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Measurement space

F is the dynamical system, E : M → R (E is a Ck map), where E

represents some empirical style measurement of F , and g is the

“Takens’s” map:

g(xt) = (E(xt), E(F(xt)), . . . , E(F2d(xt))) (1)
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Artificial neural networks

Definition 1 A neural network is a Cr mapping γ : Rn → R. The set of
feedforward networks with a single hidden layer, Σ(G), can be written:

Σ(G) ≡ {γ : Rd → R|γ(x) =

N
∑

i=1

βiG(x̃Tωi)} (2)

where x ∈ Rd, is the d−vector of networks inputs, x̃T ≡ (1, xT) (where xT is the
transpose of x), N is the number of hidden units (neurons), β1, . . . , βN ∈ R are
the hidden-to-output layer weights, ω1, . . . , ωN ∈ Rd+1 are the input-to-hidden
layer weights, and G : Rd → R is the hidden layer activation function (or
neuron).

xt = β0 +

N
∑

i=1

βiG



sωi0 + s

d
∑

j=1

ωijxt−j



 (3)

ωij ∈ N(0, s), βi uniform on [0,1], G ≡ tanh(), d = number of inputs, N =
number of neurons.
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Theorem 1 (Circular law (Bai)) Suppose that the entries of a n×n matrix
M have finite sixth moment and that the joint distribution of the real and
imaginary part of the entries has a bounded density. Then, with probability 1,
the empirical distribution µn(x, y) tends to the uniform distribution over the
unit disk in two-dimensional space.

Theorem 2 (Theorem 6.3 (Edelman)) The density function ρ̂ converges
pointwise to a very simple form as n → ∞:

lim
n→∞

1

n
ρ̂(x̂, ŷ) =

{

1
π

x̂2 + ŷ2 < 1

0 x̂2 + ŷ2 > 1
(4)

where ρ̂n is simply ρ as a function of x̂ = x√
n

and ŷ = y√
n
. Note that ρ̂(x̂,ŷ)

n
is a

randomly chosen normalized eigenvalue in the upper half plane.
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On the left, the observed probability of each bifurcation was recorded for 1000
matrices with i.i.d., mean zero, variance one, Gaussian elements for each d
(in powers of 2) along with the fraction of eigenvalues that are real. On the
right is the spectrum of eigenvalues in the complex plane that corresponds
to a single 1024 × 1024 matrix (d = 1024)
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This figure represents an ensemble of 1000 d × d matrices with d = 64.
Depicted are the modulus of largest and second largest eigenvalues. The line
representing the modulus of the largest eigenvalue is given by 64m while the
line for the modulus of the second largest eigenvalue is given by ∼

√
d.

For |m| > 0.1289, λd(m) = dm, λd−1 = constant.
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DF for time-delay dynamical systems

Dfx =

















a1 a2 a3 · · · ad−2 ad−1 ad
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
... . . . ...
0 0 0 · · · 0 1 0

















The ak’s are given as:

ak =
∂xt

∂xt−k
=

n
∑

i=1

βiswiksech2(swi0 + s
d

∑

j=1

wijxt−j) (5)
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Gaussian polynomials (and companion matrices)

a0 + a1x + a2x2 + · · · + anxn (6)

where the ai coefficients are independent standard normals with

mean zero. The expected number of real zeros, Ereal, as n → ∞
is given by the formula:

Ereal(n) =
2

π
log(n) + C1 +

2

nπ
+ O(1/n2) (7)

where C1 = 0.6257358072

8



Theorem 3 Let v(x) = (f0(x), . . . , fn(x))T be any collection of differentiable
functions and a0, . . . , an be the elements of a multivariate normal distribution
with mean zero and covariance matrix C. The expected number of real zeros
on an interval (or measurable set) I of the equation

a0f0(x) + a1f1(x) + · · · + anfn(x) = 0 (8)

is
∫

I

1

π
||w′(x)||dx, (9)

where w is given by

w(x) =
C1/2v(x)

||C1/2v(x)|| (10)

In logarithmic derivative notation this is

1

π

∫

I

(
∂2

∂x∂y
(log(v(x)TCv(y))|y=x=t))

1/2dt (11)
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There are many applications of this profound theorem presented in (Edelman),
one of particular interest is an application to a trigonometric series such as

∞
∑

k=0

ak cos(νkθ) + bk sin(νkθ) (12)

where ak and bk are independent normal random variables with mean zero and
variance σ2

k .
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On the left, the observed probability of each bifurcation was recorded for
1000 matrices with i.i.d., mean zero, variance one, Gaussian ak’s for each d
(in powers of 2) along with the fraction of eigenvalues that are real. On the
right is the spectrum of eigenvalues in the complex plane that corresponds
to a single 1024 × 1024 matrix (d = 1024).
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On the left is the theoretical real zero density for a 64-degree polynomial with
random coefficients drawn from normals with mean zero and unit variance.
On the right is the real zero density for a set of 3000 companion matrices
with ak’s drawn from standard normals with mean zero and unit variance.
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On the left, the observed probability of each bifurcation was recorded for
1000 neural networks for each d along with the fraction of eigenvalues that
are real. On the right is the spectrum of eigenvalues in the complex plane
that corresponds to a single neural network with n = 256 and d = 512.
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The plot on the right is of the distribution of ak’s for 1000 neural networks
with n = 256,64 and d = 128,32. The plot on the right is of the distribution
of real eigenvalues along the real axis for the same set of neural networks.
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Three problems:

RMT: Why does perturbing the mean control the largest eigen-

value? (probably a simple answer)

Companion matrices: Use a Edelman’s theorem to derive a con-

nection between the weight distribution of with neural network

and the real zeros of it’s derivative matrix (this is the first step

on a grand scheme to connect weight distributions of the neural

networks to the LCE’s)

Companion matrices and full matrices: Old problem, distribution

on gij leads to what distribution on c1j? Train the neural nets,

find an empirical answer, use some of Edelman’s machinery to

attempt a proof.
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Region IV update

LCE spectrum: 32 neurons, 64 dimensions
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Scalings — factors to consider

Effects of adding delays

Effects of adding parameters: functional analysis, RMT, training
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Maximum LLE (over s) versus n for various values of d. Each point on each
curve represents an average over at least 100 networks.

Scalings: d = 16, χmax ∼ n0.49; d = 128 χmax ∼ n0.5548.
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Maximum entropy (over s) versus n for various values of d. Each point on
each curve represents an average over at least 100 networks.

Scalings: hµ ∼ n0.625 at d = 16; hµ ∼ n0.73 at d = 128.
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Maximum number of positive LCE’s (over s) versus n for various values of d.
Each point on each curve represents an average over at least 100 networks.

Scaling: MPLCE ∝ a log(n) where a is a function of d — a(d) = 0.08d,
yielding MPLCE ≈ 0.8dlog(n).

20



 0

 20

 40

 60

 80

 100

 120

 140

 4  8  16  32  64  128  256  512  1024

m
ax

im
um

 D
K

Y

number of neurons

"d=128"
"d=64"
"d=32"
"d=16"

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  20  40  60  80  100  120  140

sl
op

e 
of

 a

dimension

"a=0.15"

Maximum DKY (over s) versus n for various values of d. Each point on each
curve represents an average over at least 100 networks.

Scaling: DKY ∼ a log(n), where a ∼ 0.15d, yielding DKY ∼ 0.15d log(n).
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Mean maximum entropy versus dimension, d (left). Variation in the entropy
of a single network with s (right). The network considered has 32 neurons
and 128 dimensions.

Since hµ(n) ∼ nl where l ≤ 0.75, it is likely that over a fixed range of d, for
fixed n, the entropy will be fairly constant.
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Mean maximum number of positive LE’s versus dimension, all networks have
32 neurons (slope is approximately 1

4
) (left). Number of positive LCE’s for a

typical individual network with 32 neurons and 128 dimensions (right).
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Mean maximum Kaplan-Yorke dimension versus dimension, d. For the set of
networks analyzed, DKY ∼ 0.46d (left). Variation of Kaplan-Yorke dimension
versus s for a single network with N = 32 and d = 128 (right).
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Dky = 0.190n0.364d0.886 (13)

which has R2 = 0.952

MPLCE = 0.105n0.367d0.843 (14)

which has R2 = 0.943.
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Topological variation and scaling laws.
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