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Outline:

• Introduction and motivation

• Mathematical versus computational dynamics

• Neural networks: a “universal” function space

• Stratification of parameter space

• Persistence of chaos: Dynamics of the bifurcation chain region

• Future work
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Poincaré ’s Dream

We want insight and understanding of the natural world.

We use ODE’s, PDE’s, maps and statistical models to reconstruct and model
nature.

Split the world into dissipative and non-dissipative dynamics — then the
study the space of models will yield insight into how nature behaves and is
structured.
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Ingredients:

Time-series analysis and reconstruction

Numerical stability of models

Embedding theorems

Statistical understanding of computational models

Abstract dynamics
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Computational versus Mathematical Dynamical

Systems: the approach

Abstract dynamics:

• Select a manifold (e.g. T 2)

• Impose dynamic types (e.g. Anosov diffeomorphims)

• Classify genericity or persistence of dynamics types

Computational dynamical systems:

• Select a dynamical system (with finitely many parameters)

• Vary parameters, observe geometry and dynamics types

• Classify behaviors based upon observations — common behaviors defined
by statistics
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Computational versus mathematical dynamical

systems: results

Mathematical dynamical systems:

• Little changes for d ≥ 3

• Parameters are never an issue, the framework is with respect to Ck per-
turbations of functions in the Cr Whitney topology

Computational dynamical systems

• The number of dimensions of the dynamical system matters; high and
low-dimensional dynamical systems are very different.

• Parameters matter; the practical effects of parameters with respect to
dynamical systems is significant.
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Mathematical dynamics intuition

Everything is Anosov (cat map), “stacked” Anosovs, etc.

Topological variation is relatively uncommon (but there are many conflicting
stories). (Smale, Palis, Robbin, etc).

Periodic “windows” are likely rare for d ≥ 3. (Pugh)

Many (non-dissipative) dynamical systems are ergodic a la Boltzmann. (Pugh-
Shub)

Dissipative dynamical systems are hard to handle (current hope — SRB mea-
sures).
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Computational and low-dimensional intuition

Logistic map: real Fatou lemma, Jakobson absolute continuity;

Topological variation is dramatic, e.g. many transitions from chaotic to
periodic orbits with parameter variation;

Windows of periodic orbits amidst windows of chaotic orbits are common in
parameter space;
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Standard logistic map
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High-Dimensional observations (from our study):

Routes to chaos:

• As d → ∞, the probability of the first bifurcation being Neimark-Sacker
(bifurcation to quasi-periodic orbit) → 1.

• As d → ∞, the dominant route to chaos from a fixed point along a one-
dimensional interval is the quasi-periodic route involving n-tori (n < 3);

Chaotic region:

• As d → ∞ chaos becomes persistent with respect to parameter variation.

• As d → ∞, topological variation is common but occurs on a zero Lebesgue
measure set in parameter space.
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Scalings (with relatively constant maximum entropy)

• As d → ∞, the probability of a network being chaotic over some portion
of its parameter space → 1.

• The maximum DKY ∼ d
2
.

• As d → ∞, the probability of the existence of periodic windows in param-
eter space ∼ d−2.

• As d → ∞, the maximum number of positive exponents ∼ d
4
.



Neural networks and the Takens embedding theorem

Abstract (manifold) space

F = g    F    g

M

~

(E(p), (E(F(p)), ..., E(F   (p)) 
2d ε R2d+1

M

−1

−1g  : im(g)
g:M R2d+1

g:M 

F: M M

R2d+1

R
2d+1

M

Measurement space

F is the dynamical system, E : M → R (E is a Ck map), where E represents
some empirical style measurement of F , and g is the “Takens’s” map:

g(xt) = (E(xt), E(F (xt)), . . . , E(F 2d(xt))) (1)
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Artificial neural networks

Definition 1 A neural network is a Cr mapping γ : Rn → R. The set of
feedforward networks with a single hidden layer, Σ(G), can be written:

Σ(G) ≡ {γ : Rd → R|γ(x) =

N
∑

i=1

βiG(x̃Tωi)} (2)

where x ∈ Rd, is the d−vector of networks inputs, x̃T ≡ (1, xT) (where xT is the
transpose of x), N is the number of hidden units (neurons), β1, . . . , βN ∈ R are
the hidden-to-output layer weights, ω1, . . . , ωN ∈ Rd+1 are the input-to-hidden
layer weights, and G : Rd → R is the hidden layer activation function (or
neuron).

xt = β0 +

N
∑

i=1

βiG



sωi0 + s

d
∑

j=1

ωijxt−j



 (3)

ωij ∈ N(0, s), βi uniform on [0,1], G ≡ tanh(), d = number of inputs, N =
number of neurons.
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What can we approximate with neural networks?

Any function from a Sobolev space (Lebesgue integrable functions with weak
derivatives).

Any function in Cr, r ≥ 0 (ODE’s, maps, etc).

Piecewise smooth functions with properly chosen domains.

Most PDE’s.
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Stratification of the s parameter interval

Bifurcation diagrams along an interval of the s parameter.

There exist roughly five regions: the first bifurcation region (I), the routes to
chaos region (II), chaos to bifurcation chains (III), bifurcation chain region
(IV), bifurcation chains to finite state dynamics (V).

Prototypical high-dimensional case is: I → II → IV → V.
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Bifurcation diagram with the largest Lyapunov exponent for N = 4 and d = 4
with regions I, II, III, and V — no region IV.
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Bifurcation diagram with the largest Lyapunov exponent for N = 64 and
d = 64 with regions I, II, IV, region V is not displayed.

The prototypical scenario
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Persistent chaos: Dynamics in region IV

Formulation of a conjecture along the 1-dimensional s-interval

List of properties we require for the conjecture

Evidence

High-dimensional generalization of parameter space

New definition: Persistent chaos of degree-p

Formulation of conjectures

Evidence
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Lyapunov characteristic exponent (LCE) spectrum

LCEs: χ1 ≥ χ2 ≥ . . . ≥ χd ∈ R, where indexing is chosen to give a monotonic
ordering.

• χi represents the relative expansion (χi > 0) or contraction (χi < 0) in a
particular direction (on a particular manifold).

• the number of positive exponents = the number of expanding (stretching)
directions.

• the number of negative exponents = the number of contracting (squash-
ing) directions.
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LCE spectrum for a typical individual network with 32 neurons and 64 di-
mensions.
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Diagram for bifurcation chain sets

An intuitive diagram for chain link sets, V , bifurcation link sets, Vi, and
bifurcation chain sets, U . for an LCE decreasing chain link set V .

i

V V V V

a a a a a

1 2 3 4

1 2 3 4 5

U = {a }

V = V
i

i
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Two conjectures

Conjecture 1 (Existence of a Codimension ε bifurcation set) Assume f
is a mapping (neural network) as previously defined with a sufficiently high
number of dimensions, d, and a bifurcation chain set U as previously men-
tioned. The two following (equivalent) statements hold:

i. In the infinite-dimensional limit, the cardinality of U will go to infinity, and
the length max |ai+1 − ai| for all i will tend to zero on a one dimensional
interval in parameter space. In other words, the bifurcation chain set U
will be a−dense in its closure, U .

ii. In the asymptotic limit of high dimension, for all s ∈ U , and for all f at s,
an arbitrarily small perturbation δs of s will produce a topological change.
The topological change will correspond to a different number of global
stable and unstable manifolds for f at s compared to f at s + δ.

Topological variation is inevitable
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Conjecture 2 (Periodic window probability decreasing) Assume f is a
mapping (neural network) as previously defined and a bifurcation chain set U
as previously defined. In the asymptotic limit of high dimension, the length
of the bifurcation chain sets, l = |an − a1|, increases such that the cardinality
of U → m where m is the maximum number of positive Lyapunov exponents
for f . In other words, there will exist an interval in parameter space (e.g.
s ∈ (a1, an) ∼ (0.1,4)) where the probability of the existence of a periodic
window will go to zero (with respect to Lebesgue measure on the interval)
as the dimension becomes large.

Or

#U → ∞ as d → ∞

There exists only a single V (chain link set) — periodic windows
vanish
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List of properties for 1-dimensional parameter interval

picture

The following properties must increase with dimension:

a. the number of positive exponents;

b. the continuity of the exponents relative to parameter change;

c. Asymptotic density of transversal Lyapunov exponent zero crossings;
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Mean max number of positive Lyapunov exponents

Mean maximum number of positive LE’s versus dimension, all networks have
32 neurons (slope is approximately 1

4
).
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num-continuity versus s (individual networks)

num-continuity (mean of |χi(s) − χi(s + δs)| for each i) versus parameter
variation: 32 neurons, 4 (left) and 64 (right) dimensions.
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num-continuity versus dimension (ensemble of networks)

Mean num-continuity, num-continuity of the largest and the most negative
Lyapunov exponent of many networks versus their dimension. The error bars
are the standard deviation about the mean over the number of networks
considered.
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Intuition for a-density of zero crossings

Number of positive LE’s for typical individual networks with 32 neurons and
32 (left) and 128 (right) dimensions.
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a-density of the first 10 zero crossings

Mean distance (δs) between each of the first 10 zero crossings of LE’s for
many networks with 32 neurons and 16, 32, 64, and 128 dimensions.
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Review 1-dimensional parameter interval conjectures

a. Number of positive exponents increases with d — With arbitrarily
large dimension, there will be arbitrarily many positive Lyapunov expo-
nents to provide our needed exponent zero crossings.

b. Continuity increase with d increase — The exponents become more
continuous with respect to variation of the s parameter as the dimension
of the dynamical system is increased which helps to guarantee “smooth,”
transversal zero crossings of Lyapunov exponents as well as no abrupt
topological change.

c. Dense zero crossings of LCEs — The Lyapunov exponent zero cross-
ings become more tightly packed, i.e. the bifurcation chain set is becom-
ing a-dense in it’s closure.
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High-dimensional parameter set generalization

Basic results:

• General stability of instability, chaos reigns, periodic windows disappear
or become unobservable in portions of parameter space.

• The geometry of the dynamics is not drastically changed upon perturba-
tions of parameters.
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The abstraction of parameter perturbation

Consideration of the map:

φ : RN(d+2)+1 → Σ(G) (4)

Things to be concerned about with respect to φ: continuity, affine structure,
differentiability (e.g. is φ C0, Cr r > 1, etc).

For now, we will assume that an open ball in RN(d+2)+1 yields an open ball in
Σ(G) (however, Σ(G) is infinite dimensional where as RN(d+2)+1 is not) .
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p-degree Persistent Chaos

Definition 2 (Degree-p Persistent Chaos) Assume a discrete-time map f
that takes a compact set to itself. The map has persistent chaos of degree-p
if there exists an open subset U of parameter space, such that, for all ξ ∈ U
and a given open set O of initial conditions, f |ξ retains p ≥ 1 positive Lyapunov
exponents.
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Conjectures

Conjecture 3 (Persistence of chaos) Assume f is a network with a suf-
ficiently large number d of dimensions and number of parameters k = n(d +
2)+1. There exists an open set of significant Lebesgue measure in parameter
space Rk for which chaos will be degree-p persistent with p → ∞ as d → ∞.

Conjecture 4 (Periodic window probability diminishing) Assume f is a
mapping (neural network) as previously defined with a sufficiently high number
of dimensions, d. There will exist a set V ∈ Rp (again let p = N(d+2)+1) of
parameter space such that there will not exist periodic windows on a positive
Lebesgue measure set within V .
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Example: 64-dimensional network

The histogram of the number of positive Lyapunov exponents for a typical
64-dimensional network perturbed 100 times (order: 10−3).
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p-degree LCE stability

Point: with respect to the distribution of positive exponents, the mean must
increase, the variance must not explode.

Histograms of the number of positive Lyapunov exponents for d = 8 and
d = 64.
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Characterizing p

The degree of p-degree LCE stability for the ensemble could be defined as

i. the minumum number of positive exponents for an ensemble of perturbed
networks. p = 1 at d = 64 at s = 3

ii. the mean number of positive Lyapunov exponents minus the standard
deviation about the mean. p = 1 at d = 4, p = 8 for d = 64 at s = 3

iii. the lower boundary of the curve under which 99 percent of the area of the
distribution of the number of positive Lyapunov exponents is contained.
p = 1 at d = 32, and p = 5 at d = 64 for s = 3

p is increasing with d
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Probability of periodic windows decreases with dimension

like ∼ 1
d2

Log probability of the existence of periodic versus log of dimension for 500
cases per d. Each case has all the weights perturbed on the order of 10−3

100 times per case. The line of best is ∼ 1
d2 .
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Conclusions with respect to region IV:

Chaos becomes persistent with respect to parameter change as d → ∞

Topological change is inevitable with arbitrary parameter variation as d → ∞
(e.g. many precise mathematical notions of dynamic stability are violated)

Period windows vanish as d → ∞
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Future and work:

Current projects

1. Stability of the LCE algorithm.

2. Analysis of region II — the routes to chaos region (analytical and nu-
meric).

3. Scalings with respect to the LCE spectrum.

4. Scalings with respect to the number of positive LCEs versus s.

5. Scalings with respect to the number of neurons

6. Analysis of the center-bunching hypothesis of Pugh and Shub
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Future projects

1. Uniform and non-uniform partial hyperbolicity of high-dimensional neural
networks. Compare this with results of both Pesin and Bonatti and Viana
regarding SRB measures and Lyapunov exponents.

2. Basins of attractors, existence of Milnor attactors, relation with the finite
SRB measure conjecture of Palis and Milnor attractor results of Kaneko;

3. A symbolic dynamics, anti-integrable limit study of region V . In other
words, a detailed study of the transition from chaos to finite state orbits.

4. Direct connection to nature: train networks on high-dimensional experi-
mental and numerical data sets, study weight distributions.

5. Forever transient — a generalized notion of dynamic stability in systems
never allowed time to converge to an ergodic-type limit: e.g. time-
evolution of weight distribution;

6. Robustness with respect to weight distributions: increases generality;
useful for comparison with fitted networks;


