments all require and imply a measure;
- commonality in most abstract dynamics results is specified with respect to the C^{r} Whitney topology - there is no notion of measure or probability, no "picking" mechanism to perform an experiment, instead the scope of study is narrowed using a priori geometric characteristics;
- often measure-theoretic and topological notions of common often yield conflicting results;
- the notion of prevalence, invented by Hunt, Sauer, Yorke, etc, is intended to address this problem, but it can be a difficult notion to use;

Core difficultly: specifying a classification system, or the partitioning of function spaces

Elements of a solution: we need an scientifically minded, mathematical umbrella for the observed phenomena

- the method of unification must have measure-theoretic notions built in;
- the method must be able to work in conjunction with both infinitedimensional function spaces (e.g., C^{r}) and finite-dimensional function spaces

Prevalence: a translation invariant "almost every" on infinite dimensional spaces

Definition 1 Let X be a completely metrizable topological vector space and μ be a Borel measure. Given a (Borel) set $S \subset X$, we say that a finitedimensional subspace $P \subset X$ is a probe for S provided that for all $x \in X, \mu$ a.e. point of the hyperplane $x+P \in S$.

If a Borel set $S \in X$ has a probe, then S is said to be prevalent.
Ingredients: Topological vector space X (e.g., C^{r}), a Borel subset $S \subset X$, and a finite-dimensional probe, $P \subset X$.

Example: Nowhere differentiable functions
Theorem 1 Almost every function in $C[0,1]$ is nowhere differentiable; that is, the nowhere differentiable functions form a prevalent subset of $C[0,1]$

Ingredients: $X=C[0,1], S=\{$ nowhere Lipschitz functions $\}, P=$ two parallel planes. Argument: $C[0,1]$ can be partitioned into parallel planes in such a way that in each plane, a.e. function (with respect to Lebesgue measure) is nowhere differentiable. The plane spanned by g and h forms the probe

Toward a pratical solution to the specification problem

Abstract model space

Selection of a function space

Three characteristics:

1. practical function space that can be used to model or reconstruct empirical results (e.g., a discrete-time, time-delay dynamical system);
2. the function space must admit a measure;
3. the function space must be dense or prevalent in the function spaces used to yield solutions to ODEs, PDEs, and general natural systems (e.g. C^{r}, Sobolev spaces, etc);

Discrete-time, time-delay, feedforward, artificial neural networks

$$
\begin{equation*}
\Sigma(G) \equiv\left\{\gamma: R^{d} \rightarrow R \mid \gamma(x)=\sum_{i=1}^{n} \beta_{i} G\left(\tilde{x}^{T} \omega_{i}\right)\right\} \tag{1}
\end{equation*}
$$

here $x \in R^{d}$ is a d-vector of inputs, $\tilde{x}^{T} \equiv\left(1, x^{T}\right), n$ is the number of hidden units (neurons), $\beta_{1}, \ldots, \beta_{N} \in R$ are hidden-to-output layer weights, $\omega_{1}, \ldots, \omega_{N} \in R^{d+1}$ are input-to-hidden layer weights, and $G: R^{d} \rightarrow R$ is the activation function (or neuron) with $G \equiv \tanh ($);

$$
\begin{equation*}
x_{t}=\beta_{0}+\sum_{i=1}^{N} \beta_{i} G\left(s \omega_{i 0}+s \sum_{j=1}^{d} \omega_{i j} x_{t-j}\right) \tag{2}
\end{equation*}
$$

Measure on neural networks

The probability measure on $\Sigma G: \omega_{i j} \in N(0, s), \beta_{i}$ uniform on $[0,1], x_{t}$ uniform on $[-1: 1]$;

- each neural network can be identified by a point in the parameter space, R^{k};
- imposing a measure on the parameter space imposes a measure on the space of neural networks $\Sigma(\tanh)$;
- $m_{\beta} \times m_{\omega} \times m_{s} \times m_{I}$ form a product measure on $R^{k} \times U$, this means the parameters are uncorrelated;
- training an ensemble of neural networks will impose a joint probability distribution on R^{k}, thus correlating the parameters;
- many imposed measures carve out manifolds directly in the parameter space, equivalence analysis can then be done in the space of measures (using Amari's information geometry);

Neural network approximation characteristics

Neural networks form a very diverse function space; they can approximate any C^{r} mapping on compacta, they are dense in many Sobolev spaces used to solve ODEs and PDEs; neural networks are universal approximators;

Lyapunov exponents: a geometric diagnostic

- measurement or quantification of global expansion and contraction along an orbit;
- correspondence between positive (negative) Lyapunov exponents and global unstable (stable) manifolds;
- defines the global geometric structure of the attractor;
- independent of local coordinates or norm;
- calculated relative to a measure (physical, natural, SRB, Lebesgue, etc);

Stratification of the parameter space along a one dimensional interval: the s-parameter stratification

- existence of four "regions"
- Region I: fixed point to first bifurcation
- Region II: routes to chaos
- Region IV: bifurcation chains (possibly turbulent-like, self-similar dynamics)
- Region V: spatio-temporal dynamics with intermittency (chaotic itinerancy), a transition to finite state dynamics

Example of the s-partition

Prototypical picture of a single, chaotic network, given the measure imposed on the parameters (weights)

Bifurcation chains structure

$V_{i}=$ bifurcation link sets;
$V=$ chain link sets;
$U=$ bifurcation chain sets;

Two micro-geometric conjectures
Conjecture 1 (Existence of bifurcation chains) Assume $f_{s, \beta, \omega}$ with a sufficiently high number of dimensions, d. There exists at least one bifurcation chain subset U.

Conjecture 2 (Characterization of geometric variation on the bifurcation chain subset) Assume $f_{s, \beta, \omega}$ with a sufficiently high number of dimensions, d, and a bifurcation chain set U as per conjecture (1). The two following (equivalent) statements hold:
i. In the infinite-dimensional limit, the cardinality of U will go to infinity, and the length max $\left|a_{i+1}-a_{i}\right|$ for all i will tend to zero on a one dimensional interval in parameter space. In other words, the bifurcation chain set U will be a-dense in its closure, \bar{U}.
ii. In the asymptotic limit of high dimension, for all $s \in U$, and for all f at s, an arbitrarily small perturbation δ_{s} of s will produce a topological change. The topological change will correspond to a different number of global stable and unstable manifolds for f at s compared to f at $s+\delta$.

It means, as $d \rightarrow \infty$, there will be an s interval for such the length of the bifurcation chain sets shrinks, this implies at arbitrarily small s-perturbations will produce topological change;

It is sort of "ugly" and complicated;

Necessary properties for the micro-geometric arguments
i. the following condition must be reasonably true: given the map $f_{s, \beta, \omega}$, if the parameter $s \in R^{1}$ is varied continuously, then the Lyapunov exponents vary continuously;
ii. the number of positive LCEs increases with dimension;
iii. the length of the U_{i} 's must decrease in a relatively uniform way as the dimension is increased;
iv. the positive LCEs are unimodal;

Quantification of persistence chaos

Definition 2 (Degree-p Persistent Chaos) Assume a map $f_{\xi}: U \rightarrow U(U \subset$ R^{d}) that depends on a parameter $\xi \in R^{k}$. The map f_{ξ} has chaos of degree-p on an open set $\mathcal{O} \subset U$ that is persistent for $\xi \in \mathcal{A} \subset R^{k}$ if \exists a neighborhood \mathcal{N} of \mathcal{A} such that $\forall \xi \in \mathcal{N}$, the $\operatorname{map} f_{\xi}$ retains at least $p \geq 1$ positive LCES Lebesgue a.e. in \mathcal{O}.

"Observational" properties on a open set in parameter space

(a) lack of periodic windows with respect to (s, β, ω);
(b) LCEs vary continuously with s;
(c) they have a single maximum (up to statistical fluctuations);
(d) $f_{s, \beta, \omega}$ has SRB measure(s) that yields a distribution of LCEs whose variance obeys $\sigma_{\chi_{i}}^{2}<\inf _{j= \pm 1}\left(\left|\chi_{i}-\chi_{j}\right|\right)$ at fixed s;
(e) as d increases, the length of the s-intervals, denoted U_{i}, between LCE zero-crossings decreases as $\sim d^{-1.92}$;
(f) the maximum number of positive LCEs increases monotonically as $d / 4$ and the attractor's Kaplan-Yorke dimension scales as $d / 2$;

Persist chaos conjecture

Conjecture 3 (Persistent chaos in high dimensions) Given $f_{s, \beta, \omega}$, if k and d are large enough, the probability with respect to $m_{\beta} \times m_{\omega}$ of the set (β, ω) with the properties (a)-(f) is large and approaches 1 as $k, d \rightarrow \infty$.

Macro-geometric quantification

For a particular neural network:

$$
\begin{equation*}
M^{f_{s, s, u}}(s)=\sum_{i=1}^{d} \nu\left(\chi_{i}(s)\right) \tag{3}
\end{equation*}
$$

where $\nu\left(\chi_{i}(s)\right)=1$ if $\chi_{i}>0$, and 0 otherwise;
For an ensemble, $\left[M^{f_{s, \beta, \omega}}(s)\right]_{i \in I}$:

$$
\begin{equation*}
M(s)=E\left[M^{f_{s, \beta, u}}(s)\right]_{i \in I} \tag{4}
\end{equation*}
$$

Standard deviation: $\left[M^{f_{s, \beta_{\omega}}}(s)\right]_{i \in I}$ as σ_{M}.

Macro-geometrical variation

What is gained?

- no need for continuity of LCEs with respect to parameter variation;
- completely ignore the variation in the LCEs with parameter variation with the exception of sign changes;
- the characterization of the geometry is much more simple and based on much less restrictive assumptions with nearly no loss of information;

Macro-geometric variation: counting the number of positive Lyapunov exponents versus parameter variation, $M(s)$

Macro-geometric quantification with universal scaling
For a particular neural network:

$$
\begin{equation*}
M^{f_{s, s, u}}(s)=\sum_{i=1}^{d} \nu\left(\chi_{i}(s)\right) \tag{5}
\end{equation*}
$$

where $\nu\left(\chi_{i}(s)\right)=1$ if $\chi_{i}>0$, and 0 otherwise;
For an ensemble, $\left[M^{f_{s, s, \omega}}(s)\right]_{i \in I}$:

$$
\begin{equation*}
M(s)=E\left[M^{f_{s, \beta, \omega}}(s)\right]_{i \in I} \tag{6}
\end{equation*}
$$

Standard deviation: $\left[M^{f_{s, s, u}}(s)\right]_{i \in I}$ as σ_{M}.
Tildes denote rescaled coordinates
Curve fit to $M(s): \mathcal{M}(s)$ in rescaled coordinates

Game plan for macro-geometric analysis

1. find a universal scaling for $M(s)$ independent of n, d;
2. fit the rescaled curve (using a rational function) $\tilde{\mathcal{M}}(s)$;
3. blow up the rescaled curve, $\tilde{\mathcal{M}}(s)$, to study the geometric variation as n and $d \rightarrow \infty$;

n and d peak rescaling

- $M(s)$ scaling in n and d :

$$
\begin{equation*}
M_{\max }(s)=0.11 n^{0.37} d^{0.84} \tag{7}
\end{equation*}
$$

- s is rescaled to $\tilde{s}=s \sqrt{d}$

Rescaling of $\tilde{M}(s)$ (and $\tilde{\mathcal{M}}(s)$)

Considering the various plots of $M(s)$, the fitting function $\mathcal{M}(s)$ must satisfy the following properties at $s_{o c}, s_{\mathcal{M}_{\max }}$, and $s_{i p}$:
i. $0<s_{o c}<s_{\mathcal{M}_{\max }}<s_{i p}$;
ii. $s_{o c}$ such that $\mathcal{M}\left(s_{o c}\right)=0$ with $\frac{d \mathcal{M}}{d s}\left(s_{o c}\right)>0$;
iii. $s_{\mathcal{M}_{\text {max }}}$ such that $\mathcal{M}\left(s_{\mathcal{M}_{\text {max }}}\right)=\max (\mathcal{M}(s))$ for all $s>0$;
iv. $s_{i p}$ such that $\frac{d^{\mathcal{M}}}{d s^{2}}=0$;

Less precisely, \mathcal{M} needs to have a zero at $s_{o c}$ and be unimodal for $s>s_{o c}$; it is not an oversight that we did not specify another $s>s_{i p}$ value such that \mathcal{M} is zero, this is because numerical analysis of neural networks for very large s values is a disaster.

$M(s)$ fitting

Rational function representation of $\tilde{\mathcal{M}}(s)$:

$$
\begin{equation*}
\tilde{\mathcal{M}}(\tilde{s})=\frac{\tilde{s}-\tilde{s}_{o c}}{a_{0}+a_{1} \tilde{s}+a_{2} \tilde{s}^{2}} \tag{8}
\end{equation*}
$$

Mean geometric variation:

$$
\begin{equation*}
\tilde{\Gamma}=\frac{d \tilde{\mathcal{M}}}{d \tilde{s}}=\frac{1}{a_{0}+a_{1} \tilde{s}+a_{2} \tilde{s}^{2}}\left(1-\frac{\left(\tilde{s}-\tilde{s_{o c}}\right)\left(a_{1} \tilde{s}+2 a_{2} \tilde{s}\right)}{a_{0}+a_{1} \tilde{s}+a_{2} \tilde{s}^{2}}\right) \tag{9}
\end{equation*}
$$

The fit produced $a_{0}=-0.02, a_{1}=0.53$, and $a_{2}=0.0732$, yielding:

$$
\begin{gather*}
\tilde{\mathcal{M}}_{n=32}(s)=\frac{\tilde{s}-0.53}{-0.02+0.532 \tilde{s}+0.0732 \tilde{s}^{2}} \tag{10}\\
\tilde{\Gamma}_{n=32}=\frac{1}{-0.02+0.532 \tilde{s}+0.0732 \tilde{s}^{2}}\left(1-\frac{(\tilde{s}-0.016)(1.38+(2)(0.1875) \tilde{s})}{\left(-0.02+0.532 \tilde{s}+0.0732 \tilde{s}^{2}\right)^{2}}\right) \tag{11}
\end{gather*}
$$

Recall $\tilde{M}(s)$ and $\tilde{\mathcal{M}}(s)$

Representation of $M(s)$ by $\tilde{M}(s)$: "Whitney-like" picture for an ensemble

$M(s)$ with the standard deviation of $M(s), M_{\max }(s)$ and $M_{\min }(s)$ for ensembles of networks with $n=d=128$ and $n=d=16$.

$M(s)$ argument outline

1. show $|U|$ increases monotonically with d;
2. show the mean geometric variation (on U) increases with d;
3. show the mean length of V_{k} 's decreases on U, this defines the type of geometric variation - the bifurcation chains structure;

Asymptotic length of (crudely defined) bifurcation chains

$$
\text { region, }\left|U_{k}\right|=\left|a_{1}-a_{k}\right|
$$

- mean length of the bifurcation chain subset $\left|U_{k}\right|=\left|a_{1}-a_{k}\right|\left(a_{1}=s_{o c}\right.$ and $\left.a_{k}=s_{i p}\right)$ with increasing dimension for $n=32$ and $n=d$; as the dimension is increases, the mean and standard deviation of $\left|U_{k}\right|$ for $s \in[0.1: 10]$ tend toward the full length of the interval;
- $\tilde{s}_{i p} \approx 4.89$, it is likely that a more accurate cutoff would be ≈ 10;
- $0<s_{o c}<1$ and $s_{i p}>1$ where both scale like $d^{1 / 2}$, thus $\left|U_{k}\right|$ will increase like $\left|s_{i p}-s_{o c}\right| \sqrt{d}$ (4.36 \sqrt{d} in particular), thus the length of the bifurcation chains region increases;

Mean rate of geometric variation, $\Gamma(s)=\frac{d M}{d s}$

Left plot: both $\tilde{\mathcal{M}}$ and $\frac{d \tilde{\mathcal{M}}}{d \tilde{s}}$ with a vertical line drawn at $s_{i p}$
Right plot: $\frac{d \tilde{\mathcal{M}}}{d \tilde{s}}$ in s coordinates for $d=100$ and $d=1000$; the $d=1000$ (versus the $d=100$) graph is transformed up by $0.11 d^{0.84}$ in the y-coordinate while it is transformed down by $d^{-1 / 2}$ in the x-coordinate, therefore $\frac{d M}{d s}$ increases monotonically with d on $V=\left(s_{o c}, s_{i p}\right)$;

Mean length of the chain link sets V_{k}

Left plot: $\left|\frac{d \mathcal{M}^{\prime}}{d s}\right|$ versus s for $d=100$ and $d=1000$; right plot: $\left|\frac{d \mathcal{M}^{-1}}{d s}\right|$ simultaneously with $M(s)$ in the rescaled coordinates
$\left|V_{k}\right|=\left|s_{\chi_{k-1}}-s_{\chi_{k}}\right|$ not uniform as d increases for all s; approximate these lengths by taking $\delta \mathcal{M} \in N$ where δs is defined by increments of $\delta \mathcal{M}$ yielding

$$
\begin{equation*}
\left|V_{k}\right|=\frac{\delta s}{\delta \mathcal{M}-1} \tag{12}
\end{equation*}
$$

As $d \rightarrow \infty$ in regions of s where small changes in s lead to large changes in \mathcal{M}, approximate the length of $\left|V_{k}\right|$ with:

$$
\begin{equation*}
\left|V_{k}\right| \approx\left|\frac{d s}{d \mathcal{M}}\right| \tag{13}
\end{equation*}
$$

Estimation of the number of persistent positive exponents, p
Estimate for p is based on \mathcal{M} :

$$
\begin{equation*}
p_{\mathcal{M}}(s, \delta s)=\mathcal{M}(s)-\left|\frac{d \mathcal{M}}{d s}(s)\right| \delta s \tag{14}
\end{equation*}
$$

Conservative estimate of p is provided by

$$
\begin{equation*}
p_{\min }(s, \delta s)=\min \left[M^{f_{s, \beta, \omega}}(s)\right]_{i \in I} \tag{15}
\end{equation*}
$$

A more moderated empirical estimate of p based on the mean and standard deviation of M

$$
\begin{equation*}
p_{\sigma}(s, \delta s)=M\left(s_{M_{\min }}\right)-\sigma_{M}\left(s_{M_{\min }}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{M_{\text {min }}}=\arg \min _{s \in \mathcal{S}} M(s) \tag{17}
\end{equation*}
$$

Comparing p-estimates

Estimates of p in accordance with Eqns. 14-15 for $n=d=128$ (left plot) and $n=d=64$ (right plot) with a radius $\delta s=0.1$.

New definition of bifurcation chains region
Definition 3 (Bifurcation chains region) Assume the mapping $f_{s, \beta, \omega}$ with a chain link set (V). The mapping $f_{s, \beta, \omega}$ is said to have a bifurcation chains region if there exists an s-interval, denoted $V_{B C}$, with positive Lebesgue measure such that:
a. the probability (on $V_{B C}$ with respect to $m_{\beta} \times m_{\omega} \times m_{s}$) that $M>0$ increases to unity as d and n approach infinity for $s \in V_{B C}$;
b. the mean of the length of all the bifurcation link sets $\left(V_{k}\right)$ in $V_{B C}$ decreases monotonically as as d and n approach infinity;

Conservative estimate: $a_{1}=s_{o c}, a_{k}=s_{i p}$;

M conjectures

Conjecture 4 (Persistence of M) Assume the mapping $f_{\beta, \omega, s}, M(s)$ as defined in Eq. 6, M(s) that satisfied properties (i)-(iv). As n and d diverge to infinity, M will converge to $\tilde{\mathcal{M}}$ in rescaled coordinates and thus satisfy properties (i)-(iv) Lebesgue a.e. on s where $M>0$. Moreover, $\frac{\sigma_{M}}{M}$ will decrease monotonically with increases in d.

Conjecture 5 (Existence of bifurcation chains) Assume the mapping $f_{\beta, \omega, s}, M(s)$ as defined in Eq. 6 and $\mathcal{M}(s)$ that satisfied properties (i)-(iv). As n and d diverge to infinity the probability that there will exist an s-interval with positive Lebesgue measure for $f_{\beta, \omega, s}$ that corresponds to a bifurcation chains region approaches unity.

What is gained, what is lost

Gained:

- precise, quantifiable definition of the bifurcation chains interval;
- specification of the requirements for the bifurcation chains structure to persist; in particular the conditions for persistence of bifurcation chains are significantly weakened compared with previous results;

Lost:

- all control over the LCEs away from zero;
- no statement about open balls in parameter space;
- observations less precisely characterized (but with similar consequences);

Relationship to other conjectures

Bifurcation chains:

- weakening and generalization of the needed hypothesis of the microgeometric analysis with the same overall conclusions;

Persistent chaos:

- M-conjecture implies property (a);
- M-conjecture says nothing about properties (b)-(d);
- M-conjecture quantifies property (e) (length of U_{k} 's);
- M-conjecture is constructed using property (f);

Summary

We:

- identified a construction where a function space can be studied relative to a measure;
- defined a non-restrictive tool ($M(s)$) for characterizing geometric variation for an ensemble of mappings;
- quantified a geometric structure (bifurcation chains) that is existent in high-dimensional dynamical systems and persists on an interval of parameter space;

Conclusion: for the construction we utilize (i.e. relative to the measure we impose), chaos becomes more persistent as the number of degrees of freedom are increased; this is due to the increasing number of unstable manifolds whose transition to stability is characterized by $\mathcal{M}(s)$;

Collaborators: J. P. Crutchfield (UC-Davis CSE), J. C. Sprott (UW-Madison Physics)

