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Roadmap

• discuss Poincaré’s vision to qualitatively study nature;

• discuss practical difficulties with this vision: the dichotomy between the
study of nonlinear science in traditional math and scientific communities;

• outline a framework to resolve these difficulties — identification of “suf-
ficiently general” function spaces endowed with measures;

• present an application: quantification of the variation of the geometric
structure for a function space relative to a measure;
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Poincare’s vision: Study nature via a qualitative

geometric study of the space of all models, in

particular, Cr diffeomorphisms (discrete-time maps)

and Cr vector fields (ODEs)
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Practical difficulties

• Concretely specifying difference: turbulence versus spatio-temporal dy-
namics (e.g., chaotic itinerancy)

• Relationships between examples and (complete) function spaces: exam-
ple - the space of polynomials and coupled-map lattices

• Broken stability dream

Moral: nature is extremely diverse and difficult to specify
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The language problem

• numerical and traditional experiments all require and imply a measure;

• commonality in most abstract dynamics results is specified with respect to
the Cr Whitney topology — there is no notion of measure or probability,
no “picking” mechanism to perform an experiment, instead the scope of
study is narrowed using a priori geometric characteristics;

• often measure-theoretic and topological notions of common often yield
conflicting results;

• the notion of prevalence, invented by Hunt, Sauer, Yorke, etc, is intended
to address this problem, but it can be a difficult notion to use;

Core difficultly: specifying a classification system, or the partitioning
of function spaces
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Elements of a solution: we need an scientifically minded,

mathematical umbrella for the observed phenomena

• the method of unification must have measure-theoretic notions built in;

• the method must be able to work in conjunction with both infinite-
dimensional function spaces (e.g., Cr) and finite-dimensional function
spaces
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Prevalence: a translation invariant “almost every” on infinite

dimensional spaces

Definition 1 Let X be a completely metrizable topological vector space and
µ be a Borel measure. Given a (Borel) set S ⊂ X, we say that a finite-
dimensional subspace P ⊂ X is a probe for S provided that for all x ∈ X, µ
a.e. point of the hyperplane x + P ∈ S.

If a Borel set S ∈ X has a probe, then S is said to be prevalent.

Ingredients: Topological vector space X (e.g., Cr), a Borel subset S ⊂ X,
and a finite-dimensional probe, P ⊂ X.

Example: Nowhere differentiable functions

Theorem 1 Almost every function in C[0,1] is nowhere differentiable; that
is, the nowhere differentiable functions form a prevalent subset of C[0,1]

Ingredients: X = C[0,1], S = {nowhere Lipschitz functions }, P = two parallel planes.
Argument: C[0,1] can be partitioned into parallel planes in such a way that
in each plane, a.e. function (with respect to Lebesgue measure) is nowhere
differentiable. The plane spanned by g and h forms the probe.
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Toward a pratical solution to the specification problem
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Selection of a function space

Three characteristics:

1. practical function space that can be used to model or reconstruct em-
pirical results (e.g., a discrete-time, time-delay dynamical system);

2. the function space must admit a measure;

3. the function space must be dense or prevalent in the function spaces used
to yield solutions to ODEs, PDEs, and general natural systems (e.g. Cr,
Sobolev spaces, etc);
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Discrete-time, time-delay, feedforward, artificial neural networks
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Σ(G) ≡ {γ : Rd → R|γ(x) =

n
∑

i=1

βiG(x̃Tωi)} (1)

here x ∈ Rd is a d−vector of inputs, x̃T ≡ (1, xT), n is the number of hidden units (neurons),
β1, . . . , βN ∈ R are hidden-to-output layer weights, ω1, . . . , ωN ∈ Rd+1 are input-to-hidden layer
weights, and G : Rd → R is the activation function (or neuron) with G ≡ tanh();
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N
∑

i=1

βiG
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sωi0 + s

d
∑
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ωijxt−j

)

(2)
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Measure on neural networks

The probability measure on ΣG: ωij ∈ N(0, s), βi uniform on [0,1], xt uniform
on [−1 : 1];

• each neural network can be identified by a point in the parameter space, Rk;

• imposing a measure on the parameter space imposes a measure on the space of neural
networks Σ(tanh);

• mβ × mω × ms × mI form a product measure on Rk × U, this means the parameters are
uncorrelated;

• training an ensemble of neural networks will impose a joint probability distribution on
Rk, thus correlating the parameters;

• many imposed measures carve out manifolds directly in the parameter space, equiva-
lence analysis can then be done in the space of measures (using Amari’s information
geometry);
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Neural network approximation characteristics

Neural networks form a very diverse function space; they can approximate
any Cr mapping on compacta, they are dense in many Sobolev spaces used
to solve ODEs and PDEs; neural networks are universal approximators;
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Lyapunov exponents: a geometric diagnostic

• measurement or quantification of global expansion and contraction along
an orbit;

• correspondence between positive (negative) Lyapunov exponents and
global unstable (stable) manifolds;

• defines the global geometric structure of the attractor;

• independent of local coordinates or norm;

• calculated relative to a measure (physical, natural, SRB, Lebesgue, etc);
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Stratification of the parameter space along a one dimensional

interval: the s-parameter stratification

• existence of four “regions”

– Region I: fixed point to first bifurcation

– Region II: routes to chaos

– Region IV: bifurcation chains (possibly turbulent-like, self-similar dy-
namics)

– Region V: spatio-temporal dynamics with intermittency (chaotic itin-
erancy), a transition to finite state dynamics
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Example of the s-partition
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Prototypical picture of a single, chaotic network, given the

measure imposed on the parameters (weights)
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Bifurcation chains structure
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Vi = bifurcation link sets;

V = chain link sets;

U = bifurcation chain sets;
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Two micro-geometric conjectures

Conjecture 1 (Existence of bifurcation chains) Assume fs,β,ω with a suf-
ficiently high number of dimensions, d. There exists at least one bifurcation
chain subset U .
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Conjecture 2 (Characterization of geometric variation on the bifurca-
tion chain subset) Assume fs,β,ω with a sufficiently high number of dimen-
sions, d, and a bifurcation chain set U as per conjecture (1). The two following
(equivalent) statements hold:

i. In the infinite-dimensional limit, the cardinality of U will go to infinity, and
the length max |ai+1 − ai| for all i will tend to zero on a one dimensional
interval in parameter space. In other words, the bifurcation chain set U
will be a−dense in its closure, U .

ii. In the asymptotic limit of high dimension, for all s ∈ U , and for all f at s,
an arbitrarily small perturbation δs of s will produce a topological change.
The topological change will correspond to a different number of global
stable and unstable manifolds for f at s compared to f at s + δ.

It means, as d → ∞, there will be an s interval for such the length of the
bifurcation chain sets shrinks, this implies at arbitrarily small s-perturbations
will produce topological change;

It is sort of “ugly” and complicated;
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Necessary properties for the micro-geometric arguments

i. the following condition must be reasonably true: given the map fs,β,ω, if
the parameter s ∈ R1 is varied continuously, then the Lyapunov exponents
vary continuously;

ii. the number of positive LCEs increases with dimension;

iii. the length of the Ui’s must decrease in a relatively uniform way as the
dimension is increased;

iv. the positive LCEs are unimodal;
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Quantification of persistence chaos
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Definition 2 (Degree-p Persistent Chaos) Assume a map fξ : U → U (U ⊂
Rd) that depends on a parameter ξ ∈ Rk. The map fξ has chaos of degree-p

on an open set O ⊂ U that is persistent for ξ ∈ A ⊂ Rk if ∃ a neighborhood
N of A such that ∀ ξ ∈ N , the map fξ retains at least p ≥ 1 positive LCEs
Lebesgue a.e. in O.
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“Observational” properties on a open set in parameter space

(a) lack of periodic windows with respect to (s, β, ω);

(b) LCEs vary continuously with s;

(c) they have a single maximum (up to statistical fluctuations);

(d) fs,β,ω has SRB measure(s) that yields a distribution of LCEs whose variance obeys
σ2

χi
< infj=±1(|χi − χj|) at fixed s;

(e) as d increases, the length of the s-intervals, denoted Ui, between LCE zero-crossings
decreases as ∼ d−1.92;

(f) the maximum number of positive LCEs increases monotonically as d/4 and the attrac-
tor’s Kaplan-Yorke dimension scales as d/2;
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Persist chaos conjecture

Conjecture 3 (Persistent chaos in high dimensions) Given fs,β,ω, if k and
d are large enough, the probability with respect to mβ × mω of the set (β, ω)
with the properties (a)-(f) is large and approaches 1 as k, d → ∞.
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Macro-geometric quantification

For a particular neural network:

M fs,β,ω(s) =

d
∑

i=1

ν(χi(s)) (3)

where ν(χi(s)) = 1 if χi > 0, and 0 otherwise;

For an ensemble, [M fs,β,ω(s)]i∈I:

M(s) = E[M fs,β,ω(s)]i∈I (4)

Standard deviation: [M fs,β,ω(s)]i∈I as σM .
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Macro-geometrical variation
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What is gained?

• no need for continuity of LCEs with respect to parameter variation;

• completely ignore the variation in the LCEs with parameter variation with
the exception of sign changes;

• the characterization of the geometry is much more simple and based on
much less restrictive assumptions with nearly no loss of information;
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Macro-geometric variation: counting the number of positive

Lyapunov exponents versus parameter variation, M(s)
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Macro-geometric quantification with universal scaling

For a particular neural network:

M fs,β,ω(s) =

d
∑

i=1

ν(χi(s)) (5)

where ν(χi(s)) = 1 if χi > 0, and 0 otherwise;

For an ensemble, [M fs,β,ω(s)]i∈I:

M(s) = E[M fs,β,ω(s)]i∈I (6)

Standard deviation: [M fs,β,ω(s)]i∈I as σM .

Tildes denote rescaled coordinates

Curve fit to M(s): M(s) in rescaled coordinates
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Game plan for macro-geometric analysis

1. find a universal scaling for M(s) independent of n, d;

2. fit the rescaled curve (using a rational function) M̃(s);

3. blow up the rescaled curve, M̃(s), to study the geometric

variation as n and d → ∞;
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n and d peak rescaling
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• M(s) scaling in n and d:

Mmax(s) = 0.11n0.37d0.84 (7)
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Rescaling of M̃(s) (and M̃(s))
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Considering the various plots of M(s), the fitting function M(s)
must satisfy the following properties at soc, sMmax, and sip:

i. 0 < soc < sMmax
< sip;

ii. soc such that M(soc) = 0 with dM
ds

(soc) > 0;

iii. sMmax
such that M(sMmax

) = max(M(s)) for all s > 0;

iv. sip such that d2M
ds2 = 0;

Less precisely, M needs to have a zero at soc and be unimodal for s > soc; it
is not an oversight that we did not specify another s > sip value such that M
is zero, this is because numerical analysis of neural networks for very large s
values is a disaster.
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M(s) fitting

Rational function representation of M̃(s):

M̃(s̃) =
s̃ − s̃oc

a0 + a1s̃ + a2s̃2
(8)

Mean geometric variation:

Γ̃ =
dM̃
ds̃

=
1

a0 + a1s̃ + a2s̃2
(1 − (s̃ − s̃oc)(a1s̃ + 2a2s̃)

a0 + a1s̃ + a2s̃2
) (9)

The fit produced a0 = −0.02, a1 = 0.53, and a2 = 0.0732, yielding:

M̃n=32(s) =
s̃ − 0.53

−0.02 + 0.532s̃ + 0.0732s̃2
(10)

Γ̃n=32 =
1

−0.02 + 0.532s̃ + 0.0732s̃2
(1 − (s̃ − 0.016)(1.38 + (2)(0.1875)s̃)

(−0.02 + 0.532s̃ + 0.0732s̃2)2
)

(11)
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Recall M̃(s) and M̃(s)
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Representation of M(s) by M̃(s): “Whitney-like” picture for an

ensemble
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M(s) argument outline

1. show |U | increases monotonically with d;

2. show the mean geometric variation (on U) increases with d;

3. show the mean length of Vk’s decreases on U , this defines the type of
geometric variation — the bifurcation chains structure;
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Asymptotic length of (crudely defined) bifurcation chains

region, |Uk| = |a1 − ak|
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• mean length of the bifurcation chain subset |Uk| = |a1 − ak| (a1 = soc and ak = sip) with
increasing dimension for n = 32 and n = d; as the dimension is increases, the mean and
standard deviation of |Uk| for s ∈ [0.1 : 10] tend toward the full length of the interval;

• s̃ip ≈ 4.89, it is likely that a more accurate cutoff would be ≈ 10;

• 0 < soc < 1 and sip > 1 where both scale like d1/2, thus |Uk| will increase like |sip − soc|
√

d

(4.36
√

d in particular), thus the length of the bifurcation chains region increases;
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Mean rate of geometric variation, Γ(s) = dM
ds
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Right plot:dM̃
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the d = 100) graph is transformed up by 0.11d0.84 in the y-coordinate while
it is transformed down by d−1/2 in the x-coordinate, therefore dM

ds
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Mean length of the chain link sets Vk
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|Vk| = |sχk−1 − sχk| not uniform as d increases for all s; approximate these lengths by taking
δM ∈ N where δs is defined by increments of δM yielding

|Vk| =
δs

δM− 1
(12)

As d → ∞ in regions of s where small changes in s lead to large changes in M, approximate
the length of |Vk| with:

|Vk| ≈ | ds

dM| (13)
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Estimation of the number of persistent positive exponents, p

Estimate for p is based on M:

pM(s, δs) = M(s) − |dM
ds

(s)|δs (14)

Conservative estimate of p is provided by

pmin(s, δs) = min[M fs,β,ω(s)]i∈I (15)

A more moderated empirical estimate of p based on the mean and standard
deviation of M

pσ(s, δs) = M(sMmin
) − σM(sMmin

) (16)

where

sMmin
= argmin

s∈S
M(s) (17)
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Comparing p-estimates
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New definition of bifurcation chains region

Definition 3 (Bifurcation chains region) Assume the mapping fs,β,ω with
a chain link set (V ). The mapping fs,β,ω is said to have a bifurcation chains
region if there exists an s-interval, denoted VBC, with positive Lebesgue mea-
sure such that:

a. the probability (on VBC with respect to mβ×mω×ms) that M > 0 increases
to unity as d and n approach infinity for s ∈ VBC;

b. the mean of the length of all the bifurcation link sets (Vk) in VBC decreases
monotonically as as d and n approach infinity;

Conservative estimate: a1 = soc, ak = sip;
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M conjectures

Conjecture 4 (Persistence of M) Assume the mapping fβ,ω,s, M(s) as de-
fined in Eq. 6, M(s) that satisfied properties (i)-(iv). As n and d diverge to
infinity, M will converge to M̃ in rescaled coordinates and thus satisfy prop-
erties (i)-(iv) Lebesgue a.e. on s where M > 0. Moreover, σM

M
will decrease

monotonically with increases in d.

Conjecture 5 (Existence of bifurcation chains) Assume the mapping fβ,ω,s,M(s)
as defined in Eq. 6 and M(s) that satisfied properties (i)-(iv). As n and d di-
verge to infinity the probability that there will exist an s-interval with positive
Lebesgue measure for fβ,ω,s that corresponds to a bifurcation chains region
approaches unity.
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What is gained, what is lost

Gained:

• precise, quantifiable definition of the bifurcation chains interval;

• specification of the requirements for the bifurcation chains structure to
persist; in particular the conditions for persistence of bifurcation chains
are significantly weakened compared with previous results;

Lost:

• all control over the LCEs away from zero;

• no statement about open balls in parameter space;

• observations less precisely characterized (but with similar consequences);
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Relationship to other conjectures

Bifurcation chains:

• weakening and generalization of the needed hypothesis of the micro-
geometric analysis with the same overall conclusions;

Persistent chaos:

• M-conjecture implies property (a);

• M-conjecture says nothing about properties (b)-(d);

• M-conjecture quantifies property (e) (length of Uk’s);

• M-conjecture is constructed using property (f);

44



Summary

We:

• identified a construction where a function space can be studied relative
to a measure;

• defined a non-restrictive tool (M(s)) for characterizing geometric varia-
tion for an ensemble of mappings;

• quantified a geometric structure (bifurcation chains) that is existent in
high-dimensional dynamical systems and persists on an interval of pa-
rameter space;

Conclusion: for the construction we utilize (i.e. relative to the measure we
impose), chaos becomes more persistent as the number of degrees of freedom
are increased; this is due to the increasing number of unstable manifolds whose
transition to stability is characterized by M(s);

Collaborators: J. P. Crutchfield (UC-Davis CSE), J. C. Sprott (UW-Madison
Physics)
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