Comparing ancient inequalities: the
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Archaeological evidence provides the only basis for comparative research charting wealth inequality
over vast stretches of the human past. But researchers are confronted by a number of problems: small
sample sizes; variable indicators of wealth (including individual grave goods, the area of household
dwellings or storage spaces); overrepresentation of the wealthy, or invisibility of those without
wealth; and vastly different population sizes. Here, the authors develop methods for estimating
the Gini coefficient—a measure of wealth inequality—rthar address these challenges, allowing
them to provide a set of 150 comparable estimates of ancient wealth inequality.
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Introduction

The growing corpus of literature on ancient inequalities incorporates estimates of wealth dis-
tribution from widely diverging periods, cultural contexts and data types (e.g. Morris 2010;
Scheidel 2017). Non-documentary archacological sources of evidence are the only means of
charting wealth distribution for vast stretches of the human past, and different approaches
have emerged (e.g. based on grave goods and house sizes; Windler ez /. 2013; Kohler & Hig-
gins 2016; Kohler ez a/. 2017; Kohler & Smith 2018; Porci¢ 2018). Given the unique poten-
tial of archaeological evidence to investigate patterning in inequality over the very long term,
there is a clear need for the development of robust measures of wealth inequality that are com-
parable across differing time periods, cultures, technologies and political systems. Enhancing
comparability is also important for interpreting local estimates of inequality in a wider
context.

A natural source of methods for addressing these challenges is economics. Simon Kuznets
pioneered the comparative and historical study of the total output of an economy measured
by gross domestic product (Kuznets 1965). More recently, Atkinson and Piketty (2007) used
measures of the share of total income received by the richest members of a society to study
economic inequality from the early twentieth century onwards. Notwithstanding the limits
of single indicators of complex and multidimensional phenomena, these simple measures
have provided an indispensable lens for the comparative study of modern economies.
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Their deployment in archaeological studies, however, raises a number of challenges. First,
much of the above work is based on a complete enumeration (e.g. using census or tax author-
ity data) of the relevant populations; archaeological studies necessarily rely on samples of data,
which are often quite small and with unknown statistical properties. Second, most economic
measures use market prices as a common indicator of value for aggregating the heterogeneous
elements that constitute total output or a living standard. In most archaeological applications,
no similar method of aggregation is feasible. Finally, the range of societies that economists
typically consider is substantially more homogeneous in culture, social structure and technol-
ogy than those studied by archaeologists.

While interest in inequality may derive from concerns about disparities in living standards
(measured by income), these are often difficult to measure with the data available to archae-
ologists. More readily available information on wealth provides both an indirect indicator of
income, and a measure of the wealth-holder’s social and economic status. Wealth is defined as
a stock of assets—housing, livestock or land, for example—that yields a flow of income or
other contributions to an individual’s or family’s well-being. Here, we propose methods
for the measurement of wealth inequality using archaeological data, allowing the exploration
of economic disparities in a far greater range of social structures and economic systems. Build-
ing on recently collated datasets for quantifying ancient wealth inequality, we provide esti-
mates for 150 Eurasian and North and Central American site-phases, ranging in age from
23 000 years ago to the eighteenth century AD.

Some of the dimensions by which we measure inequality are best conceived of as individ-
ual attributes: that is, something that people simply have more or less of, such as height.
Other dimensions, however, are best conceived of as an aspect of relationships between peo-
ple, measured by differences in some attribute. Inequalities in wealth among households
belong in this latter class.

The Gini coefficient is a measure of wealth inequality that can be compared across soci-
eties and types of wealth. It ranges from zero (complete equality) to one (all wealth is held by
one person), and is defined as one half of the mean of the differences among all pairs of house-
holds in the population, divided by the mean wealth in the population. Partial measures of
inequality, such as the proportion of all wealth owned or income received by some small frac-
tion of the population, are used widely in measuring wealth inequality, as they are sometimes
available in written tax or probate records. In contrast, the Gini coefficient is a measure of
inequality in the entire distribution of wealth (see also the online supplementary material
(OSM)).

A major challenge to comparative research on ancient wealth inequality is that the relevant
information from various sites and phases is based on different sample sizes and methods.
Moreover, such information pertains to different indicators of wealth (e.g. dwelling or storage
area size, or grave goods), may omit measurement of those without wealth, such as slaves, and
derive from populations of vastly differing size, such as a city or a small hamlet. Here, we
develop methods for using such heterogeneous data to produce estimates that are comparable
across sites and periods. Cross-cultural research has an important place in archaeology
(Bogucki 1999; Trigger 2003), not least in that it informs long-term perspectives on contem-
porary dilemmas—growing economic inequality being a prominent example. We aim to
show that the methods of comparability proposed here offer superior insight compared to
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the collation of available Gini coefficients without regard to the heterogeneous underlying
information on which they are based.

There is a limit, however, to what can be inferred even on the basis of comparably mea-
sured indicators of material wealth inequality. Two societies with equal wealth inequality by
our measures may differ substantially in social complexity, political hierarchy, disparities in
consumption, economic injustice or other dimensions associated with the term ‘wealth
inequality’. For example, while the evidence is indirect, many of the societies under consid-
eration may have practised systems of wealth redistribution with the result that inequalities in
consumption were less than wealth inequality. Furthermore, our measures do not directly
inform about political inequality and how this may differ, for example, between stateless
and state-governed populations.

Two identical Gini coefficients measuring wealth inequality may even be associated with
radically different distributions of wealth—for example, one in which inequality arises from a
small concentration of entirely property-less households at the bottom of an otherwise rela-
tively equal (in terms of wealth) population and the other with a few exceptionally rich house-
holds in a population of small landowners (e.g. see the OSM). Thus, sometimes the same
Gini coefficient value can be associated with very different outcomes in relation to the dimen-
sions that are not directly measured.

The dataset

The archaeological data incorporate a series of regional datasets assembled by other scholars,
plus additional sites with accessible data of particular interest for assessing questions of
inequality. All of the sites are listed in the OSM. Geographically, they are distributed across
Eurasia, North America and Mesoamerica; chronologically, they range from a single obser-
vation at 23 000-year-old Ohalo II in the southern Levant (Nadel 2003) to eighteenth-
century AD communities of the Pacific Northwest (Schulting 1995; Prentiss ez al. 2018).
Where possible, we distinguish chronological phases within site sequences in order to
avoid combining distinct periods of occupation.

Two of the archaeological datasets—for the Columbia Plateau and Hohokam—offer
large, multi-site data on grave goods in individual burials (McGuire 1992; Schulting
1995). We use these datasets, chosen for their size and disparate cultural contexts, to develop
some of our adjustments to wealth-distribution estimates below. To the same ends, we also
incorporate historical datasets on land ownership in a large agricultural population during the
seventeenth to eighteenth centuries AD at Krummhérn in Germany, on the distribution of
household wealth in 1427 Florence, Italy, and on regional inequality from medieval Finland
(Herlihy & Klapisch-Zuber 1985; Nummela 2011; Willfithr & Stérmer 2015).

Our unit of analysis for assessing wealth distribution is the household. We define ‘house-
holds’ as co-residential groups occupying modular architectural units with standardised fea-
tures that suggest redundancy of domestic functions among units. Multiple units may
cooperate as a larger household group, but the widespread archacological observation of stan-
dardised domestic units suggests that they often acted as fundamental social agents. More-
over, although wealth may sometimes be shared across households, systematic
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wealth-sharing takes place within the house; the house can be defined as a physical (and meta-
phorical) unit for storing and sharing wealth (Gudeman & Rivera 1990).

From individual to household inequality in grave goods

As household membership typically cannot be identified from burial remains, we calculate a
between-household inequality measure. From the burial sites of the Columbia Plateau
(Schulting 1995) and the Hohokam Culture (McGuire 1992), we identify those with the
greatest number of sex-identified observations. For these four sites, we first compute the
Gini coefficient of individual wealth, among only the individuals whose sex is identified.
Second, we estimate the Gini coefficient of couples’ wealth, where hypothetical couples
are created assuming perfect wealth assortment—that is, the richest females are matched
with richest males, and the poorest females with the poorest males. Couples’ wealth is
then the sum of the wealth of the matched individuals. Third, we compute and average
10 Gini coefhicients on couples’ wealth, with couples generated assuming random assort-
ment—that is, males and females randomly matched, irrespective of wealth. Table S1 in
the OSM presents the results. Fourth, our estimate of between-household inequality is the
average of the results of the two methods: perfect assortment and the absence of assortment.
The ratio of the Gini coefficients estimated for the hypothetical couples to the coefficients
estimated from individual data is 0.90 and 0.92 for the Columbia Plateau and Hohokam,
respectively (Table S1). In subsequent adjustments, we use the mean value, 0.91.

A robustness test of our method is possible using a small ethnographic dataset of the
wealth of actual couples. Thus, we can test whether the estimated Gini coefficient for hypo-
thetical couples obtained through our method is close to the Gini coefficient computed on
the observed wealth of real couples. In the OSM, we find that the two estimates are similar.
The fact that the three estimates—two archaeological and one ethnographic—are very similar
encourages our application of this method to the other archaeological cases in our dataset.

Sample size and the Gini coefficient

As the fundamental data underlying the Gini coefficient are wealth differences among pairs of
households, in principle the coefficient can be calculated for a population, or sample, as small
as two households. Here, we explore the statistical properties—Dbias and imprecision—of esti-
mates of a Gini coefficient for wealth, based on small samples of 7 observations from a
(sometimes unknown) number A in the total population. The question of interest is: if
we recover data on 7 individuals in an estimated total population of M individuals, what
is the nature and magnitude of the biases and imprecision affecting Gini estimates, and
how do larger sample sizes attenuate these biases and the imprecision of the estimates?
Using a dataset with observations of individual wealth ownership, we assume that the total
number of observations, A7, is the total population and the Gini coefficient computed on M
is the true Gini coefficient. We then hypothetically restrict the dataset to a number of indi-
viduals 7<M, and then estimate the Gini coefficient that would have resulted. To do this, we
first set 72 = 2, then randomly select a pair from the dataset and, on this basis, we calculate a
Gini coefficient. We conduct this process of sampling with replacement for 7 = 2 a thousand
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Figure 1. Sample bias and standard error of the Gini coefficients in three large datasers. The (a) and (b) panels,
respectively, show the estimated Gini coefficient as a fraction of the true Gini, and the standard errors of the
estimated Gini coefficients as a fraction of the true Gini, for Columbia Plateau (red dots), Krummbirn (black dots)
and Hohokam (green dots). The x-axis is ratio-scaled (figure by the authors).

times, which produces a mean estimate and its standard error. We repeat this for all values of
m< M. We then implement the algorithm on three large datasets from both archaeological
and historical records: the entire burial wealth dataset from the Columbia Plateau and
from the Hohokam society at la Ciudad, and the records of land ownership in the large
seventeenth- to eighteenth-century agricultural population at Krummhérn, Germany.

The results are shown in Figure 1. Panel ‘a’ shows that bias is substantial when the sample
is very small, and it quickly approaches zero as the sample size 7 increases. Neither skewness
nor total population size (/) appear to affect the extent of bias in this case. Panel ‘b’ shows
that the standard errors of the estimated Gini coefficients—as a fraction of the true Gini coef-
ficient—are strikingly small, even for samples of modest size. That the relationships in Fig-
ure 1 are very similar, despite being based on very different cultural contexts, suggests that our
statistical method has wider applicability across our heterogeneous dataset.

Adjusting Gini estimates for sample bias

To adjust downwards the Gini coefficients that are upward-biased due to small sample size,
we use the Columbia Plateau dataset shown in Figure 1 and estimate a non-parametric rela-
tionship between the bias and the natural logarithm of the sample size. The adjustment
would not be appreciably different had we used the other datasets, given the very similar rela-
tionships of sample size and bias shown in Figure 1. Figure 2 summarises the relationship
between the two variables using a local polynomial regression. For each Gini coefficient in
our dataset, we use the number of observations in our data to predict the sample bias, in
order to estimate the size of the Gini that would have been estimated had the entire popu-
lation been observed. This procedure does not require us to know the true population
size, as the extent of bias becomes very small for samples of modest size, irrespective of M.
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Figure 2. Non-parametric regression for sample bias. The estimated Kernel regression (red line) of the ratio of the estimated
Gini to the true population Gini (black dots) on the population level. The bandwidth is equal to 5. The confidence intervals
(green lines) are also shown, derived as plus and minus twice the standard error (figure by the authors).

Accounting for those without wealth

Due to data limitations, estimates of Gini coefficients often omit relevant ‘zeros’: that is, those
people with none of the attribute being measured. Inequality of land ownership, for example,
is often mis-measured by a Gini coefficient on the holdings of landowners because it excludes
the landless. Similarly, while estimates of inequality of grave goods in southern Mesopotamia
and Roman Italy (Stone 2018) include those without wealth among the free population, they
exclude the slaves who lived and worked in the urban centres. Thus, these exclusions under-
state substantially the degree of wealth inequality in a population.

To include those groups without access to specific resources (the missing ‘zeros’) requires
two pieces of information. The first is an estimate of how numerous these missing zeros are,
which we can establish from historical sources about the populations in question (see the
OSM). The second is an estimate of the effect of excluding the zeros on the Gini coefficient,
which we obtain by manipulating a mathematical expression for the Gini coefficient in a
class-divided economy. In the OSM we show that an approximation of the true Gini
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coefficient (G) based on an observed estimate (G'), calculated from a dataset with a fraction #
of the total population without wealth not used in the estimate (so # is the fraction of missing
zeros in the total population), is:

G=G+u—uG. (D)

We use this equation, along with an estimate of #, to calculate the true Gini coefficient,
and check the validity of this approach by the same methods already introduced to estimate
the effects of small sample size. We study populations for which we know the entire wealth
distribution and from which we can hypothetically remove the zeros and then compare the
true estimates with our estimates based on the hypothetical absence of data on the zeros using
equation 1.

We use 32 distributions of different forms of wealth: grave goods of 23 burial sites from
the Columbia Plateau and four from the Hohokam Culture; the distribution of household
wealth in 1427 Florence; and four cross-sections of seventeenth- to eighteenth-century
land ownership in Krummhorn, Germany. Table S3 shows the data used for the analysis.
To check our method, we estimate for each population the Gini coefficient of the whole dis-
tribution using the known fraction of zeros, and the Gini coefficient estimated on the hypo-
thetical population for which the zeros have been removed.

The mean absolute error between the estimated and the true Gini on the total population
as a fraction of the mean true Gini is 0.012, and the correlation coefficient between the two
sets of values is 0.99. These results suggest that our method is reasonably precise, and it pro-
vides the basis for our upwards adjustment of the Gini coefficients with missing zeros. As a
further check, we use a least squares regression to predict the true (entire population) Gini
coefficients using the values of G, # and #G' derived by hypothetically removing zeros
from these populations. As predicted from equation 1, the estimated regression coefficients
are almost exactly one (for the first two) and minus one for the product. We describe how
we estimated the numbers of those excluded—Iandless slaves in the case of southern Meso-
potamia and Roman Italy—in the OSM.

Comparability among different asset types

Some asset types tend to be more equally distributed than others. In modern societies, for
example, housing is much more equally distributed than ownership of companies. If we
want to compare the inequality of household wealth in different societies, we first need to
assess how the distribution of the asset that is available to measure inequality in a specific soci-
ety compares to the distribution of the other forms of wealth constituting household wealth.

We have estimated wealth inequality using the following four measures: land, house stor-
age space, house living space and grave goods. Determining what counts as wealth is a critical
issue. In agricultural societies—even in the small-scale, labour-intensive examples included in
our dataset—informal property rights in land probably existed, and the main source of well-
being for a household was the land it cultivated. For this reason, when both living and storage
spaces are clearly identified, we use only storage area—indicative of access to land—as a proxy
for household wealth. For many archaeological sites, however, living and storage areas have
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not been distinguished. In these cases, we use the total house area as a proxy of household
wealth. For some agrarian societies, household wealth inequality is measured directly through
land inequality. In these cases, given the primary function of land for the production of
household well-being, we consider it the measure of household wealth.

We consider grave goods not as a form of wealth, but as a costly signal, conveying infor-
mation about the status and wealth of the deceased. While the goods that are included in
burial assemblages may sometimes be objects representing an individual’s or group’s
wealth—tools, weapons, animals and valued household objects, for example—grave goods
may also be entirely symbolic and non-utilitarian. What matters for our purposes is that,
whatever their form, burial goods are an indicator of the wealth of the household of the
deceased, as the household must forgo some of its wealth to provide grave goods to accom-
pany the burial.

There are both reasons and evidence to support the hypothesis that grave goods are more
unequally distributed than forms of wealth, such as indicated by dwelling size (see the OSM;
Peterson & Drennan 2018). In southern Mesopotamia during the Neo-Babylonian period,
for example, Gini coefficients for house area (living and storage space) and grave goods are
0.621 and 0.878, respectively (corrected by sample bias, couples and missing zeros, as
explained in the previous sections).

We reconcile these two wealth types—house area and grave goods—using archaeological
datasets for which inequality is measured in the same society and in the same time period, for
both asset types. For the cases in which the two measures are available (Table S5), the
inequality in house area—indicative in this case of household wealth—is on average 71.9
per cent of the inequality in grave goods, with a remarkably small standard deviation of
4.7 per cent. From this, we infer that, were household wealth data available for those societies
on which we have data on grave goods only, the inequality in the latter would be approxi-
mately three-quarters the inequality in the grave goods. Therefore, in our analysis, a Gini
coefficient measured on grave-good inequality alone is reduced by 28.1 per cent of its
value to make it comparable to inequality in household wealth.

Scale effects: comparability across different population sizes

Suppose that we have data on a single ‘village’, but to achieve comparability of scale with our
other estimates, we would like to estimate the degree of inequality in the ‘district” of which
that village is a part, along with the other villages making up the district, but on which we do
not have data. Taking wealth inequality in the ‘village’ as an estimate of wealth inequality in
the entire ‘district’ will not produce comparable estimates, as we expect that larger popula-
tions will be more heterogeneous geographically, demographically and even institutionally
and culturally, and hence may exhibit greater levels of wealth inequality. We observe that
this is the case in our measures of inequality of grave goods on the Columbia Plateau; the
Gini coefficient for the entire population in the late prehistoric phase is 0.647, while the aver-
age of the Gini coefficient for the six burial sites from the same phase is 0.573.

To achieve comparability of scale, we use an estimate of the population-size effect to infer
the Gini coefficient for the population at a given benchmark size. The method is based on
comparisons of Gini coefficients for lower-level population entities and the larger entities
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that they constitute. We call this the ‘nested method’. The advantage of the nested method is
that we are able to estimate the size effect for population groups that are probably similar in
most respects other than size because the larger unit is composed of the smaller units. It pro-
vides a far more accurate estimate of the pure scale effect than is possible using non-nested
data—namely, by comparing Gini coefficients across populations of differing sizes.

Three datasets allow us to estimate the difference between the Gini coefficient for the con-
stituent lower-level units and the Gini for the higher-level unit that is the composite of all of
these: the datasets from the Columbia Plateau and Hohokam Culture, and one dataset from
1571 Finland (Nummela 2011). The latter represents a pre-industrial dataset of wealth dis-
tribution with complete geographic coverage; each upper administrative unit is the composite
of all the lower ones.

In the OSM, we use the Columbia Plateau dataset to explain how the scale effect is com-
puted. The scale effect is illustrated in Figure 3a by the slope of the line connecting the Gini at
the site level (the smaller entity) to the Gini of the entire population made up of these six sites.
Figure 3b compares the scale effects for all of the phased Columbia Plateau sites with those of
the Hohokam sites, and shows that, as the population of the lower-level entity increases, the
scale effect—represented by the slopes of each point in the figure—decreases.

To ensure coverage over the entire range of relevant population sizes, we merge the three
datasets with the scale effects measured at lower levels with population smaller than 250
households (Columbia Plateau, Hohokam and late medieval Finland) and plot, in Figure 4,
the relationship between the scale effect (multiplied by 1000) and the population of the lower
units at which it was computed. We observe that, for very small populations, the scale effect is
substantial and, as population increases, a very sharp decline in the scale effect occurs; beyond
a population size equal to about 50 households, the scale effect is close to zero. We develop a
statistical summary of these data that allow us to scale-adjust the Gini coefficient for any
population size.

The estimated scale effects at each population level are used to derive a function reflecting
what we call an ‘estimated pure scale effect’, showing how the Gini coefficient varies over the
range of population sizes for reasons of scale alone. For the purposes of our adjustment, what
matters is its slope, rather than the value of the Gini coefficient for any population level. We
arbitrarily choose as a starting value of our function a Gini coefficient equal to 0.5 at the
benchmark population level equal to 50 households. From this arbitrary benchmark and
the estimated slopes in Figure 3b, we construct the estimated pure scale-effect curve in
Figure 5.

Figure 5 shows how the function is used to size-adjust the observed Gini coefficient for
Neolithic Vahingen, Germany (after the correction by sample bias, 0.189) estimated from
a population of 11 households. We let g; be the observed Gini, ¢'(50) the size-corrected
Gini, g(11) the predicted Gini for population size equal to 11 households and ¢g(50), the pre-
dicted Gini for population size equal to 50 households. The figure also shows that the result-
ing scale correction, equal to the difference between gi(SO) and gi, is 0.007. We can assess the
accuracy of our method by the following thought experiment. Suppose there are M a large
number of lower level entities ‘villages’ that make up a district, and we have evidence on
m<M of these—that is, some, but not all, of the villages. How accurate a prediction of the
inequalities at the district level is possible using our estimated pure scale-effect function
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Figure 3. Examples of scale effect for Columbia Plateau and Hohokam Culture sites. Panel ‘a’ shows the Gini
coefficients and population size for each site of Columbia Plateau in the late prehistoric phase (dots inside the red
circle) and the Gini coefficient and population size at the regional level in the same phase. Panel ‘b’ shows the scale
effects for each burial site at the Columbia Plateau excavation (black dots) and ar the Hohokam excavation (grey
dots). Here, the scale effects are the slopes of the line segments at each point, illustrated in ‘a’ by the slope of the line
Jfrom the lower-level entity to Columbia (figure by the authors).

estimated from our three datasets and shown in Figure 5? Using the largest set of lower-level
entities from the Columbia Plateau dataset (M = 10) to predict the district-level inequality,
we find that when we use all 10 of the data points, the error is 0.04. The average error across
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Figure 5. Scale adjustment to a common population level. An example of scale adjustment when the actual population is
smaller than the benchmark population level (50 households). The example is the adjustment of the Gini coefficient for
Neolithic Vaihingen (Germany, sixth millennium BC), where the original Gini was estimated on 11 households. The
adjustment works in the same way when the raw Gini was estimated on a population larger than the baseline (figure by
the authors).

multiple random picks of four lower entities is equal to 0.06, a number that is reassuringly
close to the case of M= 10.

Results

Figure 6 shows the relationship between the Gini coefficients entirely unadjusted for compar-
ability and the fully adjusted estimates. Where adjustments have been limited to taking
account of population and sample size, the final estimates are quite similar to the unadjusted
ones; except for very small populations and sample sizes, our estimated biases are quite
modest. By contrast, the adjustments for estimates based on grave goods (downwards—
that is to the right of the 45° line in the figure), or for excluded slaves and other households
without property, the adjustment (upwards—that is to the left of the 45° line) are substantial.
The average absolute value of the adjustment is 15 per cent of the value of the raw Gini coef-
ficient, suggesting that unadjusted measures are, in general, quite unreliable.

The 150 adjusted Gini coefficients included in our dataset show a wide heterogeneity in
the level of inequality from archaeological sources (Figure 7), ranging from around 0.1 to
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almost 0.8. Elsewhere, we use these data to provide an interpretation of the increase in wealth
inequality in Western Eurasia up to the early first millennium AD (Bogaard ez al. in press).

Discussion

We have sought to measure wealth inequality in ways that make it substantially comparable
across diverse economies, cultures and time periods. In some respects, the results are prom-
ising. Our demonstration that relatively small samples from much larger populations yield
reasonably accurate and precise estimates of the Gini coefficient is encouraging, especially
for archaeologists and others unavoidably constrained by the feasibility of generating more
inclusive samples. But the underlying assumption that what is ‘found’ and what is ‘missing’
in the archaeological record is random rather than systematic is likely to be violated in prac-
tice. Where there is a clear bias towards, for example, the excavation of larger houses, as at
Knossos (see the OSM), or the exclusion of slaves and other households without property,
our adjustments have addressed the bias as adequately as the current data allow.

Our methods of approximation of the total population Gini coefficients from estimates
where those without wealth are missing also appear to be surprisingly accurate. Similarly,
our estimates of wealth inequality among couples hypothetically constructed from the burials
of individuals are consistent across two archaeological sites and replicated almost exactly using
a sample (albeit small) for which complete data are available.

In another respect, however, our results highlight uncertainties. We lack prices or similar
valuations as a method of establishing comparability across types of assets, such as housing vs
grave goods, for example, or even among differing indicators of similar assets—that s, the het-
erogeneous objects making up our measures of grave goods. In the latter case, we have used
systems of relative grave-good values adopted by the archaeologists who initially described the
data. In the former case—comparing distinct asset types—we have used a relatively small
number of datasets in which more than a single dimension of wealth has been measured.
It is reassuring that the estimates on which these conversions are made—grave-good inequal-
ity to house inequality—are very similar across datasets, and that grave-good inequality is very
highly correlated with house-size inequality (suggesting that the former is informative about
the latter). Moreover, our measures are necessarily incomplete. We have not, for example,
measured the human wealth of slave owners, which in some societies in our sample (e.g.
southern Mesopotamia) would constitute a considerable fraction of total wealth. We have
also not attempted to incorporate a systematic measurement of livestock wealth.

These uncertainties and gaps, while substantial, should not be exaggerated. We cannot,
for example, think of any plausible adjustment in the data that would alter the impression
from Figure 7 that Western Eurasian Neolithic populations demonstrate considerably less
wealth inequality than many later examples. Similarly, there are no plausible adjustments
that would change the result that post-Neolithic wealth inequality in Eurasia tended to be
higher than inequality in the Western hemisphere. We have thus shown that more system-
atically and comparably measured indicators of wealth disparities do not overturn, and indeed
reinforce, the primary finding of Kohler ez /. (2017): that high wealth inequality was more
persistent over the long term in Eurasia than in North America and Mesoamerica prior to
European contact.
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