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domains are indicators of cell fate. The fates
of the cells arising from different mitotic
domains had been based on existing fate
maps that were generated by visual inspec-
tion of unmarked living or fixed embryos.
These predictions were confirmed for the
domains analyzed thus far. However, direct
marking of these cells revealed much more
detail about the actual array of fates.
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The Influence of Dominance Rank on the
Reproductive Success of Female Chimpanzees

Anne Pusey,* Jennifer Williams, Jane Goodall

Female chimpanzees often forage alone and do not display obvious linear dominance
hierarchies; consequently, it has been suggested that dominance is not of great im-
portance to them. However, with the use of data from a 35-year field study of chim-
panzees, high-ranking females were shown to have significantly higher infant survival,
faster maturing daughters, and more rapid production of young. Given the foraging
behavior of chimpanzees, high rank probably influences reproductive success by helping
females establish and maintain access to good foraging areas rather than by sparing
them stress from aggression.

In many species of group-living mammals,
especially those that feed on monopolizable
foods, such as spotted hyenas and many
primates, females have frequent dominance
interactions and are ranked in stable linear

hierarchies (1–4). These hierarchies result
from, and are maintained by, a pattern of
alliances in which close relatives support
each other against more distant relatives
and high-ranking matrilines support each
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other against low-ranking matrilines (5). In
most studies, high rank is associated with
higher reproductive success (3, 6), although
this relation is often weak, perhaps because
of counterbalancing costs of high rank (7).
There is debate over the extent to which
the effects of rank on reproductive success
are due to better access to food for high-
ranking individuals or to protection from
stress that results from aggression toward
individuals at the bottom of the hierarchy
(7, 8).

Chimpanzees resemble these species in
that they live in permanent social groups
and feed predominantly on ripe fruit that
often occurs in monopolizable patches (9).
However, they differ in that females in
some populations spend more than half
their time feeding alone, and most females
disperse to other groups before breeding,
with the result that they are usually not
surrounded by relatives (9). Compared to
female macaques and baboons, it is difficult
to detect linear hierarchies among female
chimpanzees. Although some female chim-
panzees clearly dominate others (10–13),
dominance behavior in stable groups or sta-
ble pairs of females is uncommon and is
never observed between some dyads (10,
13). In addition, when aggressive behavior
does occur within a dyad, it is sometimes
two-sided with no clear winner (14). These
observations have led some to believe that
female dominance is unimportant for repro-
ductive success (13, 15). However, others
have suggested that dominant females may
gain advantages (10, 16). Here we present
data from a 35-year study of the chimpan-
zees of Gombe National Park, Tanzania.

The chimpanzees of Gombe have been
studied since 1960 (10). The 48.7-km2 park
consists of a series of steep valleys running
from the eastern rift escarpment (1600 m
elevation) to Lake Tanganyika (775 m).
The valley bottoms contain evergreen for-
est that gives way to semi-deciduous forest
on the valley sides and grassland on the
ridges (17). Since 1963, the chimpanzees of
the central area of the park have been
provisioned with bananas at an artificial
feeding station in order to habituate them
and to facilitate regular observation (10).
The feeding station has been likened to an
unusually long-term natural food source
and, since 1970, has been estimated to pro-
vide less than 2% of the chimpanzees’ diet
(18, 19). Daily observations are made of the

presence, reproductive state, and social in-
teractions of individuals at the feeding sta-
tion and, since 1975, during daily all-day
follows of individuals throughout their
range (10). Since 1970, the habituated
community has consisted of 4 to 13 adult
males, 10 to 18 adult females, and 18 to 31
immatures and has occupied a range of 6.75
to 14.5 km2 spanning three to six main
valleys in the middle of the park (10, 20).
Adult females spend about 65% of their
time alone with only their dependent off-
spring, foraging in distinct but overlapping
core areas of about 2 km2 (19, 21), whereas
adult males are more social, travel over the
whole community range, and jointly patrol
and defend its borders (10, 19). Whereas
almost all males born in the community
remain in the community as adults, most or
all natal females visit other communities
during adolescence, and about 50% emi-
grate permanently (22).

We assessed dominance relationships
among females by examining the direction
of all pant-grunts between females recorded
from 1970 to 1992. Pant-grunts are the
most reliable measure of submission in
chimpanzees and correlate with the recep-
tion of aggressive behavior (13, 14). When
we constructed dyadic matrices, many cells
were empty, but by assessing 2-year blocks
we were able to assign 88% of the females
that were observed more than 10 days per
year (23) as high-, middle-, or low-ranking
in each block (24). Dominance rank was
not related to body weight (R2 5 0.01, n 5
15) (25, 26), but individual dominance
rank increased with age (27) as observed in

the chimpanzees of the Mahale Mountains
(11). However, a female’s rank at age 21
strongly predicts her rank a decade later (R2

5 0.80, P 5 0.001, n 5 9), suggesting that
early rank acquisition is important.

Dominance rank has a marked effect on
several measures of reproductive success.
First, offspring survival was significantly re-
lated to mother’s rank at the birth of her
offspring. Infants of low-ranking females
showed much higher mortality than those
of high-ranking females over the first 7
years of life (Fig. 1). Second, the age at
which daughters reached sexual maturity
was significantly related to their mother’s
dominance rank (Fig. 2). Daughters of low-
ranking females experienced their first full
anogenital swelling during which adult
males mated with them (28) as much as 4
years later than daughters of high-ranking
females. Age at first full swelling was
strongly correlated with age at first birth
(R2 5 0.67, P 5 0.01, n 5 8 regularly
observed females). Third, there was a ten-
dency for high-ranking females to live long-
er (29). Finally, the annual production of
offspring surviving to weaning age (5 years)
was correlated with rank for mature females
that were observed for at least 12 years (Fig.
3), indicating that low-ranking females
were unable to compensate for the higher
mortality of their offspring by reproducing
more quickly. All these factors combined to
produce higher lifetime reproductive suc-
cess in females of higher rank (30). In the
analyses concerning reproduction, we ex-
cluded the female GG, because she was
sterile. GG was an aggressive, masculine-

A. Pusey and J. Williams, Jane Goodall Institute’s Center
for Primate Studies, Department of Ecology, Evolution
and Behavior, University of Minnesota, 1987 Upper Bu-
ford Circle, St. Paul, MN 55108, USA.
Jane Goodall, Jane Goodall Institute, Post Office Box
599, Ridgefield, CT 06877, USA.

*To whom correspondence should be addressed. E-mail:
pusey001@maroon.tc.umn.edu

Fig. 1. Kaplan-Meier cumulative survival plot of
offspring at ages 0 to 7 for females of high, middle,
and low rank at the birth of the offspring. Dashed
line indicates high rank (n 5 10 infants of 4 moth-
ers), dotted line, middle rank (n 5 39 infants of 13
mothers), and solid line, low rank (n 5 16 infants of
11 mothers). In a single Cox-proportional hazards
regression with multiple variables (38), mother’s
rank and age at birth were both significant factors.
The exponentiated coefficients estimate the pro-
portional increase in infant mortality rates as a
function of unit change in rank, such as from mid-
dle to low, or increase in age; Exp(coeff.rank) 5
4.3, P 5 0.001, Exp(coeff.age) 5 1.09, P 5 0.01.

Fig. 2. Age of daughter’s reproductive maturity
plotted against mother’s rank at the birth of her
daughter (R 2 5 0.59, P 5 0.02, n 5 9 females).
For the one mother with two mature daughters,
we used the mean age of maturity. Mother’s av-
erage rank over the daughter’s lifetime was also a
significant indicator of daughter’s age of maturity
(R 2 5 0.58, P 5 0.02).

REPORTS
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looking female who occupied the highest
rank and cycled regularly for 28 years but
never became pregnant. If she is included in
the analyses, the relation of the rate of
production of surviving infants and life-
time reproductive success with rank ceases
to be significant (Fig. 3) (30).

Dominance probably exerts its effects in
several ways. First, the high mortality of
infants of low-ranking females in the first
few months of life was partly due to the
infanticidal behavior of the high-ranking
female, PS, and her daughter, PM, who
snatched and ate the infants of several fe-
males in the 1970s (10, 31). Since then,
high-ranking females FF and GG were ob-
served trying to snatch the newborn infant
of middle-ranking female GM, and females
of unknown rank in an adjacent community
were seen eating another female’s infant
(20). These observations suggest that fe-
male infanticide may be a significant, if
sporadic, threat, rather than the pathologi-
cal behavior of one female. However, in-
fants are vulnerable to infanticide for only a
few weeks, and rank-related effects on off-
spring mortality continue well beyond that
age (Fig. 1). Second, the younger age at
which daughters of high-ranking females
reach sexual maturity reflects their higher
rates of weight gain (20), suggesting that
high-ranking females have better nutrition.
Better nutrition might also account for bet-
ter survival of high-ranking females and
their offspring. In species living in perma-
nent groups, reduced reproductive success
of low-ranking females has been attributed
to chronic stress due to frequent aggression
from other females (8). Because female

chimpanzees spend so much time alone,
often going for a day or longer without
seeing another female, this is unlikely to be
important in this species.

High rank may confer better access to
food, both by enabling a female to acquire
and maintain a core area of high quality
and by affording her priority of access to
food in overlap areas (32). Because of the
mosaic distribution of vegetation at
Gombe, some female core areas are likely
to contain higher quality food than others.
In addition, because core areas overlap
almost completely, a high-ranking female
may gain priority of access to preferred
food sites in an overlap area. These modes
of competition might explain why domi-
nance behavior is less frequent in this
species than in some others and why linear
dominance hierarchies are hard to detect.
If core areas are stable, competition is
likely to be most intense when new or
maturing females are attempting to estab-
lish their own core areas (16). This idea is
consistent with the frequent observations
of aggressive interactions from resident fe-
males to newly immigrant females at
Gombe (33) and the Mahale mountains
(11), the fact that PS and PM killed the
infants of neighboring females as PM
reached maturity (31, 34), and observa-
tions of more frequent dominance interac-
tions during the establishment of a new
female group in captivity (16). In addi-
tion, clear dominance relationships may
only be established between females
whose core areas overlap, thus explaining
the general lack of clearly defined linear
dominance hierarchies. The stability of
core areas, the acquisition of core areas,
and the relationships of females whose
core areas overlap are the focus of current
research at Gombe.

More research is needed to understand
how female chimpanzees achieve high rank.
Some females, such as GG, acquired high
rank by their own aggressive behavior. Oth-
er females, such as PM, have gained high
rank through their mother’s support. The
fact that alliances with kin are sometimes
important makes it all the more striking
that young female chimpanzees often dis-
perse to other communities. This under-
scores the suggestion that they are “forced”
to do so in order to avoid inbreeding be-
cause their male relatives do not disperse,
perhaps because of even stronger advantag-
es to males from cooperation with relatives
(35, 36). More information on the relative
importance of alliances in the acquisition of
female dominance rank and the influence
of dominance on reproductive success in
other populations of chimpanzees might
clarify why only half the females at Gombe
disperse, whereas almost 100% do so in

other populations (9). Finally, if the con-
siderable degree of reproductive skew ob-
served in the Gombe chimpanzees also oc-
curs in other populations, this has implica-
tions for the future genetic diversity of this
endangered species. As populations become
small and isolated, there is a greater chance
for the genetic diversity of the population
to be reduced by the successful reproduction
of a few dominant individuals (37).
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Bypass of Senescence After Disruption of
p21CIP1/WAF1 Gene in Normal Diploid Human

Fibroblasts
Jeremy P. Brown,* Wenyi Wei, John M. Sedivy†

Most somatic cells die after a finite number of cell divisions, a phenomenon described
as senescence. The p21CIP1/WAF1 gene encodes an inhibitor of cyclin-dependent ki-
nases. Inactivation of p21 by two sequential rounds of targeted homologous recombi-
nation was sufficient to bypass senescence in normal diploid human fibroblasts. At the
checkpoint between the prereplicative phase of growth and the phase of chromosome
replication, cells lacking p21 failed to arrest the cell cycle in response to DNA damage,
but their apoptotic response and genomic stability were unaltered. These results es-
tablish the feasibility of using gene targeting for genetic studies of normal human cells.

The replicative life-span of somatic cells
reflects the number of cell divisions, not
chronological time, and may contribute to
organismic aging (1). Shortening of telo-
meres may be the molecular mechanism
that triggers an irreversible arrest, referred
to as senescence, of the prereplicative
phase of growth in the cell cycle (G1) (2).
Genes that have been implicated in regu-
lating senescence include tumor suppres-
sors p53 (3) and RB1 (4), cyclin-depen-
dent kinase (Cdk) inhibitors p21CIP1/ WAF1

(5) and p16INK4a (6), and several currently
unidentified genes (7). Viral oncoproteins
that interfere with p53 and RB1 cause
bypass of senescence and extended life-
span, followed by a decline designated as
crisis (8). Two limitations have hampered
studies of human senescence. First, viral
oncoproteins may not completely inacti-
vate their targets. Second, studies in ro-
dents cannot be extrapolated to humans
because of interspecies differences in the
mechanisms of senescence and immortal-
ization (9).

Introduction of null mutations into a
cellular gene is a direct and unambiguous
way to test the function of that gene. We
were concerned that normal human dip-
loid fibroblasts (HDFs) would senesce be-
fore two sequential rounds of gene target-
ing could be completed. Therefore, we

developed strategies for efficient gene tar-
geting in somatic cells (10), established a
culture system that allows high single-cell
cloning efficiency (11), and generated a
new cell strain (LF1) (Fig. 1A) (12).

LF1 cells (5 3 107 cells) at passage 7
were electroporated with a targeting vec-
tor containing a neomycin (neo)-resis-
tance gene (Fig. 2A) (13). Twenty colo-
nies were obtained and expanded into
clonal cell strains. Southern (DNA) blot-
ting analysis showed that three clones
(HE1.2-1, HE1.3-2, HE3.2-1) (14) con-
tained one targeted p21 gene copy (Fig.
2B). HE1.3-2 cells (5 3 107 cells) were
electroporated with a vector containing a
hygromycin (hyg)-resistance gene (Fig.
2A), yielding 24 clones, one of which
(HO7.2-1) had targeted the second p21
gene copy (Fig. 2B), and two of which had
retargeted the neo-targeted gene copy (15,
16). Protein immunoblotting analysis con-
firmed that the HO7.2-1 clone did not
express p21 protein (Fig. 2C).

The hygromycin-resistant colonies
were expanded into cell strains and pas-
saged until senescence (Fig. 1C) (17). The
21 nontargeted (p21 1/2) strains se-
nesced between passages 2 and 10 (mean
passage 6.76 6 2.55 SD) (18), whereas the
HO7.2-1 strain did not cease proliferation
until passage 19, when it displayed signs of
crisis (19). During the period of extended
life-span, no cell death was evident in
HO7.2-1 cultures. Because in our experi-
mental regimen one passage is equivalent
to a minimum of two population doublings
(PD) (11), loss of p21 resulted in quanti-
tatively the same life-span extension (20
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