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Goals of this talk

i. complex natural phenomena (often) have “consistent” dynamics, we wish
to understand this geometrically;

ii. an intuitive picture of the language an framework of mathematical dy-
namics;

iii. an understanding of how this language expresses characterization of dy-
namics and defines it’s problems;

iv. present previous mathematical results and computational results (done
with Clint and Jim);
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Poincaré’s dream

i. scientists study nature via mathematical models (ODEs, PDEs, discrete
time maps);

ii. the solutions of these mathematical models are built from two compo-
nents: existence of solutions (existence and uniqueness theorems) and
approximation theorems;

iii. the approximation theorems say (often) that a particular function space
contains a mapping that can approximate the solution to arbitrary accu-
racy;

the dream: study nature via a qualitative study of the dynamical behaviors
of mappings in the function spaces that form solutions to our models (for
systems where time is a parameter) then characterized common behaviors and
what assumptions or geometric structures constrain these common behaviors;
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Linking the qualitative mathematical framework with the

natural world: inconsistencies between science and

mathematics

i. diversity in natural systems — how in the heck do we characterized
“common” dynamics;

ii. example: turbulence and multiple attractors;

iii. high-entropy, high-dimensional, complex dynamics — turbulence versus
spatially extended dynamics;

iv. devil is in the details — Cr mappings may not reflect natural systems;

v. measures in a post-modern world: empirical science is cast the language
of probability (which requires a measure, can be dependent on the ob-
server) and Cr function space does not admit a measure (no probability
language);

vi. many “computational models” are not persistent to perturbations of the
mapping or geometry;
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The world is not Euclidean?

i. manifolds;

ii. embedding theorems;

iii. orthogonality (splitting or partitioning of the space);

iv. metric or distance function (yard stick);

5



Cr function space — and perturbations

i. continuous, differentiable r times with a continuous derivative.

ii. perturbations are of the GRAPH of the mapping.

iii. “open balls” in the Cr Whitney topology — just think “nearby graphs;”

iv. no distinction between “functional” or “parameter” perturbations be-
cause the key identifying object is the graph, not a particular mapping;

v. requires infinitely many parameters.

vi. these are perturbations of the geometric structure of the mapping;
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Attractors, invariant sets and basins of attraction

i. attractor: largest set of the state space that is invariant under the map-
ping and composed of iterations of the mapping (meaning it is locally
attracting) — only exists for dissipative (area-contracting) dynamical
systems;

ii. area-preserving case — there is no “attractor,” just an invariant set;

iii. the set of initial conditions that lead to the same attractor is called the
basin of attraction;
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Stable, center, and unstable manifolds

i. Split the (derivative) manifold into orthogonal, contracting, neutral, and
expanding “parts” relative to a metric (you need a metric to define the
derivative or a rate).

Examples:

i. Pendulum

ii. Anosov diffeomorphisms
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Hyperbolicity and partial hyperbolicity - quantification of

stables, centers and unstables

i. invariant splitting of the “tangent space;”

ii. bounds on expansion, contraction;

iii. can be uniform along the orbit (uniform hyperbolicity);

iv. can be non-uniform along the orbit (non-uniform hyperbolicity);

v. partial versus strict hyperbolicity; centers versus no centers;
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Lyapunov exponents, invariant and SRB measures, and

attractors

i. think about the deformation of a frame and associated “ball” along trajectory;

ii. Lyapunov exponents (LCEs) require a measure; why? “integration” of a volume ele-
ment;

iii. non-dissipative — absolute continuity with respect to Riemannian volume (f is abso-
lutely continuous) or Lebesgue measure (logistic map at (a = 4)); there can only one
measure;

iv. dissipative — absolutely continuous with respect to Riemannian volume on the unstables
only; referred to as SRB measures; there can be many different such measures;

v. every attractor (manifold if non-dissipative) is associated with a measure; a dynamical
systems with multiple (SRB) measures means multiple attractors.

vi. every non-zero Lyapunov exponent is associated with a stable or unstable manifold;

vii. K-S entropy, some complexity measures and be associated with sums of the positive
LCEs;
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Notions of equivalence and associated conjectures

i. Cr, r = 0, r = 1, etc equivalence.

ii. Ergodicity.

iii. Statistical stability.

iv. Persistent chaos of degree−p
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Notions of commonality

i. topological (open-dense) — no notion of probability;

ii. measure theoretic — has a notion of probability but is dependent on the
measure (observer);

iii. robust — property persistent on an open set in the ambient space;
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Structural stability

i. “topological” equivalence (C0 equivalence) — coffee cup versus donut;

ii. f is Cr structurally stable if small perturbations (of the graph) of f and
it’s derivatives up to order r remain C0 equivalent to f .

iii. neutral directions (centers) are not allowed;

Conjecture/theorem

A C1 diffeomorphism is structurally stable if and only if it satisfies axiom A (it
is hyperbolic and has dense periodic points) and satisfies the so called strong
transversality condition.

This has been shown to not be dense in Cr; for r > 1 proof of the theorem is
an open problem;
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Stable ergodicity

i. Ergodicity: indivisibility of the attractor or state space; time average =
space average; is with respect to a measure;

ii. Irrational rotations of the circle; Anosov diffeomorphisms; broken with
“stacked” Anosovs;

iii. key — allows for center manifolds;

Conjecture/theorem

Given f is C2, volume preserving, accessible, and center-bunched, then f is
ergodic.

The point, in the non-dissipative case, we know what is needed to guarantee
ergodicity — the arguments completely fail for the dissipative case.
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Statistical stability

If there exists an attractor that supports a unique SRB measure

everywhere (Lebesgue a.e.) on the attractor, f is statistically

stable if Ck perturbations of f do not change this feature and if

the SRB measures are Ck close;

No one knows how general this is, the notion is only 2 years old.
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Progress?

i. we know the requirements for preserving topological structure;

ii. preservation of topological structure is not dense, but possibly it is robust;

iii. no real characterizations for dissipative dynamical systems;

iv. we know the requirements for preserving ergodicity;

v. no one knows anything about ergodicity in dissipative systems;

vi. lots of geometric intuition with regards geometric constraints on dynamics;

vii. connection to reality missing, characterizations are not useful for most natural systems;

viii. question of persistence of complex behavior — continuity between natural world and
mathematical dynamics — is still unresolved;
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Our approach

i. select a practically minded function space that can: (a) approximate Cr

mappings and their derivatives (thus has infinitely many parameters); (b)
have a measure associated with it (Cr function space does not admit a
measure); (c) be fit to computational and real-world data;

ii. perform a Monte Carlo study on this function space over the parameters
relative to a measure;

iii. characterize the stability of the mappings with respect to perturbations;

vi. characterize geometry and dynamics relative to the imposed measure —
helps to categorize the diversity in nature;
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Schematic of degree-p Persistent Chaos
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p positive LCEs (i.e. the unstable manifolds) persist for:

i. an open neighborhood in parameter space N ⊂ Rk of a set (curve/interval
in parameter space) K ⊂ Rk;

ii. open set in state-space, O ⊂ X, for which the variation across SRB
measures is small;
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Artificial neural networks

Definition 1 A neural network is a Cr mapping γ : Rd → R. The set of feedforward networks
with a single hidden layer, Σ(G), can be written:

Σ(G) ≡ {γ : Rd → R|γ(x) =

n
∑

i=1

βiG(x̃Tωi)} (1)

where x ∈ Rd, is the d−vector of networks inputs, x̃T ≡ (1, xT) (where xT is the transpose of
x), n is the number of hidden units (neurons), β1, . . . , βn ∈ R are the hidden-to-output layer
weights, ω1, . . . , ωn ∈ Rd+1 are the input-to-hidden layer weights, and G : Rd → R is the hidden
layer activation function (or neuron).

xt = β0 +

n
∑

i=1

βi tanh

(

sωi0 + s

d
∑

j=1

ωijxt−j

)

(2)

ωij ∈ N(0, s), βi uniform on [0,1], d = number of inputs, n = number of neurons. We will
denote a neural network as fs,β,ω.

The probability distributions on the weights impose a measure on the parameter space Rk

(k = (n(d+2)+1)) and thus a measure on the space of neural networks we are considering.
Our results are relative to this measure.
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Why time-delay neural networks?

Abstract (manifold) space
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R
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M

Measurement space

Here M is a Cr manifold, F ∈ Cr maps M to itself, and g is an embedding (the Takens
embedding), and F̃ = g(F (g−1)); we are studying mappings that approximate F̃ .

Neural networks have the following convenient properties:

a. they can approximate any Cr mapping on a compact, metrizible set;

b. they admit a measure;

c. they are used for fitting real-world data sets;

d. they are approximate the time-delay mapping Takens and Sauer et. al. proved can
represent a Cr mapping (subject to certain techincal requirements) in Rd;
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The experiment

1. because stable and unstable manifolds are identified with negative and positive Lyapunov
exponents respectively—the geometric structure of the attractor is associated with
LCEs—studying LCE variation with parameter variation helps understand the dynamics
geometrically

2. for our networks the s parameter is particularly important; it controls the variance of
the connectivity matrix and thus the degree of non-linearity of the map; this it is a
unique and important bifurcation parameter;

3. for each network in the ensemble:

i. fix weights

ii. vary s (R1 parameter curve)

iii. fix s, vary weights Rk ball in parameter space

iv. carve out a tube in parameter space — an Rk ball in parameter space along the R1

s-interval.

4. study the variation of the LCEs with respect to these parameter curves.
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Persistent geometric structure — one realization of

persistent chaos
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This is a plot of the LCE variation along an s-interval (s is functioning as the bifurcation
parameter). The main claim in our work is that this picture is persistent to parameter
and functional variation — the remainder of this poster involves precisely quantifying the
persistence of this plot for the space of mappings and the respective measures on that space
of mappings we are employing.
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Persistent properties:

a. lack of periodic windows with respect to (s, β, ω);

b. the LCEs vary continuously with s;

c. the LCEs have a single maximum (up to statistical fluctuations, with respect to s);

d. fs,β,ω has SRB measure(s) that yields a distribution of LCEs whose variance obeys
σ2

χi
< infj=±1(|χi − χj|) at fixed s;

e. as d increases, the length of the s-intervals between LCE zero-crossings decreases as
∼ d−1.92;

f. the maximum number of positive LCEs increases monotonically ∼ d/4 and the attrac-
tor’s Kaplan-Yorke dimension scales as ∼ d/2;
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Persistent geometric mechanisms that lead to persistent

chaos as the dimension of a dynamical system becomes

large.

Conjecture 1 Given fs,β,ω, if k and d are large enough, the prob-

ability with respect to mβ×mω of the set (β, ω) with the properties

(a)-(f) is large and approaches 1 as k, d → ∞.
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Property (a)

Log probability of non-chaotic behavior versus log dimension for 700 cases per d with s fixed
at 3, k-ball with radius 10−3, 100 perturbations per network. The best-fit line is ∼ 1/d2.
These findings are robust for s ∈ (0.1,8) and to perturbation sizes ranging from 10−10 to 0.1.
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Properties (b)-(d)

b. that the LCEs vary continuously with s is implicit upon considering the
variation of the LCEs with s;

c. that the LCEs have a single maximum (up to statistical fluctuations) is
implicit upon considering the variation of the LCEs with s;

d. that fs,β,ω has SRB measure(s) that obeys property (d) can be seen by
noting that for every s value in the plot of the LCE variation with s, a
different initial condition with respect to mI was used for computation.

For s values below the onset of chaos (s < 0.1), this condition does not apply.
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Property (e)
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The left plot shows the mean distance between the first 10 exponent zero
crossings for s > smin (smin is the smallest s value such that the least positive
LCE crosses zero and becomes positive) for networks with dimensions from
d = 16 to d = 128. The right plot shows the scaling of the mean distance
between exponent zero crossings with increasing dimension—it is this feature
that suggests non-catastrophic topological variation with minute parameter
change.
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Property (f)
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The left plot is of the maximum DKY with increasing dimension, d. The right
plot is of the maximum number of positive LCEs (MPLCE) with increasing
dimension, d. Both figures document the claimed scalings MPLCE∼ d/4 and
DKY ∼ d/2. Different scaling exist for different n and d values, however the
increases in MPLCE and DKY are monotonic with increases in n and d and is
given approximately by MPLCE≈ 0.11n0.4d0.8.
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Intuition for geometric variation

i

V V V V

a a a a a

1 2 3 4

1 2 3 4 5

U = {a }

V = V
i

i

An intuitive diagram for chain link sets, V , bifurcation link sets, Vi, and
bifurcation chain sets, U . for an LCE decreasing chain link set V .

i. property (b) (LCEs vary continuously with s);

ii. property (d) (SRB measures are “boundedly” similar);

iii. property (e) distance between LCE zero-crossings decreases;

iv. property (f) DKY increases monotonically with d;
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Successes?

i. the geometric picture for persistence of complex (turbulent like?) dy-
namics;

ii. partial link between abstract dynamics and natural systems — it elevates
some of the discrepancy between what is observed in natural systems
and the toy models in computational dynamics;

iii. provides a language to begin to express and qualify different types of
dynamics geometrically;

iv. this was but an example of what can be done abstractly, similar analysis
can (and in some cases has) been done with applied systems;

v. provides hope for a positive connection between abstract geometry and
it’s affect on practical dynamics;

vi. provides the possibility of identifications of measures on function spaces
with geometrical dynamics;
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Problems, problems

i. lack of language to characterize many situations;

ii. comfort with the dependence on the “measure;”

iii. identification of categories in nature the abstract with categories of dy-
namics and geometry;

iv. some qualitative success, quantitative success is yet lacking in most prac-
tical examples (one partial success of this approach - Buz and Cars);
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