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We explore the manner in which the structure of a social network constrains the
level of inequality that can be sustained among its members, based on the following
considerations: (i) any distribution of value must be stable with respect to coalitional
deviations, and (ii) the network structure itself determines the coalitions that may form.
We show that if players can jointly deviate only if they form a clique in the network, then
the degree of inequality that can be sustained depends on the cardinality of the maximum
independent set. For bipartite networks, the size of the maximum independent set fully
characterizes the degree of inequality that can be sustained. This result extends partially
to general networks and to the case in which a group of players can deviate jointly if they
are all sufficiently close to each other in the network.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In 494 BCE, the plebs of the Roman Republic, seeking relief from judicial harassment, indebtedness and poverty, left
Rome en masse and threatened to settle permanently outside its walls, as a result extracting major concessions from the
Roman patricians (Livy, 1960). Plantation owners in Hawaii a century ago expressly hired workers who spoke different native
languages to ensure that communication among them would be limited, thus discouraging labor action (Takaki, 1983). U.S.
employer efforts in the 1930s to build firm loyalty by sponsoring social activities led to stronger bonds between workers
that they could use to mobilize their collective power and form effective unions (Estlund, 2003). And the extraordinary
longevity of the Ottoman Empire (1300–1918) and its remarkable integration and taxation of diverse ethnic and religious
communities was based on a network structure that “made peripheral elites dependent on the center, communicating only
with the center rather than with one another” (Barkey, 2008).

A recurrent theme in these examples is the central role of coalitional deviations in determining the distribution of
income, with the structure of social relations being a central determinant of the coalitions that form. This motivates us
to explore formally the manner in which the structure of a social network constrains the level of inequality that can
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be sustained among its members. We develop a model of inequality on networks based on the following considerations:
(i) any distribution of value must be stable with respect to coalitional deviations, and (ii) the set of feasible coalitions is
itself constrained by the requirement that only groups of players that are mutually connected can jointly deviate. That is,
we allow for deviations only by groups of individuals who form a clique in the network. A payoff distribution is said to
be stable if there is no clique that can profitably deviate. The main research question is then the following: What is the
relationship between the structure of the network and the maximum level of stable inequality?

To compare payoff distributions in terms of their level of inequality, we adopt the standard criterion of Lorenz domi-
nance and define a value distribution to be extremal if it is stable with respect to clique deviations and does not Lorenz
dominate any other stable distribution. Since Lorenz dominance provides only a partial ordering of value distributions, the
extremal distribution for any given network may not be unique, and extremal distributions for different networks may be
incomparable.

Our main contribution is to establish a connection between extremal inequality on a network and a natural measure of
the sparseness of a network, the size of its maximum independent set.1 This connection is especially strong in the case
of bipartite networks, which have unique extremal distributions and can be completely ordered; we show that bipartite
networks with larger maximum independent sets can sustain greater levels of extremal inequality. For general networks
with arbitrary clique sizes, a weaker result holds: for any two networks, extremal inequality cannot be greater in the one
with the smaller maximum independent set.

Our framework can be extended to include the case in which players can jointly deviate if they are all within distance
k of each other (the case of clique deviations corresponds to k = 1). We explore the manner in which extremal inequality
changes as k is varied. Although inequality (weakly) declines as k increases, it can do so at different rates in different
networks. As a result, the ranking of networks by the extent of extremal inequality is not invariant in k.

A number of recent papers have explored the determinants of inequality in equilibrium networks (see Section 2 for
details). In these papers, an agent’s central position confers the ability to gain larger shares of the surplus, the intuition
being that essential intermediaries can extract rents through their control of flows between players that are not otherwise
connected (e.g., Goyal and Vega-Redondo, 2007; Hojman and Szeidl, 2008).2 These “middleman” models are implicitly based
on the idea that competition reduces inequality, and monopoly increases it.

While this intuition is undoubtedly correct in many settings, our model stresses another dimension that influences
inequality: the ability of players to form viable coalitions. Intuitively, if the network is dense, inequality will be hard to
sustain as disadvantaged players can communicate and coordinate on joint actions. Conversely, if the network is sparse,
peripheral players can more readily be exploited. Hence, while in the so-called “middleman” models, a player can secure
a large share of the surplus if he is well connected, under our approach this is the case if the other players are isolated.
We show by example that our model gives rise to different predictions in a number of cases, underlining the importance of
considering alternative approaches to the relationship between income distribution and social structure.

2. Related literature

The idea that network structure influences the allocation of value was initially proposed in a seminal paper by Myerson
(1977), who assumed that a coalition of individuals could generate value if and only if they were all connected to each
other along some path that did not involve anyone outside the coalition. Myerson’s work motivated a significant litera-
ture on communication games (see Slikker and van den Nouweland, 2001, for a survey) and more generally on games on
combinatorial structures (Bilbao, 2000); see e.g. Demange (2004) for an important application to economic questions.

Our approach differs in two important respects from this line of work. First, while the aim of much of the literature
cited above is to give a characterization of different solution concepts, to investigate their relation with each other, and
to provide conditions for the existence of solutions in general classes of games, our focus is on the maximum degree of
inequality that can be sustained in a restricted set of games where existence of stable distributions is guaranteed. Second,
our setting naturally leads us to consider coalitional deviations that do not generate a combinatorial structure. For example,
two feasible coalitions may overlap in our setting, without there being a feasible coalition (other than the complete network)
that contains both, in contrast with the settings considered by Myerson (1977) and Demange (2004), for example. This
means that there is no natural order in which the value can be allocated to the cliques; see Bilbao (2000) for a discussion.

Finally, Bloch et al. (2008) study the stability of insurance networks for different levels of communication. As in the
current paper, information transmission across network links (over limited distances) plays a crucial role in this work, and
the sparseness of the network is an important determinant of the viability of various allocations. However, while Bloch et al.
study the stability of insurance norms in different networks, we focus on sustainable levels of inequality. Furthermore, the
notion of sparseness differs: while sparseness in our setting is determined by the size of independent sets, in the context
of Bloch et al. sparseness is captured by the minimal length of cycles among triples of agents.

1 An independent set in a network is a set of vertices such that no pair of vertices in the set are connected to each other. An independent set is maximum
if there is no independent set of greater size.

2 Another important difference with our work is that these papers employ an exogenously given profile of payoff functions that determines for each
network the allocation of value between players.
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3. Distributions on networks

3.1. Networks

Players are located on a network. A network is a pair (N, g), where N = {1, . . . ,n} is a set of vertices and g is an n × n
matrix, with gij = 1 denoting that there is a link or edge between two vertices i and j, and gij = 0 meaning that there is no
link between i and j. A link between i and j is denoted by {i, j}. We focus on undirected networks, so gij = g ji . Moreover,
we set gii = 0 for all i. In the following, we fix the vertex set N and denote a network by the matrix g . If gij = 1, that is,
if there is a link between i and j, we say that i and j are neighbors or, alternatively, that they are adjacent in g . A clique
is a set of pairwise adjacent vertices. Hence, an edge is a clique, and so is a triangle, where a triangle is a set {i, j,k}
of three distinct vertices that are all connected. It will be convenient to view a single vertex as a (singleton) clique. An
important subclass of networks is the set of bipartite networks. A network is bipartite if the vertices can be partitioned into
two classes, and there are no links within each class. Bipartite networks thus provide a natural model of trading relations
between buyers and sellers. Also, bipartite networks are of interest because they contain the class of minimally connected
networks (trees), which often form the stable outcomes of strategic network formation models.

An independent set in a network is a set of vertices that are pairwise nonadjacent. A set of vertices forms a maximum
independent set in g if it is an independent set and there is no independent set in g of a strictly greater size. Note that
while a network may have multiple (maximum) independent sets, the size of a maximum independent set is unique.

3.2. Value generation

Consider a set of players N = {1, . . . ,n}, and a network g with vertex set N , so that each player is associated with a
vertex. Following Jackson and Wolinsky (1996), we assume that the value generated by a group of players S is given by
v(g|S), where g|S is the subgraph of g induced by S , i.e., the network obtained by removing the players not in S; for
simplicity, we write v(g) for v(g|N). As a normalization, assume that the value of the empty network g E is v(g E ) = 0,
where the empty network is the network without any vertices or edges.

We assume that the value function is anonymous, in the sense that the value generated by a group of players only
depends on the number of players in the group and the way in which they are connected, but not on their identities. That
is, if S and S ′ are subsets of players, then for any bijection π from S to S ′ , it holds that

v(g|S) = v
(

gπ |S ′
)
,

where gπ is the network that has the same architecture as g , but with the players in S relabeled according to π , i.e.,
gπ

i, j = 1 if and only if gπ−1(i),π−1( j) = 1. This anonymity assumption allows us to abstract from the effects of productivity
differences across players in order to isolate the role of network structure in determining inequality. The assumption implies
in particular that any two cliques Ck, C ′

k each having k players generate the same value, as they share the same network
architecture:

v(g|Ck ) = v(g|C ′
k
).

A special case of an anonymous value function is one in which the value generated by a group of players S depends only
on their number, that is, v(g|S) equals f (|S|) for any S ⊆ N , where f is some arbitrary function on the natural numbers.

3.3. Stability

The surplus generated by the group must be divided among its members subject to the constraint that no clique can
deviate profitably. Formally, an allocation is any vector x = (x1, . . . , xn) ∈ RN . An allocation x is stable on g if no clique can
gain by deviating: for each clique C in g ,∑

i∈C

xi � v(g|C ). (3.1)

That is, for an allocation to be stable, the members of each clique have to get at least as much collectively under the
allocation as they would if they were to deviate collectively and form their own network.

A second natural constraint is that players cannot divide more than they produce:∑
i∈N

xi = v(g). (3.2)

An allocation x is feasible if (3.2) is satisfied.
The definition of the set of feasible and stable allocations is reminiscent of the definition of the core in transferable-

utility games (TU-games) for the special case that the value generated by a coalition does not depend on the way the
players in the coalition are connected. The difference is that while inequality (3.1) needs to hold for all coalitions for x to
be in the core, we only require the inequality to hold for subsets of players that are sufficiently close in the network. It
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Fig. 1. (a) The set of feasible and stable allocations, denoted P g , for the triangle. (b) The set of feasible and stable allocations, denoted P g , for the line.

follows that if we have two networks, g and g′ , and g is a connected subgraph of g′ with the same number of players,
then the set of feasible and stable allocations for g′ is contained in the set of feasible and stable allocations for g (when the
value function does not depend on the network architecture). In particular, the set of feasible and stable allocations for an
arbitrary network is a superset of the set of feasible and stable allocations for the complete network, which coincides with
the core of an appropriately defined TU-game, as illustrated in Example 4.1 below.

3.4. Lorenz dominance

We wish to compare allocations in terms of the inequality they generate. Corresponding to any allocation x is a distribu-
tion x̄ = (x̄1, . . . , x̄n). The distribution x̄ is simply a permutation of the elements of x that places them in (weakly) increasing
order: x̄1 � x̄2 � · · · � x̄n . We say that a distribution x̄ is feasible and stable on a network g if there exists a corresponding
allocation that is feasible and stable on g .

To compare distributions in terms of the level of inequality, we consider the widely-used criterion of Lorenz dominance.
Consider two distributions x̄ = (x̄1, . . . , x̄n), ȳ = ( ȳ1, . . . , ȳn) ∈ Rn+ such that∑

i∈N

x̄i =
∑
i∈N

ȳi .

Then, we say that x̄ Lorenz dominates ȳ if, for each m = 1, . . . ,n,

m∑
i=1

x̄i �
m∑

i=1

ȳi,

with strict inequality for some m. If x̄ Lorenz dominates ȳ, we say that x̄ is a more equal distribution than ȳ. If x̄ does not
Lorenz dominate ȳ and ȳ does not Lorenz dominate x̄, we say that x̄ and ȳ are incomparable. We call a stable distribution
x̄ on g which is feasible extremal if there is no distribution ȳ that is stable and feasible such that x̄ Lorenz dominates ȳ.
Since the Lorenz dominance criterion only provides a partial order on the set of feasible and stable distributions, there may
be multiple extremal distributions for a given network. We say that a network g has a unique extremal distribution if the set
of extremal distributions on g is a singleton.

4. Examples

The examples in this section illustrate the concepts of stability and inequality, and show that the model can give different
predictions relative to other models of inequality on networks. Throughout this section, we focus on the special case in
which the value generated by a group of players does not depend on the manner in which they are connected, but only on
the number of players in the group. That is, there exists some function f such that v(g|S) = f (|S|) for any group of players
S and any network g . Examples for the more general case can readily be constructed.

The first example illustrates how the structure of a network can affect the set of feasible and stable allocations.

Example 4.1. Consider two connected networks with three players, the triangle (illustrated in the upper-left corner of
Fig. 1(a)) and the line (illustrated in the upper-left corner of Fig. 1(b)), with player 2 as the center or hub. Assume that
the value generated by a group of players of size m is f (m) = m2. In both cases, the set of feasible and stable allocations
is a subset of the simplex defined by x1 + x2 + x3 = f (n) = 9. For the triangle, the set of extreme points consists of all
permutations of (1,3,5). For the line, the extreme points of the set of feasible and stable allocations are the allocations
(1,3,5), (5,3,1), (1,5,3), (3,5,1) and (1,7,1) when player 2 is the center of the line. Hence, the set of feasible and stable
allocations for the line is a superset of the set of feasible and stable allocations for the triangle; see panels (a) and (b) in
Fig. 1. Intuitively, there are fewer feasible coalitions in the line than in the triangle: the peripheral players (viz., players 1
and 3) in the line cannot jointly deviate, while each pair of players forms a feasible coalition in the triangle. That means
that in the triangle, players 1 and 3 need to receive at least f (2) = 4 (as does any other pair of players), while in the line,
they only need to get f (1) + f (1) = 2. For both networks, there is a unique extremal distribution, given by x̄ = (1,1,7) for
the line, and x̄′ = (1,3,5) for the triangle. It is easily verified that the latter Lorenz dominates the former.
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Fig. 2. (a) The network h of Example 4.2. (b) The network h′ of Example 4.2. The numbers represent one of the allocations consistent with the unique
extremal distribution in each case.

Fig. 3. The network of Example 4.3. The player with the greatest degree and betweenness gets the lowest payoff in any extremal allocation.

In Example 4.1, what properties of network g allow it to support a more unequal distribution than g′? One possibility
is the fact that the distribution of the number of neighbors that each player has in g is itself more unequal than that in g′ ,
i.e., an unequal distribution of value can be explained by inequality in the degree distribution. The following example shows
that this is not the case.

Example 4.2. Suppose f (1) = 1, f (2) = 3, and f (10) = 20. Consider the networks h and h′ in Fig. 2(a) and (b), respectively.
In both cases, the value generated by the network is equal to 20. The stability conditions require that each individual be
assigned at least f (1) = 1, and each pair of neighbors be assigned at least f (2) = 3. Both networks have a unique extremal
distribution, given by

x̄ = (1,1,1,1,1,2,2,2,2,7), and x̄′ = (1,1,1,1,1,1,2,2,2,8).

Hence, x̄ Lorenz dominates x̄′ . This is the opposite of what one would predict based on inequality in the degree distributions
of h and h′ , which are given by:

d̄ = (1,1,1,1,1,2,2,3,3,3), and d̄′ = (1,1,1,2,2,2,2,2,2,3).

Clearly d̄′ Lorenz dominates d̄, even though x̄ Lorenz dominates x̄′ .

Like a player’s degree, his betweenness is often taken as a measure of a player’s prominence and as a determinant of
a player’s payoffs. The betweenness of a player i in a network is the number of shortest paths between v and w player
i belongs to over the total number of all shortest paths between v and w , averaged over all v and w (see, for example,
Jackson, 2008). However, inequality in betweenness fares no better in explaining extremal inequality, as the next example
demonstrates.

Example 4.3. Suppose f (1) = 1, f (2) = 3, and f (7) = 12. Consider the network in Fig. 3. It can be verified that the network
has a unique extremal distribution, given by

x̄ = (1,1,1,1,2,2,4).

This distribution is consistent with different allocations to the players, but in any such allocation, each player represented
by an open circle (◦) in Fig. 3 is assigned f (1) = 1. This includes the player with the highest degree. This player also has
the highest betweenness (0.43), more than double than that of his neighbors, both of whom receive higher payoffs.

Taken together Examples 4.2 and 4.3 demonstrate that a focus on inequality in the degree or betweenness in attempting
to understand the extent of inequality in social networks is misleading in two respects. First, networks with more equal
degree or betweenness distributions may be capable of sustaining greater inequality than those with more unequal distri-
butions. And second, by either measure, well-connected players can do substantially worse than less well-connected players
in a given network.3 This suggests that these measures, which are motivated by what we called “middleman” models in
Section 1, fail to capture inequality caused by the differential ability of players to form deviating coalition, which lies at the
heart of our model.

In the following section, we show that rather than the degree or betweenness distribution, it is the size of the largest
independent sets that determines the degree of inequality that can be sustained.

3 It can be shown by example that another important centrality measure, closeness, also fails to predict high payoffs, where the closeness of a player in
the network is the average length of the shortest paths to other players (Jackson, 2008).
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5. Extremal inequality

5.1. Bipartite networks

In this section, we first show that any bipartite network has a unique extremal distribution when some conditions on
the value functions are satisfied. We then investigate how the unique extremal distribution changes for bipartite networks
when the network structure is varied. We make the following assumptions on the value function v: For any network g on
player set N ,

A1: v(g|C2 ) � 2v(g|C1 );
A2: 2v(g) � n v(g|C2 ),

where n = |N| is the number of players, C2 is a clique of size 2 in g (i.e., a pair of neighbors), and C1 is a clique of size 1
(i.e., a single player).4 By our anonymity assumption, the value of a clique of a given size does not depend on the identity
of the players or on the wider network structure, so that A1 and A2 do not depend on which cliques C1 and C2 are being
considered.

If A1 is not satisfied, no allocation exists that is both feasible and stable for a nonempty network. If A2 is not satisfied,
an allocation that is stable and feasible potentially exists, but our results below will not hold for all bipartite networks. As
only cliques of sizes 1 and 2 can deviate in a bipartite network, the egalitarian distribution, which gives an equal amount
v(g)/n to each player, is stable under these assumptions.

We first ask whether the extremal distribution is unique for this class of networks. Let A be a maximum independent
set in g , and let � ∈ N \ A be an arbitrary player not belonging to A. Define the allocation x∗ by

x∗
i =

⎧⎨
⎩

v(g|C1) if i ∈ A,

v(g|C2) − v(g|C1) if i ∈ N \ (A ∪ {�}),
v(g) − |A|v(g|C1) − (n − |A| − 1)(v(g|C2) − v(g|C1)) if i = �.

(5.1)

By assumptions A1 and A2, x∗
� � x∗

i for any i ∈ N . The corresponding distribution is denoted by x̄∗ .
The following result characterizes the extremal distribution (and establishes its uniqueness) for the case of bipartite

networks.

Theorem 5.1. Suppose assumptions A1 and A2 are satisfied. If g is a bipartite network, then x̄∗ is its unique extremal distribution.

As a corollary of Theorem 5.1, we find that bipartite networks can be ranked in terms of extremal inequality by the
size of their maximum independent sets whenever they generate the same total value.5 Hence, even though the Lorenz
dominance relation is not a complete order, we obtain a complete order on the set of bipartite networks.

Corollary 5.2. Suppose assumptions A1 and A2 are satisfied. Consider any two bipartite networks g, g′ with vertex set N such that
v(g) = v(g′). Let A and A′ be any maximum independent sets in g and g′ , and let x̄ and x̄′ be their unique extremal distributions.
Then, x̄ = x̄′ if and only if |A| = |A′|. If |A| �= |A′|, then x̄ Lorenz dominates x̄′ if and only if |A| < |A′|.

Important for our results is that the size of a deviating coalition is at most 2 in a bipartite network. When we impose
limits on the size of the deviating coalitions, the results extend to general networks. The next section shows that the size of
the maximum independent set is still an important determinant of extremal inequality in general networks when coalitions
of arbitrary size are allowed.

5.2. General networks

Our results on extremal inequality do not easily extend to general networks. There are two issues to consider: the
uniqueness of the extremal distribution for a given network, and the ordering of networks with respect to their extremal
distributions.

First, it can be shown by example that two networks with the same cardinality of their maximum independent sets
can be unambiguously ranked with respect to their extremal distributions. Also, two networks that differ in the cardinality
of their maximum independent set may have extremal distributions that cannot be ranked with respect to their extremal
distributions.6 Indeed, a companion paper (Iyengar et al., 2010) shows that the extreme points of the set of feasible and

4 In the special case that the value generated by a group only depends on the size of the group, A1 reduces to f (2) � 2 f (1), and A2 becomes 2 f (n) �
nf (2).

5 Note that Lorenz dominance is only defined for distributions x̄, x̄∗ such that the total value is equal, i.e.,
∑

i x̄i = ∑
i x̄′

i .
6 See the earlier version of this paper (Kets et al., 2009).
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stable allocations for more general networks involves not only the independent sets, but also network structures that consist
of both edges and triangles. As any extremal distribution—and indeed any distribution at which an inequality measure such
as the Gini index is maximized—must be consistent with an allocation at an extreme point of the set of feasible and stable
allocations, these results suggest that features of a network other than the cardinality of maximum independent sets will
be important for characterizing extremal inequality in general.7

However, it is possible to obtain a somewhat weaker result. To state this, we focus on the special case where the value
generated by a group of players does not depend on the way they are connected, i.e., there exists a function f such that
v(gS) = f (|S|) for every subset S of players.8 We make the following assumption on the value function f :

An: For all k, � = 0, . . . ,n − 1 such that k > �,

f (k + 1) − f (k) � f (� + 1) − f (�).

This is a strengthening of assumptions A1 and A2 to ensure that a feasible and stable allocation always exists.
The following result provides a partial characterization of extremal inequality in general networks.

Theorem 5.3. Suppose f satisfies An, and consider two networks g and g′ . Let A and A′ denote maximum independent sets in g and
g′ , respectively. If |A| < |A′|, then there exists an extremal distribution x̄′ for g′ such that no extremal distribution x̄ in g is Lorenz
dominated by x̄′ .

Note that Theorem 5.3 does not require extremal distributions to be unique. It also leaves open the possibility that the
extremal distributions for two different networks are incomparable, or that extremal inequality does not change when the
cardinality of the maximum independent set changes. We cannot rule out these possibilities because there may be multiple
extremal distributions for a given network and, moreover, even if all extremal distributions are unique, the set of feasible
and stable allocations may change with network structure in a nontrivial and unexpected manner (cf. Kalai et al., 1978).
What Theorem 5.3 does rule out is that extremal inequality in a network with a smaller maximum independent set is
greater than in a network with a larger one.

We now turn to a natural application of Theorem 5.3, allowing players to coordinate a deviation over larger distances.

5.3. Broader coalitions

To this point we have assumed that players can coordinate on a deviation only if they form a clique. We now consider
the possibility of deviations by coalitions of players that are all within some distance k of each other in the network.

Given a network, define a k-coalition to be a set of players that are all within distance k of each other. As in the previous
section, assume that the value that a k-coalition C can obtain on its own is f (|C |), i.e., it does not depend on how the
players are connected. We say that an allocation x is k-stable on g if, for each k-coalition C in g ,∑

i∈C

xi � f
(|C |).

Hence, no k-coalition can profitably deviate from a k-stable allocation. Stability, as defined in Section 3, corresponds to
k-stability for k = 1. A k-stable distribution x̄ on g which is feasible is called k-extremal if there is no distribution ȳ that is
k-stable and feasible such that x̄ Lorenz dominates ȳ.

An immediate observation is that the degree of inequality that can be sustained in a network weakly decreases when
we increase k:

Observation 5.4. For any network g and k,k′ such that k′ > k, if x̄′, x̄ are extremal distributions in g for k and k′ , respectively,
then either x̄′ = x̄, or x̄′ Lorenz dominates x̄, or x̄ and x̄′ cannot be compared with respect to Lorenz dominance.

Intuitively, a group of players that forms a k-coalition in a network g is a k′-coalition in g for k′ > k, so that increasing k
limits the degree of inequality that can be sustained. But while the degree of inequality that can be sustained in a network
weakly decreases for any network if k increases, this decrease occurs at very different rates for different networks. The
following example illustrates this.

7 The reason that inequality is maximized at the extreme points of the (convex) set of feasible and stable allocation is that inequality measures are
(generally) convex functions.

8 It is possible to generalize Theorem 5.3 to the case where the value function depends on network structure. However, additional conditions are needed
to ensure that a feasible and stable allocation exists for an arbitrary network, and it is well known that such conditions can be very restrictive (Kaneko and
Wooders, 1982).
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Fig. 4. (a) The star network gstar of Example 5.5. (b) The network gline of Example 5.5.

Example 5.5. Consider the star network gstar and the line network gline depicted in Fig. 4(a) and (c), respectively, and
suppose f (m) = m2 for m = 0,1, . . . ,n. Corollary 5.2 shows that the unique extremal distribution x̄1

line for the line Lorenz
dominates the unique extremal distribution x̄1

star for the star.
However, when k = 2, the situation is reversed. In the case of the star, all players can now form deviating coalitions,

while for the line, the two players at the end of the star can still not coordinate a joint deviation. This has implications for
the degree of inequality that can be sustained. Also for k = 2, the extremal distributions for the line and star are unique;
however, the unique extremal distribution x̄2

star for the star now Lorenz dominates the unique extremal distribution for the
line x̄2

star .

6. Conclusions

We have studied how the degree of inequality that can be sustained on a network depends on its structure. The starting
point of our analysis is the intuitive idea that players can jointly deviate only if they are sufficiently close to each other
in terms of network distance. The key network property that determines inequality in our analysis is the cardinality of the
maximum independent set.

Returning to the examples with which we began, the size of the maximum independent set provides a framework for
understanding distributional conflicts on these networks. Factory employment, a common language and company-sponsored
social events among workers have the opposite effect, reducing the cardinality of the maximum independent set and with
it, the firm’s feasible claims on the surplus of the network.

There are numerous avenues for further research. An immediate extension is to allow for deviations by larger cliques.
The analysis of stable inequality in general networks by Iyengar et al. (2010) suggests that a characterization of extremal
inequality in terms of intuitive network properties is not possible for arbitrary clique sizes. However, it might be worth
exploring this question for particular subclasses of networks. In a similar vein, it would be worth exploring how the result
change under alternative assumptions on the coalitions that can form.

Finally, we have taken the social network as given. In our motivating examples the network that allows individuals to
coordinate on possible deviations is typically formed for nonstrategic reasons, independent of the value-generating process.
However, a recurrent theme in the network literature is that individuals typically create links to improve their position
vis-à-vis others (e.g., Goyal and Vega-Redondo, 2007), which can lead to inefficiencies (Jackson, 2008). It would therefore
be interesting to study the endogenous formation of networks in the current setting. We leave to future research these and
other unresolved issues concerning the subtle and interesting relationship between inequality and network structure.

Appendix A. Proofs

A.1. Proof of Theorem 5.1

We first derive some preliminary results. Lemma A.1 shows that the set of vertices of any network can be partitioned into
a maximum independent set and a set of vertices that are connected to at least one vertex in the maximum independent
set.

Lemma A.1. Consider a network g with at least two vertices, and let A be a maximum independent set in g. Define

B := { j ∈ N | ∃i ∈ A such that gi j = 1}
to be the set of vertices that have at least one neighbor in A. Then the sets A and B form a partition of the vertex set N.

Proof. First we show that A ∩ B = ∅. Suppose that there is a vertex i ∈ A ∩ B . As i ∈ A and since A is an independent set,
there is no j ∈ A such that gij = 1. However, we also have i ∈ B . By the definition of B , there exists m ∈ A such that gim = 1,
a contradiction.

We now establish that N = A ∪ B . Suppose there exists i ∈ N that does not belong to A ∪ B . Then, by the definition
of B , there exists no j ∈ A such that gij = 1. But then A ∪ {i} is an independent set, contradicting that A is a maximum
independent set. �

Lemma A.2 is a technical result on bipartite networks, which allows us to derive Corollary A.3, which will be an impor-
tant ingredient of our characterization.
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Fig. 5. Two bipartite networks; in each network, a minimum edge cover is indicated with bold lines, and vertices belonging to one of the maximum
independent sets are marked by white circles (◦). Note that while the minimum edge cover and the maximum independent set are unique in the network
in (a), there are two maximum independent sets and two minimum edge covers for the network in (b).

Before we can derive these results, we need some more definitions. The endpoints of an edge e = {i, j} are the vertices
i and j. A vertex is incident to an edge if it is one of the endpoints of that edge. A vertex without any neighbors is called
an isolated vertex. An edge cover of a network with no isolated vertices is a set of edges L such that every vertex of the
network is incident to some edge of L. A minimum edge cover of a network without isolated vertices is an edge cover of the
network such that there is no edge cover with strictly smaller cardinality, see Fig. 5. Note that while a network can have
multiple (minimum) edge covers, the cardinality of a minimum edge cover is well defined. A subgraph of a network (N, g)

is a network (N ′, g′) such that

(i) the vertex set of (N ′ g′) is a subset of that of (N, g), that is, N ′ ⊆ N;
(ii) the edge set of (N ′, g′) is a subset of (N, g), that is, g′

i j = 1 implies gij = 1 for all vertices i and j.

An induced subgraph is a subgraph obtained by deleting a set of vertices. A component of a network (N, g) is a maximal
connected subgraph, that is, a subgraph (N ′ g′) that is connected and is not contained in another connected subgraph of
(N, g). Given a network (N, g), the subgraph induced by the set nonisolated vertices is referred to as the core subgraph of
(N, g).9 Finally, a star is a tree consisting of one vertex adjacent to all other vertices. We refer to this vertex as the center
of the star.

Lemma A.2. Let (M,h) be a bipartite network, and let (M ′,h′) be an induced subgraph of (M,h). For any maximum independent set
A of the core subgraph (N, g) of (M ′,h′), there exists a minimum edge cover L = {{i1, j1}, . . . , {im, jm}} of (N, g) such that

{i1, . . . , im} = A, { j1, . . . , jm} = N \ A,

and there exists no j�, jk , j� �= jk such that i� = ik .

Proof. First note that every induced subgraph of a bipartite network is again a bipartite network (that is, the class of
bipartite networks is hereditary). Therefore, we can prove the statement in the lemma by proving that for any bipartite
network (N, g) and any maximum independent set A of the core subgraph of (N, g), there exists a minimum edge cover
L = {{i1, j1}, . . . , {im, jm}} of the core subgraph with the desired properties (cf. West, 2001, Remark 5.3.20). Without loss of
generality, we can restrict attention to a bipartite network (N, g) without isolated vertices. As before, we fix the vertex set
N and denote the network (N, g) by g .

Let A be a maximum independent set in g . We will construct a minimum edge cover L = {{i1, j1}, . . . , {im, jm}} with
the desired properties. First note that for any minimum edge cover L′ of g , for any vertex i belonging to A, there exists an
edge e in L′ such that i is an endpoint of e, as otherwise L′ would not cover all vertices. Moreover, as A is an independent
set, there is no edge in L′ with two vertices from A as its endpoints. Hence, without loss of generality, we can take
L = {{i1, j1}, . . . , {im, jm}}, with

{i1, . . . , im} ⊇ A.

By the Kőnig–Rado edge covering theorem (e.g. Schrijver, 2003, p. 317), the cardinality of a maximum independent set is
equal to the cardinality of a minimum edge cover, so that

{i1, . . . , im} = A.

Since {i1, . . . , im} = A, for the vertices of N \ A to be covered by L, we need

{ j1, . . . , jm} ⊇ N \ A.

As A is an independent set, we have

{ j1, . . . , jm} = N \ A.

Finally, suppose that there exist distinct j�, jk such that i� = ik =: i. First note that for any minimum edge cover Λ the
following holds. If both endpoints of an edge e belong to edges in Λ other than e, then e /∈ Λ, because otherwise Λ \ {e}

9 Of course, if a network does not have isolated vertices, the core subgraph is just the network itself.
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would also be an edge cover of the network, contradicting that Λ is a minimum edge cover. Hence, each component formed
by edges of L has at most one vertex with more than one neighbor and is a star. By assumption, j� and jk belong to the
same component in L; the center of this component is i. Since each vertex in A is associated with at least one edge in L,
this means that |L| > |A|, which cannot hold by the Kőnig–Rado edge covering theorem. �

Lemma A.2 shows that for each maximum independent set of a bipartite network, there exists a minimum edge cover
such that each vertex i in the network not belonging to the maximum independent set is matched to a vertex j in the
maximum independent set to which it is connected in the network, and there is no other vertex i′ that is matched to j.
Note that vertices not belonging to the maximum independent set will typically be connected to multiple vertices in the
maximum independent set, see e.g. the network in Fig. 5(a).

Corollary A.3 states that for bipartite networks, there exists an injective mapping from vertices not belonging to a maxi-
mum independent set to the vertices in the maximum independent set, in such a way that the vertices that are matched in
this way are neighbors in the network.

Corollary A.3. Let (M,h) be a bipartite network, and let (M ′,h′) be an induced subgraph of (M,h). For any maximum independent
set A of (M ′,h′), there exists an injective mapping π from M ′ \ A to A such that h′

iπ(i) = 1 for all i ∈ M ′ \ A.

Proof. Denote the set of isolated vertices in (M ′,h′) by B . By Lemma A.2, there exists a minimum edge cover L =
{{i1, j1}, . . . , {im, jm}} for the core subgraph (N, g) of (M ′,h′) such that

{i1, . . . , im} = A \ B, { j1, . . . , jm} = M ′ \ (A ∪ B),

and there exists no jm, jk , jm �= jk such that im = ik . Moreover, B ⊆ A. Hence, the mapping π : { j1, . . . , jm} → {i1, . . . , im}∪ B
defined by

π( jt) = it

for t = 1, . . . ,m satisfies the desired properties. �
Finally, Lemma A.4 establishes that the allocation x∗ (Eq. (5.1)) is feasible and stable for a bipartite network.

Lemma A.4. Suppose assumptions A1 and A2 are satisfied. Consider a bipartite network g with at least two vertices. Let A be a
maximum independent set in g, and let � be an arbitrary player in N \ A. Then, the allocation x∗ is feasible and stable.

Proof. The allocation x∗ is feasible by definition: Condition (i) is satisfied by construction:∑
i∈N

x∗
i = v(g).

To show that the allocation x is stable, we need to establish the following:

(i) For each i ∈ N , it holds that xi � v(g|C1 ).
(ii) For each pair i, j ∈ N such that gij = 1, it holds that xi + x j � v(g|C2 ).

Condition (i) is satisfied, since v(g|C1 ) � v(g|C2 ) − v(g|C1 ) � x� for any cliques C1, C2 in g of size 1 and 2, respectively,
where the first inequality follows from A1, and the second from A2. To see that (ii) holds, note that by A1 and Lemma A.1,
each pair of neighbors i, j ∈ N \ {�} gets at least v(g|C2 ) − v(g|C1 ) + v(g|C1 ) = v(g|C2 ). It then follows from A2 that each
pair of neighbors k,m receives at least v(g|C2 ). �

We are now ready to prove Theorem 5.1. Consider a bipartite network (N, g). As before, we fix N and denote the network
by g . When there is one player, i.e., n = 1, it is easy to see that the set of feasible and stable allocations is the singleton
{x∗}, so that trivially x̄∗ is the unique extremal distribution.

Hence, consider the case n � 2. Let A be a maximum independent set of N , and for each t , define

Yt :=
t∑

i=1

x̄∗
i

to be the sum of the t smallest assignments under x̄∗ , and note that

Y ∗
t =

⎧⎨
⎩

t v(g|C1) if t � |A|;
|A| v(g|C1) + (t − |A|) (v(g|C2) − v(g|C1)) if |A| < t � n − 1;
v(g) if t = n,

(A.1)
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where C1 and C2 are arbitrary cliques in g of size 1 and 2, respectively. By Lemma A.4, x∗ is stable and feasible. It remains
to show that for any distribution ȳ on g that is stable and feasible, either ȳ = x̄∗ or ȳ Lorenz dominates x̄∗ . Suppose not.
Then there exists t such that

Y ∗
t > Yt,

where we have defined Yt := ∑t
i=1 ȳi to be the sum of the t smallest assignments under ȳ. Let Q t be any subset of vertices

of cardinality t such that∑
i∈Q t

yi = Yt,

and let At ⊆ Q t be a maximum independent set in the subgraph induced by Q t . Clearly, |At | � |A|.
By Lemma A.1, the set Q t can be partitioned into At and the set Bt of vertices that have at least one neighbor in At . By

Corollary A.3, there is an injective mapping π from Bt to At such that for each i ∈ Bt , {i,π(i)} is an edge in the subgraph
induced by Q t . Define

Ut := {
i ∈ At

∣∣ i = π( j) for some j ∈ Bt
}

to be the set of players in At that are matched with a player in Bt by the mapping π .
In a bipartite network, only singleton coalitions or coalitions consisting of pairs of neighbors can form. Hence, by stability

of ȳ, each individual player needs to be assigned at least v(g|C1 ) under ȳ. By A1, it holds that 2v(g|C1 ) � v(g|C2 ). Hence,
under a stable allocation, two neighboring players cannot both be assigned v(g|C1 ), except when 2v(g|C1 ) = v(g|C2 ). In the
latter case, giving each player other than � his “autarky value” v(g|C1 ), and the remainder v(g) − (n − 1)v(g|C1 ) to � clearly
gives the extremal distribution, and this distribution equals x̄∗ .

So suppose 2v(g|C1 ) > v(g|C2 ). Combining our earlier results gives

Yt =
∑
i∈Q t

yi

=
∑
i∈Bt

(yi + yπ(i)) +
∑

i∈At\Ut

yi

�
∑
i∈Bt

v(g|C2) +
∑

i∈At\Ut

v(g|C1)

= (
t − |At |

)
v(g|C2) + (|At | −

(
t − |At |

))
v(g|C1)

= t
(

v(g|C2) − v(g|C1)
) + |At |

(
2v(g|C1) − v(g|C2)

)
� t

(
v(g|C2) − v(g|C1)

) + |A|(2v(g|C1) − v(g|C2)
)
, (A.2)

where C1 and C2 are arbitrary cliques in g of size 1 and 2, respectively, as before. The last inequality follows from |At | � |A|
and 2v(g|C1 ) − v(g|C2 ) < 0, which holds by assumption.

We need to consider three cases. First, if t � |A|, then Y ∗
t = t v(g|C1). Since by stability, yi � v(g|C1 ) for all i ∈ N , it

follows that Y ∗
t � Yt . Second, suppose |A| < t � n − 1. Then it follows from (A.1) and (A.2) that

Y ∗
t = t

(
v(g|C2) − v(g|C1)

) + |A| (2v(g|C1) − v(g|C2)
)
� Yt .

Finally, if t = n, then Y ∗
t = Yt = v(g). Hence, for all t , Y ∗

t � Yt , a contradiction. �
A.2. Proof of Theorem 5.3

We first construct an allocation that is feasible and stable in g′ and gives f (1) to all players in A′ . Define the allocation
y′ by

y′
i =

{
f (1) if i ∈ A′,
f (n)−|A′| f (1))

n−|A′| otherwise.

This allocation satisfies the requirement that y′
i = f (1) for all i ∈ A′ . Note that by assumption An, y′

i � f (1) for all i.
It can easily be checked that y′ is feasible. We now show that it is stable in g′ . Let C ⊆ N be a clique in g′ , and note that

either C ∩ A′ = ∅ or |C ∩ A′| = 1. Feasibility ensures that the allocation is stable when |C | = n, so suppose |C | = 1,2, . . . ,n−1.
Then, ∑

i∈C

y′
i � f (1) + (c − 1)( f (n) − af (1))

n − a
,
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where c := |C | and a := |A′|. It is therefore sufficient to show that

(c − 1)
[

f (n) − af (1)
]
� (n − a)

(
f (c) − f (1)

)
. (A.3)

This is clearly satisfied with equality when the clique size is c = 1. If the condition is satisfied for c = n − 1, it then follows
from assumption An that the inequality holds for all c = 1, . . . ,n − 1. It remains to show that the condition holds for
c = n − 1. If n = 2, then this follows immediately from the fact that the condition holds for c = 1. So suppose n > 2. If
c = n − 1, then it is not hard to see that the size of the maximum independent set must be a = 2. Substituting these values
into (A.3) and using that n > 2 gives the condition

f (n) − 2 f (1) � f (n − 1) − f (1).

Rearranging terms gives

f (n) − f (n − 1) � f (1).

But this holds by assumption An and the normalization f (0) = 0. It follows that the allocation y′ is stable. Denote the
corresponding distribution by ȳ′ .

Suppose z̄′ is an extremal distribution for g′ . Then, since z̄′ is stable, z̄′
i � f (1) for all i. If z̄′

i > f (1) for all i, ȳ′ is also
extremal. Otherwise, z̄′ = f (1) for all i = 1, . . . , |A′|. In that case, there exists an extremal distribution x̄′ in g′ such that
x̄′

i = f (1) for i = 1, . . . , |A′|.
For any extremal distribution x̄ in g , x̄i � f (1) for i = 1, . . . ,n. Since A is a maximum independent set in g , any set

S ⊆ N with |S| > |A| must contain at least two adjacent vertices. Hence, we cannot have x̄i = f (1) for some i > |A|, so that
either x̄ is more equal than x̄′ , or x̄ and x̄′ are incomparable. �
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