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Roadmap
discuss Poincaré’s vision to qualitatively study nature;
discuss practical difficulties with this vision;

outline a framework to resolve these difficulties — identification of suf-
ficiently general function spaces endowed with measures;

quantify variation in the geometric structure for a function space relative
to a measure;



Poincare’s vision: Study nature via a qualitative
geometric study of the space of all models, in
particular, C" diffeomorphisms (discrete-time maps)
and C" vector fields (ODEsS)



Practical problems with Poincaré’s Vision
e [urbulence versus spatially extended dynamics
e Polynomials and coupled-map lattices

e Broken stability dream

Nature is extremely diverse



Core issue: the partitioning of function spaces

This can be complicated, but in spirit there are intrinsically three ways:

e Abstract dynamics: geometric conditions and assumptions (e.g. hy-
perbolicity) imply a defining property (e.g. ergodicity), then prove the
conditions or assumptions are generic or dense in C"; (here there exists
no measure-theoretic notion, therefore no probabilistic language);

e Experimental science: perform an experiment that is repeatable; the
act of performing an experiment intrinsically imposes a measure which
partitions and focuses what is studied, the repeatability of the experiment
implies a sort of persistence or stability;

e Computational science:

— Traditional modeling using “rationalized models” of particular natural
systems;

— Monte Carlo studies of function spaces using joint and product mea-
sures on parameter space (this is what we do);



The language problem

most abstract dynamics results are with respect to the C" Whitney topol-
ogy — there is no notion of measure or probability, no “picking’ mech-
anism to perform an experiment;

numerical and traditional experiments all require and imply a measure;

often measure-theoretic and topological notions of common yield con-
flicting results;

the notion of prevalence, invented by Hunt, Sauer, Yorke, etc, is intended
to address this problem, but it can be a difficult notion to use;



Toward a pratical solution to Poincare’'s problem
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Measurements and dynamics: discrete-time, time delay
dynamical systems

F-Uu—U

g:U— R4+ g:u—R*L

g im(g)—~U

E(®), EFE), .. EFE* @R

F is the dynamical system, E : U — R (E is a C* map), where E represents
some empirical style measurement of F', and g is the “Takens’'s” map:

g(@) = (E(x1), E(F(x1)), ..., E(F?(2))) (1)



Selection of a function space

Three characteristics:

e practical function space that can be used to model or reconstruct empiri-
cal results (i.e. it must be a discrete-time, time-delay dynamical system);

e the function space must admit a measure;

e the function space must be dense or prevalent in the function spaces used
to yield solutions to ODEs, PDEs, and general natural systems (e.g. C",

Sobolev space, etc);



Artificial neural networks

(@) ={y: R' = Rh(z) = Y BGE"w)} (2)
=1
here x € R? is a d—vector of inputs, #1 = (1,z7), n is the number of hidden units (neurons),
B1,...,8y € R are hidden-to-output layer weights, w1, ...,wy € R4T! are input-to-hidden layer
weights, and G : R? — R is the activation function (or neuron) with G = tanh();

N d
xy = Bo + Z BiG (8%‘0 + s Z wz‘jxtj> (3)
i=1 j=1
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Measure on neural networks

The probability measure on XG: w;; € N(0O,s), B; uniform on [0, 1], x; uniform
on [—1:1];

e cach neural network can be identified by a point in the parameter space, RF:

e imposing a measure on the parameter space imposes a measure on the space of neural
networks 3> (tanh);

e mg X my X ms X my form a product measure on RFE x U, this means the parameter are all
uncorrelated,;

e training the an ensemble of neural networks will impose a joint probability distribution
on RF, thus correlating the parameters;

e many imposed measures carve out manifolds directly in the parameter space, equiva-
lence analysis can then be done in the space of measures (using Amari’'s information
geometry);
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Neural network approximation characteristics

Neural networks form a very diverse function space; they can approximate
any C" mapping on compacta, they are dense in many Sobolev spaces used
to solve ODEs and PDEs: neural networks are universal approximators;
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Lyapunov exponents: a geometric diagnostic

measurement or quantification of global expansion and contraction along
an orbit;

correspondence between positive (negative) Lyapunov exponents and
global unstable (stable) manifolds;

defines the global geometric structure of the attractor;
independent of local coordinates or norm;

calculated relative to a measure (physical, natural, SRB, Lebesgue, etc);
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Stratification of the parameter space along a one dimensional
interval: the s-parameter stratification

e existence of four ‘regions”
— Region I: fixed point to first bifurcation
— Region II: routes to chaos

— Region 1V: bifurcation chains (possibly turbulent-like, self-similar dy-
namics)

— Region V: spatially-extended dynamics with intermittency, a transition
to finite state dynamics
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Prototypical picture of a single, chaotic network, given the
measure imposed on the weights

LCE Spectrum
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Bifurcation chains structure

U={a}
v=UV

%\?2 % a 3
Vl \\ X\

V, = bifurcation link sets;

V = chain link sets;

U = bifurcation chain sets;
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Two micro-geometric conjectures

Conjecture 1 (Existence of bifurcation chains) Assume f, 3, with a suf-
ficiently high number of dimensions, d. There exists at least one bifurcation
chain subset U.
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Conjecture 2 (Characterization of geometric variation on the bifurca-
tion chain subset) Assume f; 3, with a sufficiently high number of dimen-

sions, d, and a bifurcation chain set U as per conjecture (1). The two following
(equivalent) statements hold:

i. In the infinite-dimensional limit, the cardinality of U will go to infinity, and
the length max|a;+1 — a;| for all i will tend to zero on a one dimensional

interval in parameter space. In other words, the bifurcation chain set U
will be a—dense in its closure, U.

ii. In the asymptotic limit of high dimension, for all s € U, and for all f at s,
an arbitrarily small perturbation és of s will produce a topological change.
The topological change will correspond to a different number of global
Sstable and unstable manifolds for f at s compared to f at s+ 9.

It means, as d — oo, there will be an s interval for such the length of the
bifurcation chain sets shrinks, this implies at arbitrarily small s-perturbations
will produce topological change;

It is sort of “ugly” and complicated,
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Necessary properties for the micro-geometric arguments

. the following condition must be reasonably true: given the map f; 3., if

the parameter s € R! is varied continuously, then the Lyapunov exponents
vary continuously;

. the number of positive LCESs increases with dimension;

iii. the length of the U;'s must decrease in a relatively uniform way as the

dimension is increased;

. the LCEs that are positive are unimodal;
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“Observational” properties on a open set in parameter space
(a) lack of periodic windows with respect to (s,3,w);
(b) LCEs vary continuously with s;
(c) they have a single maximum (up to statistical fluctuations);

(d) fspw has SRB measure(s) that yields a distribution of LCEs whose variance obeys
oz < infj=1(]xi — x;1) at fixed s;

(e) as d increases, the length of the s-intervals, denoted U;, between LCE zero-crossings
decreases as ~ d—192:

(f) the maximum number of positive LCEs increases monotonically as d/4 and the attrac-
tor's Kaplan-Yorke dimension scales as d/2;
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Persistence chaos conjecture

Conjecture 3 (Persistent chaos in high dimensions) Given f 3., if k and
d are large enough, the probability with respect to mg x m,, of the set (3,w)
with the properties (a)-(f) is large and approaches 1 as k,d — oo.
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Quantification of persistence chaos

A U
RX =3

Definition 1 (Degdree-p Persistent Chaos) Assumea map fc: U — U (U C

R?) that depends on a parameter ¢ € R*. The map fe has chaos of degree-p

on an open set O C U that is persistent for ¢ € A C R* if 3 a neighborhood
N of A such thatV £& € N, the map f¢ retains at least p > 1 positive LCEs
Lebesgue a.e. in O.

Y
Y
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Macro-geometric variation: counting the number of positive
Lyapunov exponents versus parameter variation, M(s)
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Macro-geometrical variation

M
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What is gained?
e NO need for continuity of LCEs with respect to parameter variation;

e completely ignore the variation in the LCEs with parameter variation with
the exception of sign changes;

e the characterization of the geometry is much more simple and based on
much less restrictive assumptions with nearly no loss of information;
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Macro-geometric quantification

For a particular neural network:

d

MT(s) = Z v(xi(s))

=1
where v(x;(s)) = 1 if x; > 0, and 0 otherwise;

For an ensemble, [M/s«(s)]icr:

M(s) = B[M"(s)]ier
Standard deviation: [M/s«(s)]icr as oar.
Curve fit to M(s): M(s)

(Tildes denote rescaled coordinates)

(4)

(5)
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Game plan for macro-geometric analysis

e find a universal scaling for M(s) independent of n, d;

e fit the rescaled curve (using a rational function);

e blow up the rescaled curve to study the geometric variation
as n and d — oo;
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n and d peak rescaling

e M(s) scaling in n and d:

Mmaa:(s) — 0.11n0.37d0.84

e s is rescaled to 5 = sv/d

(6)
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M in normalized coordinates

Rescaling of M(s) (and M(s))

120
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Considering the various plots of M (s), the fitting function M(s)
must satisfy the following properties at soc, S, aNd Sip:

. 0 < soc < SM,p. < Sip,
ii. Soc such that M(se) = 0 with #%(s,.) > 0;

iii. spg. such that M(sy.. ) = max(M(s)) for all s > 0O;

iv. sip such that £ = 0;

Less precisely, M needs to have a zero at s,. and be unimodal for s > s..; it
is not an oversight that we did not specify another s > s;, value such that M
IS zero, this is because numerical analysis of neural networks for very large s
values is a disaster.
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M (s) fitting

Rational function representation of M(s):

~ § - goc
M(3) = 7
&) = T as + ()
Mean geometric variation:
~ dM 1 (5 — s5)(a15 + 2a03)
F= S 157 2029, (8)
ds ao + a1s + azs ao + a1s + ass
The fit produced ag = —0.02, a1 = 0.53, and a» = 0.0732, vielding:
5 5-0.53
Mn: - — — 9
32(8) = 25057 0.5325 1 0.07329 ()
= 1 1 (5—0.016)(1.38 + (2)(0.1875)§))
"=32""0.02 + 0.5325 + 0.073232 (—0.02 + 0.5325 + 0.073232)2
(10)
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M in normalized coordinates
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Intuition: “Whitney-like" picture of the ensemble

10

M (s) with the standard deviation of M (s), Mu..(s) and Mmnin(s) for ensembles
of networks with n =d = 128 and n =d = 16.
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M (s) argument outline
e show |U| increases monotonically with d;
e show the mean geometric variation (on U) increases with d;

e show the mean length of V.'s decreases on U, this defines the type of
geometric variation — the bifurcation chains structure;
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Asymptotic length of (crudely defined) bifurcation chains
region, |Ui| = a1 — ai|
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e mean length of the bifurcation chain subset |Ug| = |a1 — ax| (a1 = soc and ap = si) with

increasing dimension for n = 32 and n = d; as the dimension is increases, the mean and
standard deviation of |Uy| for s € [0.1 : 10] tend toward the full length of the interval;

e 35, ~4.89, it is likely that a more accurate cutoff would be =~ 10;

e 0 < s, <1ands;>1 where both scale like d'/2, thus |Uy| will increase like |si, — soc|V/d
(4.36\/3 in particular), thus the length of the bifurcation chains region increases;
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Left plot: both A and %4 with a vertical line drawn at s,

Right plot:% in s coordinates for d = 100 and d = 1000; the d = 1000 (versus

the d = 100) graph is transformed up by 0.11d°®* in the y-coordinate while

it is transformed down by d=1/2 in the x-coordinate, therefore dd—]‘j increases

monotonically with d on V = (8o, sip);
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Mean length of the chain link sets V;
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Left plot:|&1™ Y| versus s for d = 100 and d = 1000; right plot:\%_l\ simultaneously with
M(s) in thé rescaled coordinates

Vil = |sxi.1 — Sx| NOt uniform as d increases for all s; approximate these lengths by taking
oM € N where ds is defined by increments of éd M yielding
0s
Vil = 5o (11)

As d — oo in regions of s where small changes in s lead to large changes in M, approximate
the length of |V4| with:

(12)

ds
|Vi| =
dM
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Estimation of p

Estimate for p is based on M:

dM
paa(s,05) = M(s) = |- —(5)[ds (13)
Conservative estimate of p is provided by

Pmin(s, 65) = min[M'(s)]er (14)

A more moderated empirical estimate of p based on the mean and standard
deviation of M

Po(s,0s) = M(sn,.,) — or(5n,,) (15)
where
S My, = arg migl M (s) (16)
sE
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Comparing p-estimates
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New definition of bifurcation chains region

Definition 2 (Bifurcation chains region) Assume the mapping fs; 3. With
a chain link set (V). The mapping fs s, is said to have a bifurcation chains
region if there exists an s-interval, denoted Vo, with positive Lebesgue mea-

sure such that:

a. the probability (on Vpc with respect to mgxmy, xXms) that M > O increases
to unity as d and n approach infinity for s € Vo,

b. the mean of the length of all the bifurcation link sets (V},) in Vo decreases
monotonically as as d and n approach infinity;

Conservative estimate: a1 = soc, ar = Sip;
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M conjectures

Conjecture 4 (Persistence of M) Assume the mapping fs.s, M(s) as de-
fined in Eq. b5, M(s) that satisfied properties (i)-(iv). As n and d diverge to
infinity, M will converge to M in rescaled coordinates and thus satisfy prop-
erties (i)-(iv) Lebesgue a.e. on s where M > 0. Moreover, 3+ will decrease
monotonically with increases in d.

Conjecture 5 (Existence of bifurcation chains) Assume the mapping fs. s,M(s)
as defined in Eq. 5 and M(s) that satisfied properties (i)-(iv). Asn and d di-
verge to infinity the probability that there will exist an s-interval with positive

Lebesgue measure for fz, s that corresponds to a bifurcation chains region
approaches unity.
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What is gained, what is lost
Gained:

e precise, quantifiable definition of the bifurcation chains interval;

e specification of the requirements for the bifurcation chains structure to
persist; in particular the conditions for persistence of bifurcation chains
are significantly weakened compared with previous results;

Lost:
e all control over the LCEs away from zero;
e NnoO statement about open balls in parameter space;

e oObservations less precisely characterized (but with similar consequences);
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Relationship to other conjectures

Bifurcation chains:

e weakening and generalization of the needed hypothesis of the micro-
geometric analysis with the same overall conclusions;

Persistent chaos:
e M-conjecture implies property (a);
e M-conjecture says nothing about properties (b)-(d);
e M-conjecture quantifies property (e) (length of U,’'s);

e M-conjecture is constructed using property (f);
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Summary

e identified a construction where a function space can be studied relative
to a measure;

e defined a non-restrictive tool (M(s)) for characterizing geometric varia-
tion for an ensemble of mappings;

e quantified a geometric structure (bifurcation chains) that is existent in
high-dimensional dynamical systems and persists on an interval of pa-
rameter space;

Conclusion: for the construction we utilize (i.e. relative to the measure we
impose), chaos becomes more persistent as the number of degrees of freedom
are increased; this is due to the increasing number of unstable manifolds whose
transition to stability is characterized by M(s);

Collaborators: J. P. Crutchfield (UC-Davis CSE), J. C. Sprott (UW-Madison
Physics)
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