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Model Description Suppose we have a large population of agents of several types in which
individuals are sampled with assortment. For any individual in a given group, the probability
that a randomly chosen other member of the group is of the same type is r + (1− r)x where x
is the frequency of the type in the whole population. Note that in a genetic version of the model
r is equivalent to the average coefficient of relatedness among group members. The probability
that a randomly chosen other member is of a different type is then (1− r)(1− x). When r = 0,
this model represents random interaction. When r > 0, individuals of the same type are more
likely to find themselves together in group than chance alone would dictate.

Individuals interact in a repeated game in which the first round has one signaling, one co-
operation, and one punishment stage, and succeeding periods have only single cooperation and
punishment stages. All individuals have a baseline fitness W0. The “costs” and “benefits”
are the incremental effects of behavior on individual fitness. The interaction continues for an
expected number T periods, which means that at the end of each period, the probability of
dissolving the group is w = 1− 1/T .

We define four strategies that specify behavior. (Note that cooperation is not a strategy it is
an elective action by each of the four strategies in response to the expectation of punishment for
defection.)

1. Punishers: Punishers signal in the signaling stage. We say the quorum is met if the
number of signalers is at least τ + 1 (1 ≤ τ ≤ n − 1). In each cooperation stage,
Punishers cooperate if the quorum is met and defect otherwise. In each punishment stage,
Punishers collectively punish all agents who defected in the current cooperation stage if
the quorum is met. If the quorum is not met, Punishers do not punish defectors. For any
period after the first one, the quorum is met if (a) the quorum was met in the previous
period and there were no defections in the current cooperation stage, or (b) there was at
least one defection in the current cooperation stage and more than τ agents participated
in punishing defectors.

2. Nonpunishers: In the signaling stage, Nonpunishers do not signal. In the first cooper-
ation stage, Nonpunishers defect. In subsequent periods, Nonpunishers cooperate if the
quorum is met. Nonpunishers never punish.

3. Liars: Liars signal in the signaling stage. In each cooperation stage, Liars cooperate if
and only if the quorum is met. Liars never punish.

4. Conditional Cooperators: Conditional cooperators, like all other types, cooperate if
they believe that that they will be punished otherwise. Unlike Nonpunishers Conditional
Cooperators believe the signal during the first period and therefore cooperate if a quorum
is met. Conditional Cooperators do not signal and never punish.
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Model Analysis: Punishers vs Nonpunishers Suppose the population consists only of Pun-
ishers and Nonpunishers. Let x be the frequency of Punishers in the population, and fix a
particular group. For a given focal group member, let j be the number of Punishers among the
other n − 1 group members. When the focal member is a Punisher, j is distributed binomially
with parameters Pr(j|P ) = r+ (1− r)x and n− 1. When the focal member is a Nonpunisher,
j is distributed binomially with parameters Pr(j|N) = (1 − r)x and n − 1. The expected fit-
ness of a Punisher, WP , is composed of three terms in addition to baseline fitness: the cost of
signaling in the first period, the expected benefits of cooperation net of the costs of cooperating
and punishing others in the first period in cases where the quorum is met, and the benefits of co-
operation net of the costs of punishing others and being punished in the case of errors summed
over the expected duration of the interaction following the first period (which is T − 1) in cases
where the quorum is met. This is given by

WP (x) = W0 − q

+
n−1∑
j=τ

Pr(j|P )

(
−(e(j + 1) + (n− 1− j)) k

(j + 1)a
+ (1− e)

(
b(j + 1)

n
− c
))

+ (T − 1)
n−1∑
j=τ

Pr(j|P )

(
(b− c)(1− e)− nek

(j + 1)a
− ep

)
(S1)

Nonpunishers are punished in the first period, receive a share of the public good produced by
Punishers, and then experience the long term benefits of cooperation only if the quorum is met.
Thus if τ < n− 1, WN(x) is given by

WN(x) = W0 +
n−1∑
j=τ+1

Pr(j|N)

(
−p+

(1− e)jb)
n

)

+ (T − 1)
n−1∑
j=τ+1

Pr(j|N) ((b− c)(1− e)− ep) (S2)

If τ = n − 1 so that Punishers only punish if all other members of their group are Punishers,
then WN(x) = W0 because Non-punishers do not find themselves in a group in which either
punishment or cooperation occurs.

Individual reproductive success is proportional an individual’s payoff. This means that the
change in frequency of Punishers who use strategy Pτ is given by:

∆x = x(1− x)
WP (x)−WN(x)

xWP (x) + (1− x)WN(x)
(S3)

Thus, equilibria occur at x = 0, x = 1, and values of x is such that WP (x) = WN(x).
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The fitness difference is then

∆(x) = WP (x)−WN(x)

= (T − 1)((b− c)(1− e)− ep)

(
n−1∑
j=τ

Pr(j|P )−
n−1∑
j=τ+1

Pr(j|N)

)

− (T − 1)
n−1∑
j=τ

ekn

(j + 1)a
Pr(j|P )

+ p

n−1∑
τ+1

Pr(j|N)− q

+
b(1− e)

n

(
n−1∑
j=τ

Pr(j|P )−
n−1∑
j=τ+1

Pr(j|P )

)
−
(
c− b

n

)
(1− e)

n−1∑
j=τ

Pr(j|P )

−
n−1∑
j=τ

k(n− 1− j + e(j + 1))

(j + 1)a
Pr(j|P ). (S4)

The first two terms determine the long-run behavior of the model when T is large so that groups
on average last for many periods. The first term is the expected long-run net gain to being a
Punisher. This term is never negative, is small for small x unless r is large. For sufficiently large
r, this term is close to the payoff to full cooperation, (T − 1)((b− c)(1− e)− ep). The second
term is the long-run cost of punishing, This term is small for low error rates, but for error rates
of the magnitude 1/n this term can be substantial.

Suppose that groups are formed at random. Then the long-term net gain from being a
Punisher is given by becomes

(T − 1)

(
((b− c)(1− e)− ep) Pr(τ |P )−

n−1∑
j=τ

ekn

(j + 1)a
Pr(j|P )

)
(S5)

where Pr(j|P ) = Pr(j|N). In a population of Nonpunishers (where x is near zero), if τ > 0
then there will almost never be a quorum, but Punishers must pay q to signal, so Punishers
cannot invade. If τ = 0, so a lone Punisher disciplines the rest of the group, we have

∆(x) = (T − 1)((b− c)(1− e)− ep)− k(n− 1) + p− q, (S6)

so a lone Punisher can invade if p is sufficiently large and k sufficiently small. We consider this
an implausible situation, and henceforth will assume τ > 0.

Liars and the minimum cost of signalling Next consider the fitness of rare Liars. Liars
signal so incur the cost q. They are not punished during the first period. In subsequent periods
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they act just like a Nonpunisher and so get the payoff of Nonpunishers in later periods. When
groups are formed at random, rare Liars will be in groups without another Liar. Thus, the
expected payoff of a rare liar when groups are formed at random is:

WL(x) = W0 − q + (T − 1)
n−1∑
j=τ+1

Pr(j|N) ((b− c)(1− e)− ep) (S7)

At equilibrium WN = WP , and thus liars can invade this equilibrium unless

q > p
n−1∑
j=τ+1

Pr(j|N) (S8)

That is, the cost of signalling must be greater than the expected first-period cost of being pun-
ished. Note that this depends both on the frequency of punishers and the punishment threshold.
However, as we will seen below, the expected cost of being punished during the first period is
often only slightly less than p, especially when there are increasing returns to punishment. Thus
as a first approximation, p provides a lower bound on q. Punishers can always deter Liars if the
cost of signalling is the same as the cost of being punished. Throughout we assume that q = p.

Contingent Cooperators and Second-order free riding Conditional Cooperators receive
the same payoff as Nonpunishers in groups where the quorum is not met, and do strictly better
in groups where the quorum is met. Thus Conditional Cooperators can invade a Punisher-
Nonpunisher equilibrium. As illustrated in figure S1, Conditional Cooperators replace non-
punishers without much changing the equilibrium frequency of Punishers. This effect will be
even greater for parameter values for which the equilibrium fraction of Punishers is consid-
erable, or where groups are very long-lived because Conditional Cooperators in cooperative
groups have a payoff advantage only in the first period, and the size of this advantage is on the
order of magnitude c, the cost of cooperating.

A world of all Nonpunishers is a plausible ancestral state. Nonpunishers do not cooperate,
nor do they respond to unproven threats. Once they are punished, however, they cooperate to
avoid further punishment. We have seen that rare Punishers can invade such a population as
long as there is some assortment, interactions go on long enough, and there are economies of
scale in punishment. When Punishers are common, however, it selection will favor Contingent
Cooperators who take the signal seriously, and hence cooperate in the first period when the
quorum is met. Conditional Cooperators “invade” a Punisher-Nonpunisher equilibrium but
displace the nonpunishers rather than the Punishers. Contingent Cooperators are the optimal
second-order free rider. They only cooperate when they will be punished, and never punish
themselves so the stable equilibrium mix of Punishers and Contingent cooperators cannot be
invaded by any other cooperative strategies.
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Punisher vs Nonpunisher Punisher vs Contingent Cooperator

Figure S1: The equilibrium frequencies of Punishers as a function of τ when Punishers compete
with Nonpunishers and when Punishers compete with Contingent Cooperators. Solid circles
represent the frequency of Punishers at stable equilibria, and open circles represent the fre-
quency of Punishers at unstable equilibria. Notice that the equilibrium values are very similar.
Base line parameter values: b = 2c, a = 2, k = p = q = 1.5c, T = 25, e = 0.1, n = 18, and
r = 0.0.
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Linkage and the Evolution of Punishment In the model presented above there is some link-
age between Punishment and Cooperation because Punishers cooperate in groups above the
threshold while Nonpunishers do not cooperate. However, similar results obtain in a model in
which there is no linkage at all between linkage and punishment. In this model, the ordering
of behaviors during the first stage is different. First, there is the cooperation stage, then the
signalling stage, and finally the punishment stage. Both Punishers and Nonpunishers defect
during the first period cooperation stage. Punishers then signal and if the number of signallers
is greater than τ + 1 punish those who do not signal during the first stage. Noncooperators
also defect, do not signal and do not punish. During subsequent periods both types cooperate
if punishment has occurred in the past. Thus, there is no linkage at all between cooperation
and punishment. Both types cooperate only when punishment has occurred. The equilibrium
behavior of this model is very similar to the behavior of the model presented in this paper and
slightly more favorable to the evolution of punishment.

Numerical Analysis We have not been able to use the fitness functions presented above to
derive expressions for the equilibrium frequencies of Punishers and Non-punishers. However,
it is easy to compute these numerically, and in this section we present a range of results obtained
in this way.

We chose the parameter values both to reflect what is known about the demographic and
other conditions of Late Pleistocene humans and to adequately represent the costs of the pun-
ishment strategy so as not to bias the results in favor it its evolution.

• Cost of cooperation (c): This sets the units of the payoff parameters used in the simula-
tion, so all further parameters will be in units of c. We chose c = 0.01, with a baseline
fitness ofW0 = 1 so that selection coefficients are on the order of a few percent. Selection
against a deleterious allele imposing a cost of 0.01 on its bearer would reduce its presence
in a population from 90 percent to 10 percent in fewer than 500 generations

• Per capita benefit of full cooperation (b): We consider two values, weakly beneficial,
b = 2c, which would only be favored by kin selection among full sibs, and b = 4c, so
that altruism would be favored by kin selection among half sibs. Group benefits from
other kinds of cooperation, in predation and defense or sharing information of danger or
food sources, for example, could substantially exceed 4. The likely frequency of both
environmental shocks and intergroup conflict among Pleistocene foragers (1,2), coupled
with the importance of cooperation in surviving those challenges suggests that we have
not overestimated the range of likely benefits.

• Cost of being punished (p): This value must be greater than c− b/n in order to motivate
individuals to cooperate. We assume that p = 1.5c. We thus assume “surplus” punish-
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ment, accompanied by costs to the punisher in excess of that strictly needed to induce the
target to cooperate.

• Cost of punishing to a single punisher (k): Many people think that punishment is less
costly to the punisher than to the target either because the punisher has the advantage of
initiating the conflict or because the target is often outnumbered. Our baseline assumption
is that this is not the case. We simulate over three values: k = p/2, k = p, and k = 2p.

• Cost of signalling (q): The theory above suggests that the cost of signalling must be
greater than the expected cost of being punished. This is guaranteed if q = p as was
shown above.

• Effect of number of punishers on the cost of punishing (a): We use a probabilistic
version of Lanchesters Law on the relationship between numbers on opposing sides of a
conflict and success in contests as the basis for our expected cost of punishment for those
engaging in a punishment episode against a target (3–5). The expected cost of engaging
in a punishing party depends on the likely outcome of the encounter with the target. We
take account of this aspect of punishment in the following way. Suppose the cost of
punishing, k, is an injury or other cost borne by a randomly selected member of the group
of punishers if and only if the punishing episode is a standoff (neither the punishers nor
the target “win” so that both target and punishers bear costs) and that a standoff occurs
with probability 1/n where n is the number of punishers against a lone target. Thus,
for instance, a single punisher against a single target always results in a standoff. The
expected cost of joining a group of n punishers is thus the probability of a standoff (1/n)
times the expected cost that a member of the punishing party will bear in the case of a
standoff (k/n) or k/n2. Using k/na, we simulate two values: a = 1, which means constant
per capita cost of punishing, a base case that allows comparison with previous models,
and a = 2, which means that the cost of punishing decreases linearly with the number
of punishers. Our baseline a = 2 is quite unfavorable to the punishment strategy. In the
example above, it implies that even in an encounter in which there are nine punishers and
a single target, the target will achieve a standoff 10 percent of the time.

• Error rate (e): We interpret the error rate to be the frequency with which an individual
does not cooperate even when punishment for defection is anticipated. This could occur
by mistake, or because idiosyncratic circumstances in which the individual’s cost of co-
operating is exceptional (e.g., sick children at home that must be cared for) or another
reason not included in the model for incurring the cost of being punished. We simulate
three values e = 0.01, e = 0.1, and e = 0.2.

• Group size (n): The relevant size is the number of individuals of both sexes in a single
breeding generation. The average census size of foraging groups in the ethnographic
record that face conditions similar to must human groups in the Late Pleistocene (non
arctic, non equestrian) is 37 (6), which implies an n of about 12 to 18, given that the
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fraction of a foraging population that is of reproductive age may be between a third and
a half. To provide a strong test of our model, we simulate the upper end of this range and
two other group sizes, n = 18, n = 36, and n = 72.

• Number of interactions (T ): The appropriate number of interactions depends on the
nature of the cooperative activity in question. Opportunities to cooperate in hunting and
sharing prey occur thousands of times in a generation, while cooperation in predation or
defense may occur but a few times per decade. We assume T = 10, T = 25, and T = 50.

• Within-group relatedness (r): We simulate four values: r = 0 (random group forma-
tion), r = 0.035, r = 0.07, and r = 0.125. The value r = 0.07 is the average relatedness
in a sample of hunter gatherer groups (7).

These are varied one parameter at a time from the base case parameter set {b = 2c, p = k =
q = 1.5c, a = 2, e = 0.1, n = 18, T = 25, r = 0.0}. For the most part we set the base
case so that it is the worst case for cooperation, i.e., the benefit cost ratio is only 2, the cost of
punishment is the same as the cost of being punished which is 50% higher than necessary to
motivate individuals to cooperate, and 10% of the cooperators defect by mistake meaning that
there are significant costs of punishing even in the long run.

Each figure gives the possible equilibria as a function of the τ value used by Punishers. Solid
circles are stable equilibria, and open circles are unstable equilibria marking the boundaries
between the basins of attraction of adjacent stable equilibria.

These results are surprisingly insensitive to variation in most of the parameter values. For
most of the range of parameters simulated, there is a minimum value of τ . For values slightly
greater than that value the minimum frequency necessary for Punishers to increase is low, and
nearly maximum average fitness is achieved.

For the most part variation among results, can be understood as resulting from a tradeoff
between the first-period costs of inducing Non-punishers to cooperate, and the long run benefit
from the cooperation thereby induced. Note that the magnitude of p is determined by c—the
cost of being punished only has to be sufficiently large to induce Non-punishers to cooperate.
The cost of punishing is scaled relative to k. The other parameters fit into two categories. The
parameters a, e, b, n and T affect the cost of punishing and the long run benefit. Their effect
can be understood in terms of how they affect this balance. The effect of a is especially strong
because it has a very large effect on how the cost of punishing varies as the number of Punishers
in the groups increases. The parameter r reflects the population structure, and has large effects
when Punishers are rare. Small positive values of r create a plausible set of conditions allows
punishment to increase when rare.
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Figure S2: The scale economies in punishment (a) vary. When a = 1 there are no economies
of scale in punishment. When a = 2 doubling the number of punishers halves the total cost of
punishment. Without economies of scale, punishment is much more costly when τ us small,
and thus Punishment can persist at equilibrium only for large value of τ .
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Figure S3: The cost of punishment (k) varies. Increasing the cost of punishment decreases
increases the cost of inducing Non-punishers to cooperate, and also increases the cost of pun-
ishing errors in the longer run. Thus increasing the cost of punishment reduces the range of
conditions under which punishment can evolve.
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b/c = 2, k/p = 2, a = 2, q = 0.015, n = 18, e = 0.05, T = 25, r = 0.07
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Figure S4: The error rate (e) varies. Higher error rates increase the frequency and thus the
cost of punishment in the long run and thus decrease the benefit of cooperation induced by
punishment. As a result, as error rates increase, cooperative equilibria exist only at higher
values of τ .

11



b/c = 4, k/p = 2, a = 2, q = 0.015, n = 36, e = 0.1, T = 25, r = 0.07

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Threshold number of punishers (t)

e
q
u

ili
b
ri
u

m
 f
re

q
u
e

n
cy

n = 36, r =0.07, b = 4c
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Figure S5: Group size (n) varies. Larger groups increase the cost of punishment of Non-
punishers during the initial period and errors during later periods. Thus increasing n decreases
the range of conditions which allow for punishment and cooperation at equilibrium.

b/c = 2, k/p = 2, a = 2, q = 0.015, n = 18, e = 0.1, T = 10, r = 0.07

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Threshold number of punishers (t)

e
q
u
ili

b
ri
u
m

 f
re

q
u
e
n
cy

b/c = 2, k/p = 2, a = 2, q = 0.015, n = 18, e = 0.1, T = 50, r = 0.07
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Figure S6: The expected number of periods (T ) in an interaction varies. Increases in the ex-
pected number of interactions increase the long run benefits of cooperation and thus increase
the range of conditions which allow for stable punishment and cooperation.
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b/c = 4, k/p = 2, a = 2, q = 0.015, n = 18, e = 0.1, T = 25, r = 0.035
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b/c = 4, k/p = 2, a = 2, q = 0.015, n = 18, e = 0.1, T = 25, r = 0.125
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Figure S7: The relatedness (r) among group members vary. In the base case, groups are formed
at random, and that means that Punishers are rare, they are alone in groups and can only induce
cooperation if they are willing to act alone. Increasing r means that there is a positive probabil-
ity that more than one punisher will be together in groups even when Punishers are rare. Thus
for small values of τ , punishment can increase when rare even when r is assumed to be be-
tween 0.035 and 0.07 the latter being the mean value measured among contemporary foraging
populations.
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