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Evolutionary bargaining with intentional idiosyncratic play☆
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We study equilibrium selection in stochastic evolutionary bargaining games in which idiosyncratic play is
intentional instead of random. In contract games, the stochastically stable state selected by intentional
idiosyncratic play is the Nash bargain, rather than the usual Kalai-Smorodinsky solution.
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1. Introduction

We extend the Binmore–Samuelson–Young (Binmore et al., 2003)
approach to equilibrium selection in contract games and related
bargaining games by imposing empirically plausible restrictions on the
process generating idiosyncratic (non-best-response) play. (By contract
game, Young (1998) means an asymmetric pure coordination game
played by randomly matched players from two populations.) Our
modification to the standard dynamic(Kandori et al., 1993; Young,
1993a) is motivated by our belief that agents who act idiosyncratically in
economic conflicts are behaving intentionally, and thus do not “acciden-
tally” experiment with contracts under which they would do worse,
should the contract be generally adopted. We have in mind such
idiosyncratic play as refusing to exchange under the terms of a contract
that awards most of the joint surplus to the other party (for example
locking out overly demanding employees). Like Bergin and Lipman
(1996), who conclude that “models or criteria to determine ‘reasonable’

mutation processes should be a focus of research in this area”, and Van
Damme and Weibull (2002), our idiosyncratic play is state-dependent.
But while these authors make error rates state dependent, we make the
distribution of idiosyncratic play across the strategy space state-
dependent, as in Bowles (2004).
The resulting dynamic based on intentional idiosyncratic play

provides a more plausible account of historical real world transitions
between economically important conventions, such as customary crop
shares or the de facto recognition of collective bargaining by businesses.
First, when non-best-response play is intentional transitions between
contracts are induced only by the idiosyncratic play of thosewhostand to
benefit from the switch, in contrast to the standard (unintentional)
approach.Second, asonewouldexpect, in the intentional dynamicwhere
population sizes and idiosyncratic play rates differ, the populationwhose
interests are favored is that whose members who engage in more
frequent idiosyncratic play and who are less numerous.
We find that the contracts that are selected as stochastically stable

under the intentional idiosyncratic play dynamic differ from those
selected under the standard dynamic. Our dynamic selects the
convention that implements the Nash bargain, while the standard
dynamic selects the Kalai-Smorodinsky bargain (Young, 1998; Kalai
and Smorodinsky, 1975). The difference is illustrated in the example
in Table 1. The Kalai-Smorodinsky bargaining solution equates the
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ratio of the payoffs to the ratio of the players' best possible payoff, and
thus is the contract pair (1,1), as 12/20=36/60. In contrast, the Nash
solution is (0,0), since the Nash solution is that which maximizes the
product of the payoffs and 5×60N12×20N36×1.
In Section 2 we introduce intentional idiosyncratic play,

present the main proposition of the paper, and characterize the
stochastically stable state under intentional dynamics for a variety
of cases.

2. The model

2.1. Setup

We consider two populations of sizes N andM, denoted R and C for
row and column, playing an asymmetric bargaining game. Both row
and column players have K strategies, with payoff functions given by
π R(i, i)=ai,πC(i, i)= f(ai) where i∈S={1,2,...,K } and f is positive and
decreasing. We order the strategies such that ai b aj for i b j , so the
row player favors contracts with higher indices, and the column
player favors contracts with lower indices. The off-diagonal payoffs are
given by πR(i, j)=πC(i, j)=0 if i N j and πR(i, j)=λai,πC(i, j)=λf(aj) if
i b j, where 0 ≤ λ≤ 1. That is, agents receive some fraction of their
demands if the demands together do not exhaust the surplus, and
receive 0 otherwise. The contract game (Young, 1998) corresponds to
λ=0 and the Nash demand game corresponds to λ=1. Clearly, the
diagonal of the game matrix constitutes the set of pure Nash equilibria,
and they are all strict and Pareto-optimal.
The dynamic is a familiar myopic best-response dynamic with

inertia (Kandori et al., 1993; Binmore et al., 2003). The state of the
dynamic is described by distributions of strategies in populations
denote by (x,y) (x and y for row and column). Each period, all players
are matched to play the contract game. Each time they are matched,
agents revise their strategy with some probability and play the
strategy they played last period with the remaining probability. To
specify strategy revisions, first we denote by BRR(y) (or BRC(x)) the
best responses of the rowplayer (or the columnplayer, respectively)—
the pure strategy which maximizes the expected payoff,∑ j πR(i, j)yj
(or∑ j πC(i, j)xj).
We model idiosyncratic behaviors by using multinomial random

variables. Specifically, for the row population each period we draw a
multinomial random variable ZR=(Z0R,Z1R,⋯,ZKR) with parameters N and
τR and suppose that Z0R agents play thebest responses and the remaining
Z1
R,Z2R,⋯, and ZK

R players idiosyncratically choose strategy 1,2,⋯, and K.
Here the probability vector τR consists of the probability, τ0R, withwhich
each agent in the row population plays the best responses and the
probabilities, τ1R, ⋯, and τKR, withwhich each agent play the idiosyncratic
strategy 1,2, ⋯, and K. Hence the probability vector τR and its support,
that we will define shortly, play a key role to specify idiosyncratic
behaviors of populations. We use a similar multinomial random
variable Z C to capture the idiosyncratic plays of the column
population. With this updating rule, the dynamic yields a well-defined
Markov chain (Xt,Yt); we provide an example of such dynamics in the
online Appendix for an illustration.
Given a strategy b, we note that i : bb i≤Kf g is the set of

strategies that row population prefers to b because of the indexing
of strategies, so the set i : bb i≤Kf g can provide a set of strategies

from which an intentional idiosyncratic player draws. From this
observation, we set

τR
i ðbÞ =

0 if 1≤ i b b
�

K−b + 1
if b b i≤ K

; τC
j ðbÞ=

�

b
if 1≤ j≤ b

0 if b b j≤ K
;

8><
>:

8><
>:

τR
0ðbÞ = 1−∑

K

i=1
τRi ðbÞ, τ C

0 ðbÞ= 1−∑
K

j=1
τC
j ðbÞ, τ

R=(τ0R,⋯,τKR), and

τ C=(τ0C,⋯,τK
C ). Note that in an unperturbed process in which no

idiosyncratic behavior exists, the set i : b≤ i≤ Kf g is empty for all b;
no agent plays an idiosyncratic strategy. In an unintentional
idiosyncratic process, agents choose idiosyncratic strategy from the
whole strategy set; i.e., i : b≤ i≤ Kf g = S for all b, which means the
support of error always equals S. The intentional idiosyncratic play
distribution is state-dependent; for example, row only experiments
with strategies that would give the idiosyncratic player a higher
payoff when played as part of a pure strategy Nash equilibrium of the
unperturbed game, so that column is best-responding with an offer
that exhausts the surplus. This observation leads to the following
definition. We write Z∼MN (N,τ) if Z follows a multinomial variable
with N draws and a probability vector τ.

Definition 1.
• (Xt,Yt)t∈Z+ is an unperturbed process if Z t

R∼MN (N,τR(K+1)) and
Z t
C∼MN (M,τC(0))

• (Xt,Yt)t∈Z+ is an U-process if Z t
R∼MN (N,τR(0)) and Z t

C∼MN (M,τC

(K+1))
• (Xt , Yt)t ∈ Z+ is an I-process if Z R

t ∼MN N; τR BRR Ytð Þð Þ� �
and

Z C
t Þ∼MN M;τC BRC Xtð Þð Þ� �

.

Clearly both the U-process and I-process are finite state space
Markov chains and that the transition probability matrix of U-process is
irreducible and aperiodic, so the chain admits a unique stationary
distribution μ(ε). We are interested in the stochastically stable states
namely, those that have positive weight in the limit of the
distribution μ (ε) when ε →0 following Young (1993a). We show
that I-process is irreducible and aperiodic in the online Appendix.

2.2. Unintentional vs intentional idiosyncratic dynamics

TheU-process is the standardmutationdynamics encountered in the
literature (Kandori et al., 1993; Young, 1993a).Analyzing the I-process is
the contribution of this paper. Binmore et al. (2003) show that the
stochastically stable state in the U-process is the Kalai-Smorodinsky
solution in the contract game, and the Nash bargaining solution in the
Nash demand game. It is also useful to describe the transitions between
states in theU-process; in the contract game they are driven bymistakes
in the population who loses from the transition. Our I-dynamic, in
contrast, has agents only erring in thedirection that couldbenefit them if
sufficiently many others did the same; thus the populations driving
transitions are the ones that stand to gain. This difference in the relevant
population mutations drives the differences in the stochastically stable
state that the two processes select.
First, it is easily seen that each contract i is an absorbing state in the

unperturbed process, where we identify the state where all agents in
both rowand columnpopulationplay the same strategy iwith contract i.
Then following Binmore et al. (2003) we compute the resistance Rij−
minimumnumber of idiosyncratic players tomove fromthe state i to the
state j- in I-process, ignoring integer considerations:

Rij =
N

f ðaiÞ−λf ðajÞ
f ðaiÞ + ð1−λÞf ðajÞ

if i b j

M
ai−λaj

ai + ð1−λÞaj
if i N j

:

8>><
>>:

Table 1
Example 1.

Contract 0 1 2

0 5.60 0.0 0.0
1 0.0 12.20 0.0
2 0.0 0.0 36.1
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We call trees with Rij edge resistances I-trees. From Theorem 1 in
(Young, 1993a), we know that the I-stable state is contained in the
root of the minimal I-tree. In the online Appendix A we show that
the U-stable state in example 1 is the Kalai-Smorodinsky solution,while
stochastically stable state under the I dynamic is the Nash solution. This
is a general difference, as illustrated by the next proposition where we
set a�N = arg max

s∈½0;1�
s f ðsÞ, and a�G = arg max

s∈½0;1�
sMðf ðsÞÞN .We suppose that f

is concave and normalize f in a way that f(0)=1 and f(1)=0.

Proposition 1. Suppose the ai= iδ and i∈ 1; ⋯
1−δ
δ

;
1
δ

n o
for δN0. Then

we have

(i) If λ ≤ 1,a unique stochastically stable contract in the I-dynamic i*

exists, and is increasing in N /M
(ii) If λ= 1 and δ is sufficiently small, the stochastically stable
contract i* in the I-dynamic approaches (aG* , f(aG* )).
(iii) If M=N and δ is sufficiently small, the stochastically stable
contract i* in the I-dynamic approaches (aN* , f(aN* )).

Proof. See Appendix B available online.
Note that if λ=1 (the Nash demand game) the I- and U- dynamics

select the same outcome (Young, 1993b). IfN=M then the symmetric
Nash bargain solution is I-stable. Note also that if λ≤1 and N is not
equal toM, the stochastically stable contract will be closer to the best
contract for the group with lower population-size. Smaller groups are
favored because the realized level of idiosyncratic play is more likely
to exceed the critical level to induce a transition, and in the I dynamic
groups benefit from the transitions which their idiosyncratic play
induces.
Thus we find that a natural and empirically motivated restriction

on idiosyncratic play in bargaining games may select different
outcomes, as well as generating an empirically plausible transition
dynamic in which smaller group size is an advantage, and groups
whose idiosyncratic players induce transitions benefit as a result. For
example,N=M and λ=0 (Contract game). Then the U-dynamic selects
theKalai-Smorodinsky solution (Young, 1998; Binmoreet al., 2003), and
the I-dynamic selects the Nash solution. Our I-dynamic is thus another
class of bargaining interactions in which a standard result of axiomatic

cooperative game theory is replicated by the non-cooperative play of
only minimally forward looking individuals with limited information.
The contrast between the I-dynamic and the standard model for the
contract game illustrates the economic intuitions underlying these
results. The key differences result from the fact that in the former
transitions are induced by the idiosyncratic play of those who stand to
benefit. In the U-dynamic the opposite is the case because it will always
take fewer idiosyncratic players in one population to induce best
responders in the other to shift to a contract that they prefer over the
status quo than to induce them to concede to a less advantageous
contract. In the U-dynamic, the deviations of one population induce the
other population to coordinate on a contract that they strictly prefer to
the status quo; while in the I-dynamic deviations by one population
must induce the other population to coordinate on a strictly inferior
contract.

Acknowledgments

We would like to thank the MacArthur Foundation, the Russell
Sage Foundation, and the Behavioral Science Program of the Santa Fe
Institute for financial support. We are grateful for comments on this
paper to Willemien Kets, Luc Rey-Bellet, Chris Shannon, Rajiv Sethi,
Adam Szeidl, and to participants in the working group on inequality in
the long run at the Santa Fe Institute.

References

Bergin, J., Lipman, B., 1996. Evolution with state dependent mutations. Econometrica
70, 281–297.

Binmore, K., Samuelson, L., Young, H.P., 2003. Equilibrium selection in bargaining
models. Games and Economic Behavior 46, 296–328.

Bowles, S., 2004. Microeconomics: Behavior, Institutions, and Evolution. Princeton
University Press, Princeton, NJ.

Kalai, E., Smorodinsky, M., 1975. Other solutions to Nash's bargaining problem.
Econometrica 43 (3), 513–518.

Kandori, M.G., Mailath, G., Rob, R., 1993. Learning, mutation, and long run equilibria in
games. Econometrica 61, 29–56.

Van Damme, E., Weibull, J., 2002. Evolution in games with endogenous mistake
probabilities. Journal of Economic Theory 106, 296–315.

Young, H.P., 1993. The evolution of conventions. Econometrica 61 (1), 57–84 Jan.
Young, H.P., 1993. An evolutionary model of bargaining. Journal of Economic Theory 59

(1), 145–168 Feb.
Young, H.P., 1998. Conventional contracts. Review of Economic Studies 65, 776–792.

33S. Naidu et al. / Economics Letters 109 (2010) 31–33


