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1. Introduction. The purpose of this work is to establish useful lower
and upper estimates for the spectral radius of certain classes of positive matrices
which apart from their independent interest are pertinent to the study of a
number of mathematical models of population genetics and also apply to the
solution of some cases of inverse eigenvalue problems.

In the stability analysis of certain equilibria states of physical and biological
systems, it is relevant to determine useful conditions indicating when®th
largest eigenvalue p for a matrix of the type MD (composed from a general
non-negative and positive diagonal matrix) exceeds or is smaller than 1. In
the physical setting, M = ||m,;|| is commonly an n X n matrix of non-negative
elements corresponding to a Green’s function for a vibrating coupled mechanical
system of » mass points, while D is a diagonal matrix with positive diagonal
entries {d, ,d,, -+, d,} such that d;, ,7 = 1, 2, .- , n, relates to the mass
at position <.

In the genetics context, a population is distributed in n demes (habitats,
{®,, ®, .-+, ®,}) subject to local natural selection forces and inter-deme
migration pressures. The changes in the population composition of a trait
expressed by two possible types (genes) labeled A and a are observed over

Received March 13, 1975. The first author supported in part by NSF-MPS72-05055-A02;
second author supported in part by NSF-MPS71-02905-A03.

459



460 S. FRIEDLAND AND S. KARLIN

successive generations. The transformati

on of gene fre
the local selection forces in deme @ - T hecountable to

i , 1s characterized by a non linear relation
¢ = 1.

such th:‘it if ¢ is the A-frequency in @, at the start of a generation then after
the Z?,Ctlor.l of. mating and natural selection the resulting A-frequency prior
to mlgratlon is ¢ Generally f.(¢) defined for 0 < ¢ < 1 is continuously dif-
ferentiable and monotone increasing obeying the b_ound;ry conditions

(1.1) £0) =0, 7@ =1

mgnifyiflg that selection operates to maintain a pure population composition
(’ljh.us, in this formulation mutation events are ignored, i.e., new mutant formé
arising in the time frame under consideration cannot bé est:;blished )

The dlsp?rsal (= migration) pattern is deseribed by the matrix M = ||m|
where m,; is the proportion of the population in @, immigrating from dexlrile
®; . Thus, from the interpretation, M is a stochastic matrix. Let z; denote
the proportion of type A in deme ¢ at the start of a generation and z; the
frequency for the next generation. The global transformation equz;tions

Conlle(:tlllg X = (1‘1 cee Z, ) bO X = (x LR oV wWo cessive ge!lel a-
] y £Ln ( 1) ) Z, ) er t successl
thIlS lakes Lhe fOI‘m

1.2) z = );1 mafe(@y), 1=1,2, ... ) M.

If th.e migratif)n and selection forces operate in reverse order then the trans-
formation equations become

(13) z,! = f’(,‘z; m‘.kxk)’ 1 = 1, 2, - , n.

We abl?reviate the transformation (1.2) by x’ = Tx. A tacit assumption
un&ierlymg the models (1.2) and (1.3) is that the deme sizes are large and
¥ approximately of equal magnitude. (For variations and other facets of the
gene;al .model concerned with population subdivision and selection migration
mtera'ctlon, we refer to Karlin [9)].)
Owing to (1.1) we find that the frequency states 0 = ©,0, ---, 0) and
:- - 1, e 1) are 1nyariant points of T' corresponding to fixation of the popula-
10n consisting exclusively of the a-type and A-type, respectively. The gradient
matrix of 7" at 0 (that is the local linear approximation valid about 0) reduces to

(1.4) T00) = MD
where

D = diag (1,'(0), £,/(0), - - , £./(0)).

Manifestly, 1,(0) > 0 since fi is increasing.

b : We will sti
strict inequality (reflecting the u N

sual phenomenon for selection forces, so that

R s s R TR IO

it oo 4
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in the previous notation d;, = f,/(0),7 = 1,2, --- , n. Because T is a monotone
transformation (as each f,(x) is monotone), the local instability of the equilibrium
state 0 s assured if the spectral radius

(1.5) p(MD) = (the spectral radius of M D) exceeds 1.

In the presence of (1.5) for any x close to but distinct from 0 the iterates T*x
will depart from the neighborhood of 0. The same considerations show that
0 is locally stable if p(M D) < 1.

The delineation of natural conditions satisfied by the selection coefficients
(covered in D) and their coupling to the migration rates embodied in A7 that
imply p(MD) > 1 are of much interest. In fact where the spectral radius
exceeds 1, then the A-type is “protected”, i.e., this type is maintained in the
population and can Tiever approach extinction.

The gradient matrix at 0 for the model (1.3) is DM. In view of the familiar
property that the ecigenvalues of DM and MD coincide and are identical to
the eigenvalues of D*MD?, all criteria for “protection’” of the A-type is the
same for the models (1.2) and (1.3). Thus the operational order of the selection
and migration forces does not influence the occurrence of “A-protection’ or
A extinction.” (vee Karlin [9] for other mathematical developments and
extensive discussions of these models.)

The classical inverse eigenvalue problems have the following formulation.
Let L be an ordinary differential operator on R = real line. Find a “potential”
¢g(z) such that the operator Ki = (Lu)(z) + g(x)u(z) coupled with appropriate
boundary conditions possesses a prescribed spectrum. Another version of
the problem states: Determine a ‘‘density” p(z) such that the operator
Ku = [Lu(x)/p(x)] with associated boundary conditions involves a prescribed.
spectrum. A voluminous literature exists on this subject, e.g., a good survey
is contained in Chap. 1 of Hald [5]. Some discrete matrix analogs of these
problems take the following form.

———
(i) Let an n X n matrix M be given. Determine a diagonal matrix D with
the property that the spectrum of A7 4 D coincides with a prescribed set
A = {\, X\, -+, N\}. This problem is henceforth referred to as the inverse
additive eigenvalue problem (I.A.E.P.). o

(i) If M 4+ D is replaced by MD then we are confronted with the inverse
multiplicative eigenvalue problem (I.M.E.DP.). /
For some references and elaborations on certain aspects of these problems, see
Friedland [3].

It is known that both inverse matrix problems generally do not admit unique
solutions and if the allowable D matrices are required, say, to be positive definite
~(or rcal) then cases of no solution arise. In the complex domain (i.e., where
D is permitted to be a diagonal complex matrix) generally n! solutions are
available. We will construct in Section 6 a class of special spectra A related
to M for which problems (i) and (ii) admit a unique real solution.
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With the motivation well rooted, we next highlight some of the principal
results of this paper.

Let M = ||m;||," be a non-negative matrix of order n. Denote by p(M)
the spectral radius of 3. The classical Perron-Frobenius theorem tells us
that p(M )_ is an eigenvalue of M with the property that there exist non-trivial
non-negative vectorsu = (u,, -+ ,%,) andv = (v, , --- , v,) satisfying

(1.6) Mu = p(M)u, VM = p(M)v.

Moreover, if .M is also irreducible then p(M) is a positive simple eigenvalue
and t‘he associated eigenvectors u and v display only positive components.
With u and v prescribed positive vectors and normalized to satisfy

1.7 i:uiui =1

i=1

we denote by IM(u, v) the set of all non-negative mairices fulfilling (1.6), with
PO =L ——— |

Obviously 917(u, v) is a convex polyhedral set.

In the special caseu = v = e = (1/v/n), (1,1, --- , 1), (We shall employ
later the same notation e = (1, 1, --- , 1) without the scalar factor 1/ Vn.
There should arise no confusion of the meaning of e from the context at hand.)
then ?TF(e, e) comprises precisely the set of all stochastic matrices. It is
a familiar fact (commonly referred to as the Birkhoff Theorem) that the permuta-

_ tion matrices are the extreme points of I (e, e).
The theorem now stated and proved in Section 3 is fundamental to a number
_‘/owle applications '

THEOREM 3.1. . Let M be an n X n irreducible non-negative matriz in M(u, v).
Then for any positive definite diagonal matrix D = diag (d, , - - , d,), we have

(1.8) WDM) = o(MD) > ] d*-

i=1

If p(M) is not normalized (equal to 1) then (1.8) s replaced by

(1.8 o(DM) > (II 4 )a(aD).

A basic inequality underlyr ) b
riying (18) s that ’07 any pOS’l,t'lUG vector x > 0 and

(1.9 11 [M] > 1.

i=] Xi

Eh'qualzty holds_ in. (1.9) if x = au for any a« > 0. Where M ts strictly positive
then the equa.lzty in (1.9) entails x = ou for some a > 0.
A mu.ch simpler case of Theorem 3.1 concerns 9 (e, €) = the class of doubly
stochastic matrices. W
VU
“us/q =

o - o Wi b

R positive definite matrices and K 1is_positive semi-definite.
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TusoreM 2.1. Let M € 9(e, e) and D a positive definite diagonal matrix.

Then

n 1/n .
(1.10) po(DM) > (H d.») C
i=1
If M s positive the inequality is sharp unless D = ol for some a > 0. Equality

holds in (1.10) for the permutation matriz

(1.11)

The proof of Theorem 2.1 set forth in Section 2 is elementary but the facts

(1.8) and (1.9) are markedly deeper.
The inequality (1.8) can be improved. by restricting further the class of

matrices.

P = ||mill, Mmiia =1, i=12--,n—1; m,=1

THEOREM 4.1. :
(i) Let M € 9M(u, v) be of the form M = E,KE, where E, and E, are diagonal
Let D be as in

Theorem 3.1. Then

(1.12) p(DM) > D uw; di.
i=1

Moreover, for any x > 0 and M irreducible, we have

s X __1___
(1.13) 2w (Mx); < o)

i=1
If M € M(u, v) is the specific rank one matriz, M = u'v = |luw,|| then equality
occurs n (1.12).

Note for this latter example that
M = E,KE, where E, = diag (Uy Uz y * " s Un),

(114) Ez = dlag (v, yUg y " ,v"), and K = Hk,‘,’“,

k;; =1 forall ¢,j.

The arithmetic geometric mean inequality implies

> uws di > 1 d

i=1 1=1
((1.7) is needed here) which shows that (1.12) is usually a genuine sharpening
of (1.8).

Another class of matrices to which (1.12) applies is described in Theorem 4.2
of Section 4. There is evidence for the conjecture that where M € 9M(u, V)
is suitably totally positive, then (1.12) is also correct. On the other hand
the incquality (1.12) cannot always apply for matrices of class 9M(u, v) as
revealed by the example (1.11). ‘
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§ection 5 is devoted to some extensions of (1.8) and (1.12). If M is appro-
priately totally positive, then by passing to the higher order compounds of M
we extract estimates for the product of the largest k eigenvalues of /D, that is
for the quantity J[].-.* N\.(AID) where \,(MD) > N\(MD) > --- > M\(MD)
are the eigenvalues. ’

A variety of criteria emanating from (1.8) and (1.12) discerning instability
of. the fixed point 0 of the transformation (1.2) are discussed in Section 5.
Finally, the evaluation of p(3/D) for some special important examples are
set, forth.

In Section 6 we apply the results of the earlier sections especially Theorems
3.1 apd 4.1 to the study of certain matrix inverse eigenvalue problems. We
describe here one of our main findings. Prior to doing this we prepare some
background.

Le.t A be non-negative and irreducible. It can be shown that there exists
a unique (up to a constant factor) positive definite diagonal matrix C such that

(1.15) CAC™'e = eCAC™Y, e=(,--+,1) (Lemma 6.1).

With (1.15) established, we readily produce a unique real matrix C, engendering
(1.16) (CAC™ + Cy)e = e(CAC™ + C,) = e.

lgox EwIei )state our main result on the inverse additive eigenvalue problem

THEOREM 6.1. Let A be non-negative and trreducible. Let C = diag(c,, - -+, ¢,)
and C, be determined conforming to (1.15) and (1.16), respectively. Denote by
A* = {N*, A%, oo, N} the spectrum of A + Cy . Let A = {\, -+ , N}
be given and suppose the I.A.E.P. is solvable with respect lo A, t.e., there exists
at least one real diagonal D such that A + D has spectrum A. Then A satisfies

(= DN 2 3 e+ DN
$.i=1 i i=2
iy

(1.17)

Equality occurs in (1.17) only for the prescription A*(a) = {\* 4+ a, \,* +

a, -+, N* 4 o} for any real . Where A = A*(e) then the I.A.E.P. is uniquely
solvable.

A'version of Theorem 6.1 for the I.M.E.P. is the content of Theorem 6.2
and its corollary.
The final Section 7 is devoted to establishing a number of extensions of the

prev10us.matrix results to certain <ntegral operator analogs. A convolution
example is studied in detail.

2. In.equalities for the spectral radius for M D where M is doubly stochastic
and D is positive diagonal.

We adhere to the notation of Section 1.

{
|
]
}
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Throughout this section we focus on the collection of matrices (e, e),
e = (1,1, --,1), (see after (1.7)), consisting of all doubly stochastic matrices.
Recall that 9n(e, e) is a convex set spanned by the extreme points, the latter
identified as all permutation matrices.

The next lemma is relevant to a number of contexts.

Levma 2.1, Let M be doubly stochastic. Then
(1)
(Mx);
2.1) min |~ > 1 (the infimum extended over

x>0 fI T all positive vectors X).

i=1
Equality is always achieved independent of x > 0 provided M s a permutation
matriz or for all M & (e, e) if x = ae, (@ > 0). If M 1is posilive, that 1s,
all entries of M are positive, then the equality in (2.1) persists only if X = ae.

(i)
. < 1x).
(2.2) min Z [@—X)—] >n

z>0 i=1 T
with equality attained for x = ae or M = the identity matrix. If M 1s irreducible

non negative then equality holds only if x = ae, a > 0.

Remark 2.1. The function ¢(& , &2, - -  E) = I8, G > 0) is Schur-
concave and accordingly (2.1) ensures by an elementary application of the
theory of “majorization,” (Hardy—Little\vood—PGlya (6], Chaps. 1 and 2).
To maintain this writing self contained, we provide a direct proof.

Proof.
(i) Since the log function is strictly concave and M is doubly stochastic we find

(2.3) ”Z log (E m.~,~x,-> > > Y miloga;
i=1 i=1 i=1 j=1

- 3 (og (% me) = 3 log z,

i=1 i=1

and the resulting inequality is clearly synonomous with (2.1). The circum-

stances of equality can readily be discerned.

(i) This is an immediate consequence of the arithmetic-geometric mean
inequality imposed on the fact of (2.1) plus verification of the cases of
equality. Indeed, we have

1 i (Mz), > (I"I (]‘i_’:j)‘_>1/n - 4

(2.4) o Ty 11

and equality prevails throughout for x = oe, a positive. Equality in (2:2)
implies (M/x); = z;,4=1,-++,n Aslis irreducible, the Perron-Frobenius
theorem tells us that x = «e.
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LEmMMA 2.2, Let A bea non-negative matriz satisfying

(2.5) Ae = eA (ie., the respective row and column sums agree).
Then
(2.6) mi ~ (4x), -3 .

x>l(I)) ; Z; -'.;'Z-l .

Equality is achieved for x = ae. Where A is irreducible nonnegative then equality {

holds only for x = ae.

Prfmf. The- condition (2.5) entails the existence of a positive diagonal
matrix £ = d{ag(e, y €, v+, ¢e)such that A + E = yM where ¥ > 0and
M € (e, e) is doubly stochastic. Then for x >0

@.7) yla_, S0 _ 5,

i=] t-] i=1

Since the minimum on the right is always achieved for x = oe independent
of M & (e, e), the conclusion (2.6) is valid.
An easy consequence of Lemma 2.1 is the result (1.10), now restated.

THE?REM 2.1. LetM & on(e, e) and D bea positive definite diagonal matriz,
D = diag(d, ,d,, ---,d,). Then

n 1/n
2.8 WD) = o4D) > (T a.)
i=]
(recall p(A) denotes the spectral radius of A). If M is positive then the tnequality

zi i}it)zrp unless D = al for a > 0. Equality holds for the permutation matriz

Pv;oqf. *Since the spectrum of DM and MD each coincides with the spectrum
of D’MD? we have in particular p(DM) = p(MD).

Assume first that M is positive (all entries are positive). The Perron-Frobenius
theorem guarantees the existence of some x > 0 satisfying '

(2.9) p(DM)x = DMx.

Multiplying components produces

(2.10) D) I a7 = JT #2: 5
i=1 i=1 Xy

glsleredt?e f;r}al inequality results on the basis of (2.1) and thereby (2.8) is

oved for positive. By continuity, we infer th .8) i
o S o y er that (2.8) is correct for all
. Fo; the special permutation matrix P = [[poill with p,, = 1, p,iyy = 1,
t=1"---,n —1, a direct calculation yields p(PD) = (ﬁ * d,)”’:.‘+ i

= - y attesting

to the fact that (2.8) cannot be sharpened without further res;ricting M(e, e).

The proof of Theorem 2.1 is complete. ’
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A modified version of the inequality (2.8) can be extended to the class of
all positive matrices as follows. It is known (e.g., see Sinkhorn [17]) that if
A is positive (or non-negative and fully indecomposable, concerning the latter
concept see Brualdi, Parter and Schneider [2]) and Sinkhorn and Knopp [18])
then there exists unique (up to scalar multiples) positive diagonal matrices
E, = diag(e,, -+, ¢,) and E, = diag(e, , - -+ , e,) such that

(2.11) E,AE, = M is doubly stochastic.

Actually, a practical algorithm is available for constructing E, and E, where
A is positive. In fact, normalize alternately the rows and columns to sum
to 1. DMore specifically, determine a diagonal positive matrix C, to satisfy
ed,C, = e and subsequently a diagonal positive B, , B,A,e = e where 4, =
AC,,A, =B, \Ad,.,,n=1,2,---, (4, = A). The convergence of

HC.'_)EZ, HBi_’Ely

i=1 i=1
leading to (2.11) is proved in Sinkhorn [17].

CoroLLARY 2.1. Let A be positive (or non-negative and fully tndecomposable)
and let E, , E, be determined as in (2.11).

Then

n d‘ 1/n
p(DA) 2 [II —‘] :
i=1 €i€;

If A is positive and symmetric then a known procedure for calculating E
converting EAE = doubly stochastic, is by solving the following variational
problem.

Determine a positive vectore = (e, , €, , - - - , €,) Which minimizes g(e) = (e, Ae)

subject to the constraint [[..," &; = 1. '
3. Developments pertaining to Theorem 3.1 and related critical point theory.
The inequality embodied in (1.8) is more far reaching and deeper than the
version in the doubly stochastic case covered in Theorem 2.1. The elementary
technique of Lemma 2.1 does not carry over.

Let A be positive (it suffices to have A non-negative and irreducible) and

suppose
3.1) Au = p(A)u, vA = p(A)v

and suppose u and v normalized to satisfy

(3.2) tuivi = 1.

i=1

The main objective of this section is to prove
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B3 10 =@, -, 5) = 3 un, log (‘Ax’i) >0 for x>0,

im]

The analysis is done through a series of lemmas,

ELEll\.idMA 3.1. Let A be an open bounded connected domain contained in R*
(Bucli 2ean n-space) and suppose f(y) defined fory € A s real valued of continuity
class C°(4). Assume thatlim... {(y,) = + o whenever Y tends to dA, the boundar

of A._ Assunze jurthern(t)ore that for every critical point y° of f in A’, the Hessiag
matriz ||f; (), (;(0°) = (6%f/9y.0y;1(y°) s strictly positive definite. Then

the7 (4 e.’l‘isls a u)lique C1 itical Oinl y 1:", A and (Z(Thieves over [& an (lbs()l‘ute mmimum
p * f . .
at y .

. lffemar'k 3.1. The content of this lemma is undoubtedly known and would
ollow directly from the Morse ecritical point inequalities (the second of the
series suffices for our purposes) except for the complication that A is open.

mce ’ 18 lllﬁlllte on aA the be 1 near lle bol,lndaly Sll()uld be alld llldeed
S Ilav or t

.P.roof. ’l;he stipul.ations of the lemma assure the existence of an absolute
;r}llnilmixfn y* e a wh_xc‘h, of course, is a critical point of f. We need to establish
at y* is the only critical point. Consider the differential equation system

dy.(t) 9
G4 PG, e, i=12on

with the initial conditions

(3.5) y:(0) =y’  y° € A
Direct evaluation produces

df( t n 2

R EA0)
:m;i g'orlilnlzl:: eiqyatlon.v've mfef' that f(y(t)) strictly decreases as ¢ increases,
e c;-it,ica] y 1s a crl.tlcal po'm?. We claim that y(¢) converges as { — o
nean p.omt: Let-y be a limit point of y(¢) (e, § = lim,.. y(¢)) which
" f(y.) Sinzeexxsts In A since f is unbounded on 9A., Certainly, f(y(t)) decreases
e E’f(y)((t:-))zco_nverges to_/ \72) .and f(y(f)) is decreasing. The presumption
for' )i é/e )1 h_vaf > 0 implies the mnequality (df/dt)(y(t,)) < — a/2
avert agbs ng_l'lcg which compels therefore f#) = —, an absurdity. To
i) points) isu;‘ (-lr l\trl cv;;e pr:)liunstt h'z;‘\lrle }tlhat ti;l (a. milnclusion applying to all such

' ac . e hypothesis that ||f;(¥)|[ i iti i

le.ntalls that ¥ is locally_ stable with respect to the ﬂltl)<v ((YS).Ii)l.S pIOtSltPcl)ﬁzve:ﬁtrllllt:
m(lz,_.‘, y(t) = ¥ as previously claimed. ’
thie c;:)llsll:liietxi'or:lc;w (tél)e (iomam of .attraction A(¥) to § consisting of all y fulfilling
clenr thns, A )y = y and lim,. )t(t) = §. Since § is locally stable it is
¥) is open. Suppose A(¥) is properly contained in A, then (because
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A is connected and open) we infer the existence of z in A, located on the boundary
of A(§) and the previous analysis shows that lim,.. z(tf) = Z for some critical
point Z # §. But A(Z) is an open domain for the same reason that A(§) is
open, and a contradiction emerges as z lies on dA(§). To avoid this contradic-
tion, we necessarily have A(§) = A and a unique critical point exists. The
proof of Lemma 3.1 is complete.

We now recall the following concept.

DEFINITION 31, A matric A = ||a;||\" is said to be a (strict) M-matrix
(after Minkowski who introduced the pertinent classification) if a;; < 0 (<0)
for all i # j and there exists a positive vector xX° > 0 satisfying

(3.6) Ax° > 0.

Such matrices occur widely in applications to econometric theory and in certain
contexts of physical systems, e.g., see KKarlin [10, chap. 8].

We review for easy reference some of the main characterizations and properties
of M-matrices. A (strict) M-matrix can be represented in the form

3.7 A = rI — B where B is (strictly positive) nonnegative and r > p(B).

Appealing to the Frobenius theory of positive matrices we find that if B is
irreducible nonnegative then A possesses a simple positive eigenvalue A\, and
all other eigenvalues satisfy

(3.8) ®Re N, (4) > A, 1=2,3, - ,mn.

If A is a symmetric strict A/-matrix then (3.6) in conjunction with (3.8)
imply that A s positive sem: definite with the eigenvalue A\, having simple
multiplicity.

We are now prepared for the next lemma which highlights a class of functions
f fulfilling the conditions of Lemma 3.1. _

LEMMA 32 Let A be an open connected homogeneous domain in R." (i.e.,
A C aA for any a > 0). Assume that f is @ homogeneous function of degree O
defined on A of continuity class C'**'(A). Consider f(y) restricted to the bounded
region S = A M Z where

z={yly€ RS 2y = 1}.

Suppose further that f(y) — + o whenever y & S tends to the boundary 48S. If

3’f
Y. 9y,

3.9) y) <0 for 2 j andally € S,

then f(y) on S admits a unique critical point located at the absolute minimum of f.

Proof. Since f is homogencous of degree 0, it satisfies the Euler equation

(3.10) 2‘1 Y % (y) = 0.
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Differentiating (3.10) in y, prduces Y..." y; 8*f/dy.0y,(y) + (3f/ y,)(y) =0

7 =12 ---,nand at a critical point y° these relations reduce to
< 2
(3.11) YF =0 where F = F°) = ||—24_ 9|
o) 39: 01, o)

The assumption (3.9) in conjunction with (3.11) establish that F is a strict

M‘-magrix (Definition 3.1). By virtue of (3.8) we know that the eigenvalues
of F(y°) can be arranged in the order '

0‘=>\1<>\2S"'__<_)\,.

whex:e the uniq\{e eigenvector (apart from scalar multiples) for \, = 0 is y°.
We infer acco'rd1.11g1y that the second variation (the Hessian) of f at y° with
respect to variations in S is positive definite. Thus, f confined to S satisfies

the rec!uirements of Lemma 3.1. Applying the conclusion of that lemma
the desired result is achieved. '

Proof of (3.3). The function

3.12) &) = 2':.: u; log (@)
defined on ’
(3.13) E={x=(zl,---,:t,.)>0,|_x[=Ez.~=1}

is plainly homogeneous of degree 0. Also f (x)' tends to « if at least one com-
ponent of x & 2 goes to zero. Clearly f € C®( 3). '
A direct calculation produces

3’f S~ U0 O .
o 0m ~ (Ax) for 1=k

which .is certainly negative since 4 is a positive matrix.
Stralghtfor.ward .c(?mputation relying on the relations (3.1) verifies that the
vector u/lu| is a critical point of f. On the basis of Lemma 3.2 we know that

X = ou provides the unique absolute minimum of (3 12 i i
manifestly 0. : (3.12) and this value is

of of Theor The inequality (1.9) is obviousl i
_ : : y equivalent to (3.3).
The sta:tements d1§cernlng the possibilities of equality in (3.3) are decided on
the basis of the uniqueness results affirmed in Lemma 3.2.

We turn to the proof of (1.8). Invoking the_Ijgr_r_gl-I“_ro_@gigs_theozy, we

obtain

p(DM)z; = d; Em.-,-x,-, 1=1,2, .

=1

,n forsomex > 0.
Therefore

(3.14)
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whereu = (u,, ---,u,) andv = (v,, - -, v,) satisfy (1.6) and (1.7). Applying
(1.9) in (3.14) entails (1.8). The proof of Theorem 3.1 is complete if M > 0.
For M > 0, apply the conclusion to M(e) = (1 — e M + € ||uw;||,", and then
let e — 0.

Remark 3.2. It can be proved that if merely M is non-negative, a-periodic
and irreducible then equality holds in (1.9) iff x = ou and equality in (1.8)
iff D = al.

CoroLLARY 3.1. Let M, u, v satisfy the conditions of Theorem 3.1, then

(3-15) ”Z UV; '(_]L'ix*)' 2 1.

i=1 i
Equality holds for x = au.

Proof. The generalized arithmetic—geometric mean inequality implies

n

(Mx); v | (Mx),; |**F
> uws e > 11 [——]

i=1 i i=1 T

and the right side is not smaller than 1 by (1.9).

To illustrate further the usefulness of Lemma 3.1 we present the following
extention of a theorem of Sinkhorn [17] on constructing doubly stochastic
matrices related to prescribed non-negative matrices.

THEOREM 3.2. Let M = ||m,;|| be trreducible non-negative and m;; > 0
for all 7. Let u and v be posttive vectors. Then there exist unique (up to scalar
multiples) positive diagonal matrices

E, = diag (¢ , - --
such that E,ME, belongs to N(u, v).

Proof. Let f(x, M) be the function defined by (3.12) (4 = M). The condi-
tion m;; > a > 0 entails (Mx);/r; > a for any x > 0 and if x tends to the
boundary of A = {x: x| = 1,x > 0} manifestly, f(x, M) —» «. By Lemma 3.1,
let £() = (£,(M), - -+, £.(M)) denote the unique critical point (up to a scalar

multiple) of f(x, M).

,e,.) and Ez = dia«g {el; ttt !en}

Let D = diag {d,, --- , d,} be a positive definite diagonal matrix. It is
elementary to deduce the relations
(3.16) gDM) = g(M) and EMD™") = Dg(M).

Indeed, (3.16) is clear on the basis of the identities

fx, DM) = f(x, M) + t uv; log d;
t=1
and

{(Dx, MD™) = f(x, M) — 3" uw; log d; .

im]
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Now, determine E, by the prescriptions

&M .
3.17) ei=% i=1,2, - ,n
(B, = diag (e,, -+ ,¢,)) and E, = diag (e, , -+, ¢,) to satisfy
(3.18) E;MEZII =u
It follows from (3.16) that
(3.19) §E\ME,) = u

Also, the relations

<)
a—xif(x, E.ME,)|, = 0, i=1,2 - ,n

since u is the appropriate critical point, reduce to
VE\ME, = v.
Suppose now that E,M E, M(u, v), By virtue of (3.16) we have
u = af,"¢(M) for some & > 0,
Comparing to (3.17) we see that
E, = «”'E, and then E, = aF,

is clear. The proof of the Theorem is complete.
The natural generalizations of Corollary 3.1 ensues.

CoroLLARY 3.2. Let M be an n X n matriz as in Theorem 3.2. Letl o =

Wiy, w) bea positive vector normalized by the condition
(3.20) nZw.- = 1.
t=]
Then there exists a diagonal positive definite matrix
D(w) = diag (d,(w), - - - , du(w))
such that
3.21) o(DA) > T (L)w
( )2 -I:Ix d;(@)

for any diagonal positive definite matriz D T .
for some & > 0, z . The equality sign holds if D = aD(w)

Proof. Take D = E\E, ,

u=-eandv = where £, and F, are defined in Theorem 3.2 and

Remark 3.3 According to Brualdi, P i
£ 3.3. » Parter and Schneider [2, Lemma 2.3
the conditions of Theorem 3.2 imply that M is fully indecomposable. Thus]:
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in case u = v = e Theorem 3.2 goes back to Brualdi, Parter and Schneider
and Sinkhorn & Knopp [18]. Finally, in view of this lemma it follows that
the results of Theorem 3.2 remain valid if we assume that M is a fully inde-
composable matrix.

4. Derivation of the inequality (1.12) and ramifications.
We begin with some preliminaries

LemmaA 4.1. Let M = E,KE, where E, and E, are diagonal positive definite
matrices and K s positive definite. Furthermore, assume M 1is irreducible and
nonnegatiwe. Let u and v be positive vectors salisfying

(4.1) Mu = p(M)u vM = vp(M)
(for simplicity of writing take p() = 1)

and normalized to satisfy

(4.2) Suw; =1 and D u’ = 1.
=1 i=1

Define the positive vector y° by the equation

(4.3) EXE,; Y = u

Then

(4.4) EE}Y’ = av  for some o > 0.

Proof. We evaluate (E,}E,"'y®)M ™' heavily exploiting the fact that E,
and E, are positive diagonal matrices. We obtain

(B, E,NYOM ™ = y’E, B, NE, 'K T'E, ") = y°ENE, B, 'K 'E, )E,E,
= u(E, 'K 'E,)E,E,”" = u(M")'E,E,”" = uE,E,”!
= y°E'E,'E,E,”" = E,"'E.}y".
Comparing the outside equations we see that z = E, E,y° is a left eigen-

vector of M~" with eigenvalue 1, i.e., zM™ = z. We infer by the Perron-
Frobenius theorem since p(M) = 1 is a simple eigenvalue that

(4.5) Yz = E,*E,}y’ = av for some positive. a.
The proof of the lemma, is complete.

Proof of (1.12), consult section 1. Assume first that K is positive definite
and positive. Because K is positive definite and E, , E, and D are diagonal,
the eigenvalues of DM = DE,KE, coincide with E,DE,K and K!(E.E,)}!
D(E\E;)'K*. 1In particular

p(DM) = p(K)(E.\E,)'D(E.E,)'K?).
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On the basis of a familiar characterization of the largest eigenvalue of a
symmetric matrix and taking account of the fact that all component matrices
involved are nonnegative, we find that

_ o (KXEE)DEEIKx, x) (Dy, y)
(4.6) o(DM) = sup &, ) TR ETTEY Yy, BEY YY)
(Dy°, ¥°)

2 Y 3.0 1.0
(K™ (E\E)%y’, (E.\E;)y")

where y° is determined as in (4.3). Substituting for y° and relying on the fact
of (4.4) the final denominator in (4.6) reduces to a(u, v) = a > ;.," uv; while
the numerator becomes a(Du, v) = « it dau, .

The case that K is non-negative and positive semi-definite is handled by
standard perturbation procedures. Apply the result to K, = (1 — 2¢K +
el + ¢E, '[u,),"E,"" and let ¢ — 04. The proof of (1.12) is complete.

Proof of (1.13). Application of the Perron Frobenius theorem gives

“.7 p(DM)z; = d;(Mx); 1=12 ... ,n
for some x > 0. Therefore

n z' _ n
(4.8) p(DM) ;u,‘vg (Mx)‘ = ; d,"u.‘v.’ 5

The inequality >°..," du,v;, < p(DM) established as (1.12) together with (4.8)
(since p(DM) > 0 as M is irreducible and nonnegative) obviously imply

n z;
(4.9) _ guiv.- O, < L
The inequality (4.9) is validated in this analysis only for x, an eigenvalue
of MD for p(MD). Now given an arbitrary y > 0, we determine the vector
d =(d, -, d,) by the relation d; = y;/(My); and obviously this y > 0
qualifies as the eigenvector for p(DM) = 1. Thus, (4.9) holds for all x > 0.
Where p(M) > 1 then (4.9) should read as,

(4.10 3 v; i < _1__.
) Up 2w e < 205

With (1.12) and (1.13) in hand, the proof of Theorem 4.1 is complete.

The next theorem describes another class of matrices for which (1.12) and
(1.13) hold.

THEOREM 4.2. Let M € M(u, v). Assume furthermore that M~ erists
as an M-matriz (see Definition 3.1). Then

4.11 S oy g, —Ti '
(4.11) sup ;u.v. G, < 1 and
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for any positive diagonal matrix D,

(4.12) o(MD) > 3 uwid,

i=1

Proof. We have available the representation

(4.13a) M7 =+ —B where B>0 r> p(B)
and
(4.13b) Bu = p(B)u, vB = p(B)v.

(Pertaining to (4.13a), see the discussion following Definition 3.1). Clearly
M'u=[r— pB)u

(4.14) sothat 1 = p(M) = r — p(B).

Obviously for any x > 0 andy = Mx,

nZu.-v.-M =7 Zu,-v; = Zu;v‘%)—':

-1
i=1 Y i=1 i=1 i

n x; _
Z Uv; (Mx)" -

i=1

r = 3 o, BO

t=1 i

The result of Theorem 3.1 applies to give

nZu,vv,- @X)_' > I:H @L] o > p(B)
i=1 Y =1 Yi
and therefore (4.11) holds. )
Backtracking over the analysis of Theorem 4.1 we can check that the in-
equality (4.11) entails (4.12). The proof is complete.

Remark 4.1. If there exists a positive number 8 > 0 such that —M ™' + gI
is irreducible nonnegative then the equation sign holds in (4.12) iff D = oI
for some @ > 0. This statement is readily confirmed by a careful scrutiny
of the details of the analysis.

Remark 4.2. Consider a matrix 3 of the form M = E,KE, where the com-
ponent matrices have the properties enunciated in Theorem 4.1 and assume
M is positive. Let D, and D, be diagonal positive matrices such that D, MD,
is doubly stochastic. We adopt the notation D, = diag (d,”, --- , d.'"),
D, = diag (d,"”, --- , d,””). Obviously

DlMDz = E~1KE~2 ) E.‘ = D,‘E,’ . 7, = 1, 2
The inequality (1.12) in terms of this reduction becomes

1 ¢ d;
(4.15) o(DM) > 3~y

n =i
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5. Extensions, examples and applications.

1. Bounds for lower order eignvalues; compound matrices

Let A be an oscillatory matrix meaning that every compound of 4, 4,
(p = 1,2, ---, n) is nonnegative and that A,," is strictly positive for some
integer m, m can depend on p. Recall that the elements of A, consist of all
pth order minors where the indices can be identified with all p tuples of integers
and these arranged in lexicographic order. (Thus if A = ||a,;||," then the
elements of A, inrow @ = (¢, ,%,, -+, %) column@ = (j,, -+ 7,) (1 <7, <
< <INl << < Sn)isdy, (e 8) = det(||a; vu|ly,u = 1)

In particular, of A is oscillatory then A, is a nonnegative and irreducible

matrix of size (Z) X (1:)) Oscillatory matrices have remarkable properties

and we record a number of them for ready reference. (Further discussion and
validations can be found in Gantmacher and Krein [4], see also Karlin [11],
for extensions and applications).

(i) All the eigenvalues of A are positive and distinct. Arranging them in
decreasing order gives

(5.1) M) > NnA) > o > NA) >0
Thus
(5.2) Au® = \u® viP4 = \v

The multiplying factors for the eigenvectors can be chosen in a manner
that the wedge product vectors

(5.3) P AU® A - Au® > 0, vOAVE A o A v® s 0
(are positive) k=12 ---,n.
Recall that if x = (2,", -+, z."”) then x™ A x* A -+ A x* can
be concretely expressed as the vector whose @ = (ji, j2, -+, ji) coordinate
is det (||2;,”||i=1".,=1"). This arrangement of the coordinates is consistent
with the lexicographic ordering used in representating A, .

The vectors listed in (5.3) are right and left eigenvectors, respectively for
the spectral radius of the corresponding compound matrix 4, so that,

(5.4) p(A) = ﬁ A

1=

and

k
Ap@® A - Au?) = (H M)(um A oo Au).

1=
We will further scale the eigenvectors in (5.2) to satisfy
()

(55) Z(u(l) Au(z) A e Au(k))a(v(l) A v(?) A o A v(k))a =1
a=1

k=1,2 -+ ,n. H
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Let x oy denote the Schur product of the vectors x andy,ie,xoy = (£, , L2,

o I"y"). oy . .
Lét D be, as usual, a diagonal matrix with positive diagonal entries. If

A is oscillatory then AD is manifestly also oscillatory. Recall the. elen}entary
fact that (AD), = AuyDy and Dy, is obviously again a positive diagonal

matrix of order (n) The results of Theorem 3.1 and 4.1 carry over, mutatis

%)
mutandis, to the compounds of A.

TueoreM 5.1. (1) Let A be an oscillatory matriz. Assume the eigenvectors
are normalized to satisfy the conditions (5.3) and (5.5). Let D be a positive diagonal
matrir. (Forw = (w,, --+ , w,), w; > 0, we introduce the notation |D|¥ =

1= d.) Then

x L(DA)) (u“)/\---/\u“")o(v“’/\-'-/\v(k’)
(5.6) ’I-Il ( )\,(A) 2 ID[kll

k=1,2,---,n.

(i) If A = E,KE, where E, and E, are positive diagonal and K 1is oscillatory
and symmetric, then

k 3
(5.7) 11 (%%‘%) > @Y A - AVE, D@P A - A a®)) |
i=1 i
On the right above appears the inner product of the vectors
v(l) /\ - /\ v(k) i\nd D“,](u(” /\ . s /\ u“").

II. Upper bounds for the spectral radius p(DM). '
The following classical characterizations of the spectral radius for nonnegative
matrices will serve us in Theorem 5.2 below and in the discussion of a number
of examples.
Let A be a nonnegative matrix. Then

(5.8) p(A) =suppu where T = {p |;4real'and Ax > ux
ner

for some x > 0, x # 0}.

(The notation z > w signifies that z — w is a nonnegative vector.)

(5.9) If there exists y > 0 (strictly positive) satisfying Ay < vy, v > 0 then
p(4) < 7.

The characterization (5.8) duc initially to Wielandt can be cast .in the form
of a minimax expression. Proofs of (5.8) and (5.9) can be found in innumerable
sources, e.g., sce the appendix of Karlin [10].

Tueorem 5.2. (i). Let M be nonnegative and irreducible and D a positive
definite diagonal matrix, D = diag(d, , --- , d,), then
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(5.10) p(DM) < p(M) max (d;).

1<i<n

(1) If M s totally positive of order 2 then p(MD) < Dt mi ds

Proof. (i). Since J! is irreducible there existsu > 0 satisfying Mu = p(M)u.
Therefore

DMu < up(M) max d; .

1<i<n
The result (5.10) now follows by direct appeal to (5.9) as u is strictly positive.

(ii). The proof of (ii) is found in Karlin [12, Th. 10.11].
In Theorem 4.1 (consult also (4.10)) we uncovered the bound

il T, 1
SUp 2w G < S

For comparison purposes we record the following fact. Let A be an oscillatory
matriz of order 2 (designated 08,), i.e., A is irreducible nonnegative and the
second order compond A, is also nonnegative and irreducible. Assume
a; >0,7=1,2 ... n, then

. = XT; 1
rxn>lon ‘Z_.; * (AX).- B l:an‘:l
max |—| .

Qa;

(5.11)

1<i<n

This finding is implicit in Karlin [12, Eq. (10.8)]. For completeness we review
the setting from which (5.11) emanates. Let A be nonnegative irreducible and
let D be a diagonal matrix where the vector d of the diagonal components
satisfies d; > 0, =d, = |[d] = 1. We wish to evaluate MaXgso.141=1 p(DA)
where D = diag d. Where 4 is of class 0S, we obtain
(5.12) max p(DA) = max a,;.

d20,|d|=1 1€i<n
Obviously, for A > 0 and each d > 0, |[d| = 1 there exists x > 0 satisfying
DAx = p(DA)x or equivalently [d:/p(DA)] = z./(Ax). and therefore [1/p(DA)]
= E.—-{' z;/(Ax), . Sincedis arbitrary subject to the constraints d > 0, [d] =1
and x is determined up to a scalar multiple we deduce that

. = ; 1 1
5.13 Ti -
6.13) :r>1£ Z. (Ax); max p(DA)  max a,;
d20,|d|=1 1<i<n

the last equation resulting by virtue of (5.12). By absorbing a diagonal matrix
composed of the «; into A we find that (5.11) agrees with (5.13).

II1. Applications of the inequalities (1.8) and (1.12) to local stability analysis.

For the population migration models of (1.2) and (1.3) it is of interest to
ascertain conditions on the migration matrix M and the matrix of selection
coefficients D implying

(5.14) p(DM) > 1.
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Where the above inequality holds, the connotation is (for the model (1.2))
that the A-type in the population can never tend to extinction and will always
be represented with moderate to high frequency. . N

Obviously from Theorems 3.1 and 4.1 we secure simple sufficient conditions
insuring (5.14). More specifically, if

(5.15) M€ M(u,v) and M = E,KE,
(E, , E, positive diagonal, K positive semi-definite) then (5.14) prevails if

i uwid; > 1.

i=1

(5.16)

Generally, already the equation D uw; d; = 1 entails (5.14).. However we
pointed out earlier in (1.14) that M = ||u,v;|| € M(u, v) carries the equation
sign

P (DM) = Z ud;

i=]1

(5.17)

and in this case (5.14) and (5.16) are trivially equivalent. It is elementary
to check that if M € 9NM(u, v) is of type (5.15), then M* for each integer k > 1
is also of type (5.15). Therefore, in the presence of (5.16), we have

(5.18) p(DM*) > 1 for all k.

Conversely suppose (5.18) holds for all k& (or even for infinitely many k)
with M irreducible and € 9m(u, v). We know from a standard ergodic theorem
that M* — ||luw,|| as k — «. With this convergence and the stipulation of
(5.18) we infer the inequality E.-_l" uw; dy > 1.

IV. Discussion of some examples.
(a) Consider a tridiagonal (Jacobi) nonnegative matrix

\

Py 0 0 0

@ 2 P 0
(5.19) M=10 g T3 Ds

qn—l Zn— 1 pn—l

Qeeveeennn q» o )

with p; > 0, ¢; > 0 and r, > 0. Assume also ¢; + r; + p;, = 1 forall iso
that M is a stochastic matrix. Choosing ¢; positive to satisfy e;/e;.1 = pi/¢in1

t=1,--+,n — 1and defining £, = diag(e, , &, - - - , ¢,) we obtain ME, = K
where K is a symmetric Jacobi matrix. Where the upper bordered principal
determinants of M are positive we deduce that K is positive definite. More

concretcly, if
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r Dy 0 <o 0
@ T P :
2 .
(5.20) 0 g r5 - |>0, i=1,2 - ,n.

0--0--q; r p
then M is of type E,KE, where E, are positive definite diagonal matrices
and K is positive definite.

Moreover, it is easy to verify that M/ € 9 (u, v) where u = 11, ---,1
andv = (v, ,v,, -+, v,) has the form

(5.21) v, =

L
i=1

Provided (5.20) holds then application of Theorem 4.2 affirms that

E d|7rl'
(5.22) p(DM) > 1 if “=1—— > 1,

Z i

i=1

The special doubly stochastic matrix

1—m m 0 0
m 1 —2m m ;
(5.23) M = 0 m 1 —2m
m 1 —2m m
O sommsnsiniiasae 0 m 1 —m

is positive definite provided m < 1 independent of the size of the matrix. Then
conforming to (5.22) we have

o(DM) > 1 if }zzdi S
i=1
(b) We concentrate next on a nonnegative matrix M of the form
(5.24) M =E+ Rwith E = diag(e,, - -+, ¢,),e, > 0and R = [luwj|]:. 21"

An important special case oceuring in the theory of geographical subdivisions
of populations has

E=Q0Q-aI{U= identity matrix) and where v, > 0,
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so that
(525) m;; = (1 - a)&.‘,‘ + av,“(a.‘,' = Kronecker delta), Zvi = 1.
i=1

The determination of p(DM) depends on the following known formula for
calculating the inverse of (5.24). Consider a matrix ¢ = B 4+ R where R
is of rank 1 as in (5.24). If B™' exists then provided ¢ = 1 + (v, B™'u) # 0,
C~! has the form

(5.26) C*'=B"— (%)S where S of rank 1 has the form ||s;»,|| and specif-
ically r = vB™', s = B 'u with M as in (5.24).
We can also represent /D — \I in the same form, viz
MD — N\ = (ED — \) + R with B = ||uw,d,]|.

We examine two cases. _
Case (z). Suppose e;,d;, > 1 for some index 7, , 1 < 4, < n. Let z" =
0,0---0,1,0 --- 0) with the component 1 appearing only at the 7,-th co-
ordinate. Since M D is nonnegative then by virture of e, d;, > 1 we find

(5.27) MDz"” > z“”

and the two vectors in (5.27) are not equal. Invoking the characterization
of (5.8) implies

p(MD) > 1.

Case (11). Suppose e.d; < 1forall¢ = 1,2, --- , n. Then for each A > 1,

(ED — N)™" exists. By the prescription of (5.26), (MD — \)™' exists if
¢(\) =1+ (v D, (ED — \)"'u) 5 0 that is provided

= U;d.*u,‘
c™) =1+ '_Z_:leid'_ _.x;éo.
Obviously ¢(«) = 1 and since e;d;, < X for all A > 1 the monotone increasing
function ¢(\) vanishes somewhere on the range 1 < A\ < « and then p(DM) > 1
ifand only if 0 > ¢(1) = 1 + Dot [wdui/(ed, — 1)) or equivalently

n

du.

5.98 _ViGiUi

( ) ; 1 — ed; =1

To sum up, if M has the form (5.24), then

(5.29) p(DM) > 1 iff either e,d, > 1 for some 7 or
—  vdu;
2T —od. > 1 holds

Where e,d; < 1 for all 5 and (5.28) prevails then the actual value of p(DM)

can be calculated as the unique solution X of the equation
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- dauv:
i-zl)\ — e;d; =1

located in the interval max;¢,<. €.d; < N\ < ®. The preceding discussion
interpreted for the special example (5.25) leads to the following characterization:
p(DM) > 1 iff either (1 — a)d; > 1 for some 7 or

n

a E I__v_.___ > 1 holds
e 1 4o
d;

(c) A hybrid version of the previous example combined with a permutation
matrix is as follows. Consider M of the form

(5.30) M = E + R where R decomposes into block matrices explicit
structure

0 R12 0"'0

(5.31) R=|% 0 R= .0
. Rr—lv
R, 0 0 0
where Ry = |[u;“'v; %7 ;=™ ™* is a rank one matrix of order n,,; X n,, k =
1,2, .-+, p (interpret p + 1as 1) and D_,..” n. = n, E = diag(e,, €, -+ , €,)
is a positive diagonal matrix. It is convenient to view (e, , -+ , e,) = & as
a juxtaposition of k vectors e, e®, ... , e where e’ consist of the first

n, components of &, e the next n, components, etc.

The complete result of instability corresponding to the matrix DM (D =
diag(d, , -+, d.) is a positive diagonal matrix as usual) supplementing (5.29)
is as follows: (We decompose the vector d analogously to &.)

(5.32) p(DM) > 1iff one of the following two conditions hold: either e;d; > 1
for some 7 or

P nk (k), (k)3 (k)
(_.1),, kI_Il (; e"f:k)‘zl(k) d;'_l) >1

6. Some classes of inverse eigenvalue problems.

We will apply the relations (2.6) and (2.8) to set forth general necessary
conditions for the solution of certain inverse eigenvalue problems. The unique-
ness characterizations underlying (1.9) will serve to secure unique solutions
for special classes of inverse eigenvalue problems. At this point it would be
helpful to consult the background material of the introductory section. We
start our deliberations with the inverse additive eigenvalue problem (I.A.E.P.)
whose formulation is as follows
(1) Let A = {A\ , N2, -+, \,} consist of n values in R' and let a matrix 4
be prescribed. The problem is to ascertain criteria for the existence and de-
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termination of at least one real valued diagonal matrix D with the property that
the spectrum of A + D coincides with A. In our context, the [LA.E.P. is said
to be solvable for the prescriptions A and A if there exists at least one real
diagonal matrix D such that A + D has spectrum A. o

Our main finding on problem (i) is summarized in Theorem 6.1 highlighted
in the introductory section. We proceeed to the proof. The following lemma
will be needed.

LemMA 6.1. Let A be an irreducible nonnegative matrix. There exists a unique

(up to a constant factor) diagonal matriz C = diag(cy, ¢a, =+, €a), € = (cr, =+, Ca)
> 0, satisfying
(6.1) CAC™'e ='eCAC™! e=(,1,--,1)

Proof. Consider the function
(6.2) fx) = "ZQ%C& defined for x > 0, x| = 2z, = 1.
i=1 i

Straightforward adaptation of the reasoning of Lemma 3.2 establishes: the
existence of a unique critical point £ for f(x). Thus & = (&, -, £,) satisfies
the equations '

‘ —(A¥); — Qi ' ;
(6.3) }§~+2——=0 i=1,2, - ,n.
i i=1 Gi
Defining C = diag(1/¢, , 1/¢2, -+ - , 1/£,) the equations (6.3) are synonymous

with (6.1). Conversely if ¢* = diag(c,*, ¢.*, --- , ¢,*) qualifies for (6.3), with
¢* normalized by 2_..," 1/¢.* = 1 then we can backtrack and verify that the
vector ¥ = (1/c,*, -+ , 1/¢,*) is a critical point of f(x). The uniqueness
assertion of the lemma ensues since a single critical point exists. The proof
of lemma 6.1 is complete.

With C constructed conforming to the relations (6.1), we next determine Co
as the unique diagonal matrix satisfying

(6.4) (CAC™ + Cy)e = e(CAC™ + C,) = e.

We are now prepared to deal with Theorem 6.1 which for convenience is
restated.

THEOREM 6.1. Let A be nonnegative and irreducible. Let C and Co be de-
termined fulfilling (6.1) and (6.4). Denoteby A° = {\,°, A’, <=+, \"} the spectrum
of A + C, (since A > 0 is irreducible and C, s real it follows from the Perron
Frobenius theorem that \,° is certainly real and \," > Re \.°, 1 = 2,3, -+, n).
Suppose the I.A.E.P. with respect to A and the prescribed spectrum A =
{At, \s, -++ A} having A\, > Re \; , i = 2,3, -+, n is solvable such that the
spectrum of (A 4+ D) = A with D real diagonal. Then A satisfies ‘

(6.5) n— 1\ > HZ Cil; (%' + Z A

i,i=1 1=2
iy
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The equality sign holds only for the spectral set {\," + 8, A\, + B8, --- , \.° + 8}
for any real B. o

Proof. Suppose th_e spectrum of A + Dis A. Because C and D are diagonal,
the spectrum of CAC™" + D is likewise A. On the basis of the Perron Frobenius
theorem we obtain

(CAC™* + D)x = Ax for x> 0.

Therefore,

(6.6) = S CACT D $~ (CACTD),

i=1 X i=1 =1

Invoking Lemma 2.2 we find that the last sum is bounded below by

n
Z C.:Q;; (%'

i,i=1 i

and equality is attained only if x = ae. The equation Trace (4 + D) =
z;-l" \; written out is

Z)‘iz au+ndi ) ‘=n -'—"
2 ; ‘Z_; or ; d; ; N ; a;; .
Subs.tituting for ) d. the inequality (6.5) is achieved with the equation sign
possible only if

(6.7) (CAC™ + D)e = ¢(CAC™" + D) = ae

But the fulﬁllr'nenf, of (6.7) in view of the results of Lemma 6.1 and the nature
of the determination of C, imply D = D, + BI for some appropriate real 3.
For D, = C, + BI the spectrum of A + D, is precisely {\,* + 8, - -+ , \.° + 8}

The proof of Theorem 6.1 is complete. , o '

prevails.

c CO‘ROLLARY 6.1. Let the hypothesis and notation of Theorem 6.1 prevail.
onsider the .A.E.P. for A with prescribed spectrum A = {\° + a, - -+ , N0 F al,
a reql an.d fized. This inverse additive eigenvalue problem has a unique real
solution given by D, = C, + ol.

We develop next the analo : i iplicati

) g of Theorem 6.1 for the invers 1tipl :
e'l.genvalue problem (I.M.E.P.) @ muipleative
(i) Given A nonnegative and irreducible and the spectrum A as in problem (i)
we seek to solve or characterize a diagonal matrix D with nonnegative entries
such that the spectrum of AD is precisely A.

d'THEOREM §:2. Let.A be a p?sitive nonsingular matrix. Let D, and D, be
tagonal posztwe matrices rendering D,AD, doubly stochastic (in this connection
see the discussion culminating section 2). The matrices D, and D, are unique
up to 0constoant multipliers. Define D, = D,D, and denote the spectrum of AD,
by (NS, NS, oo, ML, N = p(AD,). If the I.M.E.P. is solvable for A with

SPECTRAL RADIUS OF NON-NEGATIVE MATRICES 485

A = p(AD), then we have

6.8) > [IY
1

i=2 1=2

Equality holds only if \; = aX\,’, 1 = 1,2, --+ , n, for some a.

Proof. Consider that \,(AD) = \; with M(AD) = p(AD). If d; = 0 for
some 4 then II;_," \; = 0 and (6.8) is trivially true. Suppose now that d. > 0,
i=1,---,n Invoking the inequality (2.8) (since D,AD, is doubly stochastic)
yields

6.9 N = [p(AD)]" = [p(ADDD,"'T" 2 [H d(Ill (d"o)_l>]

i=1

Plainly

n

610 JId° = (H )\,-°>(det A7, II g = (H x.)(det A

i=1 i=1
Of course, \," = 1 since D,AD, is doubly stochastic. Combining (6.10) into

(6.9) produces (6.8).
The equation sign in (6.8), as 4 is strictly positive compels the case of equality

in Lemma 2.2 and then necessarily DD,™* = al. The proof is finished.

COROLLARY 6.2. Let A salisfy the assumptions and notation of Theorem 6.2. .
We prescribe A° = {B\,", B\, --+ , BN} for 8 > 0. Then the I.M.E.P. has

a unique solution D = BD, .

Another result supplementary to Theorem 6.2 relies on (1.12) instead of (2.8).
Accordingly we obtain

TuEOREM 6.3. Let A be a doubly stochastic matriz such that a;; = a > 0
(with constant diagonal.) Assume furthermore that either A~ is an M-matrix
(see Definition 3.1) or A = E\KE, where K, E, and E, the latter two diagonal,
are all positive definite. If for some positive diagonal D the spectrum of DA 1s

theset A = {Ai,Na, -+, NJwithy, > Re\;,12=2, - , n, then
1 n

6.11 > — Q.

(6.11) NS DRY

The equality sign is maintained if and only if D = ol for some a > 0.

Remark 6.1. The uniqueness feature of the inverse problems of Corollaries
6.1 and 6.2 are akin or perhaps discrete analogs to the uniqueness result demon-
strated for the system of eigenvalues occurring in the case of a vibrating mem-
brane, see Kac [7] and Kac and Van Moerbeke [8].

7. Inequalities for the spectral radius of some integral operators.
By a standard discretization akin to the analysis of Fredholm kernel operators,
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approximating an integral operator by a sequence of matrix operators

secure extensions _of (1.8) and (1.12) to certain classes of integral b
This procedure will be described succinctly. Let @ be a com gact Oief'ators.
As usual, denote by C(@) the collection of all real valued contixrl)uoussef3 mt'R :
on Q. The subset of nonnegative functions of C(@) is designated bunc ions
and by C."(®), the positive function. Throughout, let Fimeles. By Cullh

(7.1) K(x, y) be a continuous nonnegative kernel on @ X Q.

Let o be a prescribed nonnegative re ini
: gular finite meas
Consider the linear operator ¢ measure on & 50 that ¢(Q) < w.

(7.2) K,:C@ —c@
defined explicitly by the integral kernel mapping

(7.3) K@) = f K, )f@) doly)  f € C(9).

:,l;:s 3?:;?:(;;:0{{' is c?b:riously compact, even transforming a bounded set of
: 1008 Into an equi-continuous family of functions. Th
' . e a -
;::x‘:i I57.1') ent.allst that K, preserves the cone C.(?). The theory of opZi::g‘)s
g€ Invariant a cone (dubbed positive operators) i :
see Krein and Rutman [15], Karlin | . (')]S) i8], E gl i
; 13], Sawashima [16], K ii
Chap. 2], Anselone and Lee [1] ’ s Torbentur
. among others. Most of the Frobenj
of nonnegative matrices carries ot o
ov i
e.mtors, More spoio er to the case of compact nonnegative op-
gl)) TS}lxle spect;zal_radoius g){K,) > 0 and p(K,) is a simple eigenvalue of K,
ppose € = Q° (2° is the closure of its interior), then there exists a unique

(up to scalor multipli i
: pliers) functions % i
strictly positive on Q° satisfying ) dnd ole) € 6, 0 with (e} wnd i

(7.4) K)u(z) = f v) indicati
(K )u(r) ] K(z, y)uy) de(y) (indicating that u is an eigenvector
for K, corresponding to \, = p(K,)
X, _ f A e g '
e(K,)v(y) . v(2)K(x, y) do(x) (signifying v is an eigenvector for

- 0. ' K,*; the adjoint to K
(lfl )"If Q" is .e_a,mpty, then we stipulate that % and 1; € C.'Q) . In t;,)
of (ii) and (ii’) we normalize u and v to satisfy ' ' B

7.5) f u(y) do(y) = 1 and f uo(y) do(y) = 1

Wz c:fll ag operator endowfzd. with the properties (?) and (45) irreducible
subsum::i el::'l Otfh :s?ftlxll sqfhcwnt conditions implying that K, is irredixcible are
sub: ollowing two cases. Th i ive i oi

if cither of the following two hypotheses holdl;s" " IR oA s dnadiaili

@) K(r, 2) > 0for z € Q (K is stri » _
Sawashims [16] € @ (K is strictly positive on the diagonal),
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(7.6) (b) K(z,y) = r(x)G(x, y)s(y) where r and s € C,"(2) and G is sym-
metric such that G induces a positive definite operator.

We now state the first result which extends the inequality (1.8).
THEOREM 7.1. Let K, be defined as in (7.3) satisfying (7.1) and cither (7.6a)

or (7.6b). (Thus K, is irreducible.) Let p(x) € C."(Q). Denote by (Kp), the
integral operator (7.3) induced by the kernel K (x, y)p(y). Then

@.) WD) 2 o) exp | [ ulapta)og p) do) |

Proof. We will be brief. Let X &€ {x;}," be a dense set of points in Q.
The span of a convex set by its extreme point (I{rein-Milman Theorem) provides
the existence of a sequence of discrete measures o¢*’ concentrating at a finite
sub-set of X say X* = {z;},* with ¢"*’ converging in the weak * topology to o,

that is
bm [ 1d5% = f fdo forall f€E C(Q)
Q Q

k-

The integral operators K, and (Kp), can be approximated in the weak
operator topology by a sequence of operators with finite range induced by the

matrix mappings.
(7.8 K, : f K(x: , v)f(y) dow and Kp," : [ K(x: , y)p@)f(y) do.
i=1,2 -,k

It can be checked that each of the operators (7.8) is nonnegative and irre-
ducible. The inequality (1.8) is in force involving the eigenvectors u, =
{ue(2)},* and v, = {v.(2;)}," appropriately normalized. A routine compactness
argument, involving the Fredholm determinants, validates that we can extract
an appropriate subsequence of u, converging uniformly to «(z) on X and similarly,
v, — v(x). The inequality (7.7) ensues by proceeding to the limit in k applying
at each stage the corresponding matrix inequality. The proof is complete.

By completely similar means, we deduce

THEROEM 7.2. Let the assumptions of Theroem 7.1 hold. Assume also that
(7.9) K(x, y) = r(x)G(x, y)s(y) where r and s € C,.*(Q) and G(x, y) is a

postitive definite symmelric kernel, 1.e.,

[[ 6@ i1 de@) dot) > 0 for € C@ and f#0.

ax Q

Let p(x) € C.*(Q). Then
7.10) o(KD)) 2 oK) [ u@u@p@ dot@



488 S. FRIEDLAND AND S. KARLIN

Remark 7.1. A more delicate analysis shows that equality holds in (7.10)
if and only if p(z) = @ > 0 on . For this purpose, we rely on the minimax
characterization of the spectral radius for symmetrizable operators.

An application

Consider a translation kernel K(z, y) = k(z — y). Take @ = (== m).
Assume k(z) is periodic, symmetric with respect to 0 (an even function) and
€ C(Q). Accordingly, the Fourier expression of k has the form

(7.11) k(z) ~ i a, cos nx

Assume further that the matrix

(7.12) llk(z: — z,)||,” is nonnegative definite for every collection —r <

r <2< -+ <z <m, parbitrary.
The celebrated Bochner theorem applied to k(z) guarantces

(7.13) %20, n=012"-,Y0a< e

n=0

and the fact of (7.13) entails that

(7.14) k(z) = 3 a, cos nz with absolute and uniform convergence present

n=0
We also assume henceforth

(7.15) k(z) > 0 for —x < z < 7 and normalized such that

k(0)

I
W
™

Let K be the operator

(7.16) K(f) = ]: k(z — y){(y) dy defined for f € C(Q) or even for f € Ly(9Q).

The.facts of (7.1{.’)) and (7.14) imply that K on L,(Q) is a trace (nuclear) operator.
Obviously, the eigenvalues of K are {@.}a-1". In particular,

(7.17) o(K) = 2r ay = f " k(z) de

-

and the associated eigenfunctions are the constant functions

1
vV 2r

Let p(z) € C.*(Q) and consider the operator on L,(R2) or C(Q)

u(x) = v(z) =

7.18) ko) = [ ke — vpwie) dy

g

b doitia
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Denote the spectrum of Kp by {\.(p)},:” arranged so that \,(p) = p(Kp).
Standard theory tells us that Kp is also a nuclear (trace class 1) operator and
therefore 2-’-1. [\i(p)] < «. Since Kp is a trace operator we find recalling
the normalization k(0) = 1 that

(7.19) f " e = sipla)de = f plw) d = zw:l (D)

Application of theorem 7.2 gives

THEOREM 7.3. Let k(x) satisfy the assumptions stated prior to (7.11), and
also (7.12) and (7.15). Let p(z) € C."(Q). Then

a2 wn 2 ([ k)t [ s @=L [ ka5
(notice that 1/2x [_," p(z) dz = [_,” p(z)u(z)v(z) dr and [_," k(z) d¥ = p(K)
by (7.17).) :

Equality sign holds iff p(z) = « > 0.

From (7.15) and (7.13) we have that 1/2x [_, " k(z) dz = a, < 1, so that (7.20)
is equivalent to

1 — Qo ) a_o_ - .

=2

Since the spectrum of the integral operator with kernel k(z — y)p(y) coincides
with the operator having kernel v/p(z) k(z—y) V/p(y) we deduce that \;(p) > 0,
1=1,2 ..., Asa consequence we have

THEOREM 7.4. Consider the multiplicative inverse eigenvalue problem to
determine p belonging to C.(Q) with the prescribed spectrum A = {X\;},”. Assume
that the spectrum is aA® where A° = {a;},", @ > 0. Then p(z) = a.
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