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We review stochastic evolutionary game theory from a perspective that starts in the very general
regression methods of population genetics, and introduces games as a powerful yet flexible framework
to unpack the “black box” of development, which generates frequency-dependent fitness maps and
which may also structure the transmission process. This approach to evolutionary game theory
retains the robustness of regression methods while attempting to progressively refine mechanistic
explanations. The tautological nature of normal-form games, and their refinement with the extensive
form, are compared as characterizations of mechanism. We develop symmetry as the core concept
to classify evolutionary game models, and symmetry breaking as the source of robust multiscale
dynamics. Stochastic population processes generally produce regression models that depend on
scale, and the change of parameters at different scales, as well as the emergence of hierarchical units
of selection, is due to collective fluctuations. The current paper surveys aspects of symmetry in
games, emphasizing qualitative features. A companion paper develops large-deviation methods for
multiscale dynamics in evolutionary game theory, and presents quantitative solutions for some of
the scale-dependent models in this paper.

I. INTRODUCTION

A review emphasizing the diversity of mechanisms together
with robust model selection and interpretation

Evolutionary game theory [1–12] is in principle a rich
synthesis of concepts and tools. It can draw on all the
methods to treat assortation, replication, transmission,
and selection formalized within modern population ge-
netics [13–19], and on the full range of descriptions of
structured individual and group interactions from game
theory [20–22], including the extensive form [23] and co-
operative solution concepts [24].
In a pair of papers we present an overview of evo-

lutionary games that we hope will complement the ex-
isting comprehensive reviews of applications and model
classes [4, 7, 8, 23], and the more formal treatments from
the probability literature emphasizing convergence [6, 25,
26]. Our perspective derives from the problem of robust
model selection and analysis, but rather than attempt-
ing to address domain-specific validation of models, we
will limit our discussion to what can be learned about ro-
bustness from the requirement of internal mathematical
consistency of theories.1

We give a specific form to the problem of robustness
by taking seriously the disruptive effects of stochasticity

1 The approach of arguing for the plausibility of particular mod-
els is standard in existing literature, and in any case requires
domain-specific knowledge of each instance to be done properly.
We intend the current review to provide a different kind of sup-
port for model validation and interpretation, which can be ex-
pressed in precise terms from mathematical consideration, but is
easy for arguments focused on case-by-case plausibility to over-
look.

on every level of scientific description with evolutionary
games: in natural system dynamics, in estimation, in
model analysis, and in prediction. Requiring consistency
of a fully stochastic analysis restricts the class of proper-
ties that robustly identify models, and leads to nontrivial
relations among descriptions of the same system at mul-
tiple timescales or scales of aggregation. Although these
results follow from a merely technical analysis, we be-
lieve they ultimately lead to a clearer understanding of
the meanings – and limitations of meaning – of the basic
entities and interactions of stochastic evolutionary game
theory, as similar analyses have led to reconceptualiza-
tion of the basic entities and interactions in many-body
equilibrium systems [27–30].
We wish also to stress the wide scope and richness

of mechanistic explanations available from game models,
but to organize this diversity in terms of a small num-
ber of unifying principles, to make the world of mod-
els both easier to navigate, and less ad hoc in practical
use.2 For these reasons we adopt an unconventional ap-
proach of deriving games entirely as refinements within
the empirically grounded regression methods of Fisher’s
theorem [32], the Price equation [33–35], and quantita-
tive genetics [36]. The union of rich mechanistic expla-
nation with the conservative approach of statistics is not

2 We particularly wish to avoid turning a summary of mechanistic
diversity into a “wilderness of models”, as has happened to the
concept of bounded rationality [31]. We also wish to avoid rein-
forcing a separation of paradigms that already exists, in which
mechanistically explicit, causally “satisfying” game models are
reduced to the status of “toys”, expected only to describe what
might happen in imagined worlds, while empirically grounded
regression methods are often limited to low-order (linear or “ad-
ditive”) models, and accepted as being inherently highly mecha-
nistically ambiguous.
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often achieved within evolutionary modeling [15, 37] and
game theory,3 because of difficulties of validating com-
plex models on one hand, and difficulties of searching
the space of complex regressions on the other. These
may be understood as two aspects of the same problem,
and can be argued to define the primary need for theory
in biology [40].

The need for a more mathematically-defined, and less
case-specific grounding for the basic concepts in evolu-
tionary game theory is perhaps most clearly recognized
and addressed in the literature on social evolution [41]
and the dynamics of economic innovation [42, 43]. It en-
compasses the always-essential concepts of the invidual
who develops and reproduces, the trait subject to selec-
tion, and the role of player, move, strategy, or payoff,
in the game structure. It also extends, however, to the
concept of the gene, which is often fundamental to the
structure of the type space and the choice of transmission
model, and hence to the validity of formal models of evo-
lution at all. These difficulties have been less emphasized
in biological evolutionary models in recent decades, but
we believe that they exist in much the same form, and
that they are increasingly being recognized.4

Using symmetries to classify and understand the major
qualitative distinctions among evolutionary games

Our review will emphasize classification of games ac-
cording to their robust dynamical features, particularly
those that link individual and population-level behavior
or that bridge multiple timescales. Our examples are cho-
sen to cover many aspects of normal-form and extensive-
form games, and to show how the game description con-
nects to fundamental problems in development, multi-
level selection, and multiscale dynamics. We will also
make contact with important concepts such as repetition
and the Folk Theorems from rational choice game the-
ory [22, 55–57], where an explicit mapping can be made
between the evolutionary and strategic interpretations.

3 For an example in which structured models are systematically
extracted by refinement of empirical descriptions, see Ref’s. [38,
39].

4 The existence of individuals and genes was simply presumed as
a primitive given by the nature of organisms, in the wake of
the modern synthesis [44], much as players and motives have
been presumed in much of game theory following von Neumann
and Morgenstern [20, 45]. These presumptions have grown in-
creasingly unsatisfactory, with the recognition of multilevel se-
lection [17, 46–48], and precise descriptions of modularity in
mechanisms of development, regulation, transmission, and selec-
tion [49–51] showing the deficiency of a gene concept based only
on non-recombining sequences of DNA. Finally, the literature on
conventions in economics [52–54], which uses methods identical
to ours, has offered meaningful population-level alternatives to
the individual as the unit that learns and remembers preferred
strategies.

A categorization of stochastic game models requires
criteria which are robust against errors of parameter es-
timation, fluctuation effects, and changes of resolution
or aggregation scale. For these criteria symmetries are
the tool of choice [58]. Symmetry has long been used to
classify dynamical-system representations of evolution-
ary games obtained within the approximations of the
replicator equation [4, 7]. It is an even more fundamen-
tal concept in stochastic evolutionary game theory, where
the fact that symmetry is a scale-invariant property of
systems carries implications for the connection of dynam-
ics across even very large ranges of scale, which can be
difficult to compute, or even to prove exist, by direct
constructive analysis.
As the dynamical counterpart to symmetry, we review

several important classes of fluctuation effects in stochas-
tic evolutionary games. We emphasize effects that lead to
qualitative or large quantitative differences between indi-
vidual interactions and the estimates obtained for them
from population averages. Understanding why and how
model parameters sometimes must change with the scale
of observation or aggregation helps to resolve one source
of mechanistic ambiguity in regression-based approaches.
With more work, an analysis of collective fluctuations can
provide a principled approach, based in symmetry and
scaling, to identify the robust features of self-consistent
(“closed”) model classes [27–29].

Introducing games from a starting point in regression
modeling of population processes

We introduce stochastic evolutionary game theory
(SEGT) by starting from general features of population
processes required in evolutionary models, and extract-
ing games from successive refinements in genotype- and
frequency-dependent fitness functions. A repeated theme
in our presentation will be that, precisely because of their
generality, game models often must be ambiguous with
respect to mechanism. This permits evolutionary games
to furnish valid descriptions for a wide variety of systems,
both organismal and social, but in many cases the con-
notations that surround “play” are largely irrelevant to
either the motivation or meaning of the game.
Therefore, rather than considering diverse, case-

specific justifications for games, we focus on a small set
of concepts – symmetry groups and their representations,
scaling, large-deviation asymptotics, and entropy – which
we feel make it possible to characterize the formal con-
tents of the theory in terms that are still conceptual but
are free of metaphor. In these functional terms, evolu-
tionary game theory may be entirely derived as a general
framework to unpack the “black box” of fitness functions
in population processes.5

5 This characterization is not in conflict with the widespread use
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This paper considers qualitative aspects of model clas-
sification, prediction of dynamical properties from sym-
metries, and connections to a variety of general results in
evolutionary dynamics or game theory, including: Hamil-
ton’s rule [35, 48], the emergence of coalitional behavior
from non-cooperative interactions [22, 24], a symmetry-
based analysis of Lewontin’s classic model of the chro-
mosome as a unit of selection [37], the origin of genes
in relation to extensive-form games [23] and the status
of linkage in genic models, and the interpretation of re-
peated games [55, 60–64]. In a companion paper, we
present a suite of methods [65–71] to quantitatively ana-
lyze effects of collective fluctuations in stochastic evolu-
tionary game models, including extraction of their large-
deviation limits [72–74]. Among the many approaches
to large-deviation theory (some of which have been ap-
plied to SEGT [2, 6, 52–54, 59, 75]), we choose one that
makes the connection of dynamics and units of selec-
tion across scales conceptually transparent and techni-
cally easy. Many solutions worked out in the compan-
ion paper provide quantitative examples of results whose
qualitative form is presented here.

A. Summary of the development of topics and the
main results

The following list summarizes the topics covered, and
the main conceptual points to be illustrated by the ex-
amples of the remaining sections.

The Price equation: accounting identities, fitness,

and closures in population genetics: We introduce
evolutionary game theory as a general framework to clas-
sify and interpret fitness models within population ge-
netics. We begin with the Price equation, an accounting
identity for any processes satisfying the assumptions of
population genetics, in which fitness universally appears
as a summary statistic [35].6 The problem of replac-
ing accounting with prediction, and of defining closures

for population-process models,7 leads to the approach of
Fisher [32] and Price [33], who replace fitness (the statis-
tic) with models derived from its regression on individual
and population states. The generality of fitness models –

of evolutionary game theory as a source of equilibrium refine-
ments [1, 5, 20, 59] or a model for reinforcement learning. The
emergence of fitness as a summary statistic, and hence of our
characterization in terms of fitness, follows from the defining as-
sumptions of population genetics, which all these applications of
evolutionary game theory share.

6 Economists will appreciate the importance of accounting iden-
tities as non-trivial constraints, despite their “tautological” na-
ture: that by construction they apply to all well-formed models
in the domain for which they are derived.

7 “Closure” is used as a general term in economics; in population
genetics it normally refers to the more specific problem of mo-

ment closure, which we will show can be handled in a variety of
ways.

which population genetics treats as a “black box” – along
with the problem of relating these to structure and dy-
namics either in ontogeny or across generations, defines
the role for games in evolutionary game theory. The re-
gression approach of Fisher and Price inherently empha-
sizes robust estimation and model classification. In the
ending discussion, this and all of our topics which fol-
low will be brought back together as the foundation for a
robust universality classification [28, 29] of evolutionary
games.

Information-incorporation and development are

complements in evolutionary dynamics: From
the formal equivalence between the replicator equation
and Bayes’s theorem for updating probability distribu-
tions [76], we will regard population genetics as com-
prising the information-incorporating aspects of replica-
tion and selection.8 Incorporated information is what
can be transmitted. Its complement contains the aspects
of phenotype constructed through non-heritable interac-
tions within generations, which we will term development

broadly construed. The complementarity of these func-
tions within evolutionary dynamics clarifies the respec-
tive roles of population genetics and games within evolu-
tionary game theory.

The emergence of games as a framework to sys-

tematically model development: Starting from the
Price equation and a need for closures, a general polyno-
mial expansion of frequency-dependent regression models
for fitness is equivalent, at order k, to treating devel-
opment as a k-player normal-form game. This equiva-
lence is a tautology, meaning that it is both assured and
highly ambiguous in terms of mechanism. If we know
more about the statistics of matching, we may resolve
the normal form into contributions from assortation and
the individual-level consequences for fitness that are most
naturally called payoffs. If we know more about the in-
ternal structure of interactions – which may be tempo-
ral sequence, signaling or imitation, or even just linkage
– then we may refine the normal form to a particular
extensive-form game [23]. In this way games emerge as
a highly general, if not all-encompassing, framework to
model development.

Symmetry and collective fluctuations in evolu-

tionary games: The relation of games obtained through
regression at the population level, to interactions at the
individual level, will generally change with resolution or
aggregation scale in the presence of stochastic pertur-
bations. This makes not only the metaphor of “play”,
but in many cases any single interpretive metaphor, in-

8 As population genetics has developed, it has come to integrate
with these, at an equally fundamental level, the constraints on
replication and selection following from the structure of trans-
mission.
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appropriate to refer to the meaning of a model across
its whole domain of scales. We therefore classify fitness
models in terms of symmetry groups and their represen-
tations by population states. Symmetries are a scale-
invariant property of systems, and changes in their rep-
resentations (known as symmetry breaking [29, 77, 78])
imply robust predictions for multiscale dynamics. The
stochastic effects that are robust within symmetry classes
(and that lead to symmetry breaking) are collective fluc-
tuations [74]. We provide examples of major classes of
symmetry groups and categories of symmetry breaking,
and show how each implies a distinctive form of scale-
dependence in fitness or dynamics. These include the
emergence of new units of selection or of coalitional be-
havior from interactions that are non-cooperative at the
scale of individual interactions.

The statistical gene in relation to modularity in

development: The particulate heredity of genes is one
pillar of the Modern Synthesis [44], and is incorporated
as an essential assumption within population genetics.
The assumption of particulate heredity drives perhaps
the widest wedge between evolutionary models of species
and attempts to use evolution to describe social, behav-
ioral, or institutional dynamics [42, 43]. We argue here
that particulate heredity in any domain – when it exists
– results from modularity in development which is either
reinforced by selection or recapitulated in transmission
mechanisms. The gene, in other words, is a statistical
concept that emerges from modularity in development.
Using games as our framework to describe the structure
of development, we show how coarse-graining which op-
timizes compression but also preserves dynamical suffi-
ciency of models,9 leads to genes that reflect game struc-
ture. However, the joint criteria of compression and suf-
ficiency also lead generically to multi-level selection, for
reasons that have been understood for decades in the the-
ory of variable-length data-compression coding [79–81].

Placing evolutionary models within game theory:

A population-genetic emphasis treats games as the source
of fitness functions and perhaps modular architecture,
which selection uses to stabilize population states for
genes and genomes. If we instead treat selection as a
means to stabilize the distribution over paths of play that
unfold anew within each generation, we arrive at the view
of evolutionary stability (or its natural generalization to
stochastic stability [2]) as one among many solution con-
cepts within the larger framework of game theory [5], and
as a source of equilibrium refinements [20, 52, 59].10 The
time-reflection symmetry between adaptation and pre-

9 This is a term coined by Lewontin [37].
10 Indeed, the alternation of the Evolutionary Stable Strategy to

the strategic Nash equilibrium was perhaps more strongly em-
phasized in the original introduction by Maynard Smith and

diction is the basis for the Folk theorem of evolutionary

game theory [7],11 which notes that fixed point conditions
are the same for evolutionary dynamics and the non-
cooperative (Nash) equilibrium of rational-choice game
theory, and that the criteria for stability can be mapped
between the two approaches.

Repetition in evolutionary and rational-choice

game theory: re-directing the forces of selection:

The repeated games are a restricted subset of the exten-
sive forms, in which a single set of matched players re-
peatedly play a stage game to determine their final pay-
offs. These games have become a standard framework,
in both evolutionary [8, 11, 83] and rational-choice game
theory [22, 55–57], to formalize the notion that “cooper-
ation” is a paradox, and then to propose its solution. In
repeated games, correlations between moves in different
stages can re-direct the force of selection (or equivalently,
the non-cooperative equilibrium condition) to favor out-
comes very different from those that would be favored by
the stage game in isolation. The approach to repeated
games in evolutionary and rational-choice game theory
has diverged sharply. The Folk Theorems of rational-
choice game theory [64] emphasize the range of feasible,
individually rational outcomes, and use a loosely formal-
ized notion of prior commitment (defined through trigger
strategies of varying complexity) to show that any point
in this large set can be reached. In evolutionary models
with repeated games, the prior agreement is implicit in
the population dynamics, and usually a single repeated
outcome is selected. We construct the mapping between
these two approaches, and show how different forms of
coordination during development qualify as signaling, or
substitute for forms of public information introduced to
expand the non-cooperative solution space in rational-
choice theory. In the process we propose a description-
length approach to encoding the complexity of strate-
gies [84, 85], which serves to operationalize the notion of
“indefinite repetition” often used by trigger strategies in
the strategic Folk Theorems.

Evolutionary mechanics and thermodynamics:

The classical replicator equation [4] often used to study
evolutionary games is very restrictive: by omitting ex-
plicit fluctuations, it is effectively a single-scale descrip-
tion, and it is based on a particular set of closure assump-
tions for first moments which can sometimes be invalid,
even for infinite-population limits. By deriving games as
classes of scale-dependent fitness models for population
processes, we make games the mechanical description of
an inherently stochastic process. It is now well under-

Price [82], than their application to animal conflict which was
the scientific motivation behind their paper.

11 Despite the appellation, the content of this theorem has only a
distant relation to the Folk Theorems for repeated games coined
by Aumann and Shapley [55], which we consider next.



5

stood that the property of large-deviations scaling [72–
74] defines the emergence of thermodynamic limits in
stochastic processes, and powerful methods exist to apply
large-deviations theory to quite general classes of models,
including evolutionary games. In this paper and the com-
panion, we will provide examples (classified by symmetry
representations) of scale-dependence in fitness functions
that arises from fluctuations. The difference between in-
dividual and aggregate models results from entropy cor-
rections, equivalent to those in any thermodynamic the-
ory. We emphasize entropy corrections created by neu-

trality in the fitness map. Neutrality is a phenomenon of
growing interest in the study of evolution and develop-
ment [86–91], and a simple counting argument suggests
that it will be a generic feature of development models
that can be described by highly branching extensive-form
games.

B. Organization of the remainder

Sec. II introduces the Price equation in its role as an ac-
counting identity and a general framework for regression
models of fitness, and discusses problems of closure and
robustness. Sec. III introduces genes as a derived con-
cept for the coarse-graining of genotypes, and discusses
their relation to extensive-form games, together with an
approach to the coarse-graining of games and strategies.
Sec. IV reviews symmetry breaking and the major cat-
egories of symmetry that distinguish evolutionary game
dynamics, and then presents four examples showing ro-
bust consequences of symmetry and a game-theoretic ap-
proach to neutrality in development. Sec. V notes ways
in which symmetry helps clarify conceptual distinctions
in open-ended evolution or the interpretation of repeated
games, or suggests a unified theory of games incorporat-
ing both evolutionary and strategic concepts.

II. THE PRICE EQUATION AND CLOSURES
FOR PROCESSES DESCRIBED BY

POPULATION GENETICS

The requirement of consistency with particulate hered-
ity places two restrictions on the class of stochastic pro-
cesses that can be described by population genetics.
First, transmitted material must be partitioned among
individuals, and the space of individual types must be
compatible with reproduction that only replicates, re-
arranges, and mutates a fixed collection of elements. Be-
cause these “hereditary particles” may be much more
fine-grained than what we will eventually recognize as
genes,12, and because many forms of re-arrangement are

12 For instance, they may be single nucleotide positions in a ge-
nomic model.

permitted between parents and offspring,13 compatibil-
ity of the type space will not be very restrictive for our
purposes.14

The second restriction is that each heritable particle
must, at a sufficiently fine resolution, have had a unique
ancestor. This requirement leads to an accounting iden-
tity for population processes known as the Price equa-

tion [33, 34], in which offspring can be grouped according
to the type of the parent. In such a grouping, fitness is
always defined as a summary statistic for offspring num-
bers partitioned by the parent’s type [35]. Fitness may
be combined with other observable functions of the pop-
ulation state as a basis for descriptive statistics of the
population process.
The Price equation goes beyond descriptive statistics

if parametric forms are assumed for fitness or transmis-
sion parameters as functions of the population state.
The most important such assumption (historically) is the
assumption of a time-stationary fitness function which,
if used as an observable in the Price equation, yields
Fisher’s Fundamental Theorem of natural selection [32]
as the contribution from fitness to the change in its own
population average.
More generally, the Price equation with parametric

models for fitness or transmission statistics provides a
framework for hypothesis testing and calibration.15 How-
ever, the projection onto parametric models introduces
the need for closure assumptions. Parametric models are
not generally complete or consistent under time averag-
ing or other forms of aggregation. They therefore do not
by themselves define consistent approximation schemes
for dynamics.
In this section we first introduce the accounting func-

tion of the Price equation to show where the assumption
of particulate heredity projects all population-genetic
models into a standard form. We then consider paramet-
ric models for fitness, showing why they require closure
assumptions and introducing the mean-field approxima-

13 These include crossover, various forms of assortation that in chro-
mosome models represent ploidy (although we will ultimately
represent these with player roles in games), and even indefinite
ratios of the numbers of replicates, as for mitochondria in relation
to nuclear genomes.

14 Recall that Darwin’s informal description of reproduction with
selection left the map from parent to offspring type almost un-
specified. The difference between Darwinian and Lamarckian
dynamics is not one that we consider enforced by the formalism
of population genetics, because it can change with the scale of de-
scription. Epigenetic modification by the environment is Lamar-
ckian if the germ line is the reference for generations, but be-
comes Darwinian if transmission of epigenetic markers and base
sequences within the ontogeny of the germ line are modeled as
a population process. What Darwinian evolution excludes is the
class of ecological relations in which persistent characters cannot
be grouped into collections of individuals, and for these the for-
malisms of Niche construction or ecosystem engineering [92] are
invoked.

15 The use of the term here is compatible with its use in economic
modeling [93].
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tion as one such closure, which is usually taken to be the
basis for the replicator or quasispecies equations.
Finally we consider the approximation of arbitrary

polynomial expansions for fitness, and show the rela-
tion between order-k frequency dependence and use of
k-player normal-form games to describe interaction. This
tautological equivalence concludes our treatment of the
formal aspects of population genetics. In Sec. III we con-
sider 1) the problem of finding compact representations
of substructure within the normal form, 2) the way this
leads to a concept of genes within population genetics,
and 3) the role of more refined game models such as the
extensive form in structuring development and leading to
the emergence of statistical genes.

A. The accounting identity for one-step processes
with given initial state

Transmission models in population genetics areMarko-

vian, meaning both that they are memoryless if a suf-
ficiently rich type space is assumed,16 and that the
stochastic process is defined by its time-local behavior
in the form of a generator acting on the instantaneous
population state [94].
Because our interest is the role of games, we will

minimize our discussion of the structure of transmis-
sion processes. In particular, we will suppose that we
may pass freely back and forth between the discrete-time
and continuous-time formulation of Markov processes.
Our introduction of the Price equation will allow gen-
eral branching processes (subject to fixed population),
but in examples we will assume for simplicity that the
discrete-time process can be modeled as a Moran pro-

cess (or birth-death process) [94, 95] on sufficiently short
intervals.17 We fix population sizeN because this param-
eter controls fluctuation strengths in models whose other
parameters are stationary. Constant fluctuation strength
simplifies examples, though our methods (primarily de-
veloped in the companion paper) admit changing popu-
lations with no formal difference.

16 The type space required for the Markov assumption may be too
rich to be tractable in many cases. Although in formal mod-
els this is not a problem, in practice the Markov assumption is
sometimes considered a strong constraint. How much the Markov
assumption is sacrificed by coarse-graining the type space, into
a description in terms of genes, is a similar question to how
much information is lost by approximating fitness with additive
or other low-order models.

17 We wish to emphasize the conceptual distinctions behind model
classes. The inability to pass freely between discrete and contin-
uous time implies a synchronization of generations. Similarly,
a continuous-time Markov process aggregated within discrete
intervals may approximate a a Wright-Fisher process [15, 94],
which may be more or less well approximated by a Moran pro-
cess acting over multiple generations. The inability to substitute
the Wright-Fisher process by a Moran process implies synchro-
nized reproduction of multiple offspring or multiple deaths.

In the discrete-time formulation, the one-step process
is the generator of the Markov chain. We first describe
the accounting identity for one step with known initial
state, and then consider the problem of estimating the
generator from moments of a distribution over initial
states. The moments of the distribution may be more
robust summary statistics in small samples, but they are
incomplete to identify the one-step process.

1. Asynchronous branching-and-removal processes with
fixed population size

A population of N individuals is partitioned into D
types indexed i ∈ 1, . . . , D. The population state at any
instant is a vector n ≡ (n1, . . . , nD) giving the number
of individuals ni with type i. We leave open the possi-
bility for assortative interactions that determine fitness,
but we assume that any such interactions are based on
type alone, and that individuals of the same type are
interchangeable.
Our types i correspond to “genotypes”, in the sense

that they govern descent, and are not directly assigned
fitness values until a development model has been cho-
sen.18 Although we retain the term “genotype” to make
use of biological intuition for the potential size and com-
plexity of the type space, we will not assume that the
space of types {i} is built up from more elementary genes.
We instead suppose that the type space is primitive and
is empirically defined. The identification of genes will fol-
low as we attempt to capture structure in the type space
or in development, on which fitness or transmission de-
pend.
Branching and removal (birth and death) occur on dis-

crete time intervals of length ∆t. We do not assume that
all individuals in the population reproduce in a single
time interval (reproduction is asynchronous), and one
or more (or zero) offspring may be produced. At each
branching event, a set of individuals from the existing
population (which may include the parent) are chosen
for removal at random to keep the number of individu-
als N fixed. The type of the offspring may preserve or
may differ from that of the parent, but we suppose that
the offspring types j have the same values j ∈ 1, . . . , D
(the type space is complete even if not all types are pop-
ulated in a generation). This set of branching processes
is rich enough to describe imitation dynamics or other

18 To the extent that development depends on interaction of multi-
ple genotypes, the closest concept to “phenotype” that appears
in this construction will be the vector of payoffs at the out-
come of a game. Phenotype is therefore a property of tuples
of player-genotypes, which in game theory correspond to strat-

egy profiles [22, 64]. The notion of a “genotype-phenotype” map
for the individual who is the unit of transmission is not required
in this analysis, but could be defined as a summary statistic
from projection of game outcomes onto the focal player’s payoff,
conditioned on the population state.
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forms of oblique transmission [23, 41] as well as literal
reproduction.

2. Accounting for population number: defining fitness and
parametrizing the transmission process

Fisher’s contribution to clarifying the concept of fitness
came from grouping offspring according to the parent’s
type [35]. Properties of offspring type whose distribu-
tion is conditionally independent of fitness then appear
in “environment” terms, which were written in general
form by Price. In the accounting of Fisher and Price,
numbers in the offspring generation are conventionally
denoted by primes.
We let n′j|i denote the number of offspring of type j

from all parents of type i over a single timestep ∆t. Fit-
ness is expressed in samples from the one-step branch-
ing/removal process as a random variable wi giving the
total number of offspring to parents of type i in that pair
of generations,

niwi ≡
∑

j

n′j|i. (1)

The change in numbers of types between the parent and
offspring generations results from both fitness and trans-
mission effects, and is denoted using ∆, as

∑

i

n′j|i ≡ nj +∆nj . (2)

If total population number is conserved, we must have
∑

i (wi − 1) ni = 0, so the {wi} cannot all be indepen-
dent, and we have the constraint

N =
∑

i

ni =
∑

i

∑

j

n′j|i. (3)

Selection comprises all processes affecting offspring
number independent of their type. All other processes
determining the distribution of offspring types are ab-
sorbed into the model of transmission. To reflect this
division, any distribution of type-j offspring from type-
i parents may be separated into a type-preserving term
that simply counts offspring, and a remainder whose sum
over types j is zero, as

n′j|i = δjiniwi +
(

n′j|i − δjiniwi

)

. (4)

The average over realizations of the one-step update
process, starting from a definite composition n, is de-
noted 〈 〉n. When applied to the reproduced number n′j|i
in Eq. (4), the conventional notation used is

〈

n′j|i

〉

n
= {δji [1 + ∆t (fi(n)− φ(n))] + ∆tµji(n)} ni.

(5)
The scaling of terms to linear order in ∆t is the ba-

sis for a continuous-time limit if the coefficients of ∆t

are stable in sample averages as ∆t → 0. By construc-
tion from Eq. (4),

∑

j µji(n) ≡ 0, so µ(n) is a stochastic

matrix. We will refer to it as the mutation matrix.19

For population processes that preserve total number,
the D fitness terms fi cannot be independently de-
termined from the D − 1 independent components of
the {wi}. We therefore write fitness fi offset from a
population-averaged fitness φ(n) ≡ (1/N)

∑

i nifi(n).
20

Although Eq. (5) resembles the classical replicator equa-

tion [4] in form, it differs in the important respect that it
describes actual population numbers ni. The replicator
equation, defined for fractions ni/N , includes an aver-
age fitness term φ for any behavior of total population
size. Including this term in models of actual population
size, as we have noted, implies restrictions on the time-
dependence of fluctuations.

In the examples below, with D types, for the sake of
simplicity and in order to isolate other roles of symmetry,
we consider only the isotropic mutation process

µij = 1−Dδij . (6)

3. Consequences for arbitrary observable functions of
population state

For any functions gi(n) defining some attribute for each
type i in the context of a population composition n, the
Price equation provides a decomposition of the intergen-
erational change in the population average of the {gi},
denoted

ḡ(n) ≡ 1

N

∑

i

nigi(n) , (7)

into affects attributable to selection and those from en-
vironmental change.

Changes in gi can come from three effects: a change in
the distribution of total number of offspring for each type
i, the dependence of gi(n + ∆n) on a changed population
state, and a redistribution of types due to transmission.
Only the first effect is directly due to selection; the re-
maining two terms are grouped together as environmen-

19 When we return to consider models for f and µ in the next
subsection, we will admit arbitrary polynomial expansions over
{ni} for both terms. Therefore fitness and mutation have some
overlap in the terms they can contain. We may identify µji(n)
as any collection of terms that form a stochastic matrix and that
include a sum over types i different from the focal offspring type
j. This contrasts with the fitness terms, which must all contain
at least one factor of nj .

20 When we derive minimal stochastic process models from their
first-moment constraints in the companion paper, the overall
magnitude assigned to fitness will appear in the strength of sym-
metric diffusion, even though it cancels from selection effects.
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tal sources of change, written as

∆gi(n) ≡ gi(n + ∆n)−gi(n)+
∑

j

gj(n + ∆n)

(

n′j|i

niwi
− δji

)

.

(8)
The difference between the population-average of the

{gi} in the parent and offspring generations in a sample
may then be decomposed as

∑

j

(nj +∆nj) gj(n + ∆n)−
∑

i

nigi(n)

=
∑

i







∑

j

n′j|igj(n + ∆n)− nigi(n)







=
∑

i

nigi(n) (wi − 1) +
∑

i

niwi∆gi(n)

=
∑

i

ni [gi(n)− ḡ(n)] (wi − 1) +
∑

i

niwi∆gi(n)

= NCovn(g,w) +NEn(w ·∆g(n)) . (9)

In the second right-hand line of Eq. (9), we have used the
fact that the averaged fitness

∑

i niwi = N to subtract a
(free) factor of ḡ, leaving the covariance in the last line.
Eq. (9) is the standard form for the Price equation.
The Price equation as a relation among summary

statistics is not yet a hypothesis about any form of evolu-
tionary dynamics, but only a description of sample prop-
erties of observables g in terms of their covariance with
fitness and their residual dependence on transmission.
The observable gi(n) is a function of type i and popula-
tion state n, but the fitness itself so far is not a function of
population state. To go beyond the accounting identity
we must propose models for fitness.

B. From summary statistics to models, bringing in
the problem of moment closure

To replace summary statistics {fi} and {µij} with
models, we must make further assumptions about the
ensemble in which {fi} and {µij} sample the generat-
ing process.21 Frank has emphasized [35] that the Price
equation relates three empirical quantities – initial pop-
ulation state, final population state, and process descrip-
tion – and that from any two of these, it may be used
to estimate the third.22 However, summary statistics

21 This ensemble may result from accumulation of generations in a
single population, reflecting time-stationarity, but it could in-
stead come from replication of populations whose short-term
evolution is tested for reproducibility, even if it is not time-
stationary.

22 Each estimation process reflects one aspect of evolution. Recon-
struction of the (typically diachronic) past from synchronic vari-
ations and (usually highly random) process models is the object
of phylogenetics. Estimation of process models is the attempt to

do not determine the evolution of population states or
probability distributions except under additional (often
rather strong) assumptions known as closures. Therefore
most problems of model estimation, phylogentic recon-
struction, or prediction, are undefined prior to the choice
of closures.
The standard problem in population genetics is the

choice of moment closures [14, 19], which we consider in
this section. Other problems of closure also arise, how-
ever, including the selection of robust parametric models
of fitness in the presence of dynamical noise or estimation
error. We return to the latter in Sec. III.

1. One-step averages over samples with fixed initial state

The fitness term (the covariance term) in Eq. (9) is
linear in the only variable (wi) that depends on the one-
step update. If it is possible to obtain a sample of updates
from a common initial state n, a fitness model may be
directly assigned, as

〈wi − 1〉n = ∆t [fi(n)− φ(n)] . (10)

The transmission process is not generally identifiable
in terms of linear expectations alone, as it may involve
covariance of w with the change ∆n. g itself may also
be a non-linear function of n. A linear estimator in the
{

n′j|i

}

that ignores these covariance terms may be used

to approximate µ(n) by

1

〈wi〉n

〈

n′j|i

ni
− δjiwi

〉

n

=
∆tµji(n)

1 + ∆t (fj(n)− φ(n))
. (11)

If we use these sample estimators as models, supposing
they are stationary in time, and substitute fi(n) for the
observables gi(n) in Eq. (9), then the covariance term
in the last line expresses Fisher’s Fundamental Theo-

rem [32].
Note that for the expected number nj , the linear esti-

mator (11) is exact. We therefore have, as a definition,
the relation for first moments under the one-step process

〈nj +∆nj〉n − nj

∆t
= [fj(n)− φ(n)] nj +

∑

i

µJi(n) ni.

(12)
In many situations, the formula (12) may be taken from
discrete to continuous time, where its form is the basis
for the deterministic differential equation known as the
replicator equation.

extract evolutionary regularities or laws, and estimation of future
states from inferred or assumed laws is the standard problem of
prediction.
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2. Averages over initial state, and the mean-field
approximation for moment closure

Suppose that the robust observables are sample esti-
mators for mean population numbers, where we assume
that the true mean values are the first moments of an un-
derlying distribution that we do not know and are trying
to infer. We denote the true means by

n̄i ≡
∑

n

niρn, (13)

where ρn is the (generally time-dependent) underlying
distribution appropriate to the system context we assume
and the set of questions we wish to ask.23

n̄′
j ≡

∑

n

ρ′nnj

=
∑

n+∆n

ρ′n+∆n (nj +∆nj)

=
∑

n

ρn
∑

i

〈

n′j|i

〉

n

= n̄j +∆t
∑

n

ρn

{

[fj(n)− φ(n)] nj +
∑

i

µji(n) ni

}

.

(14)

The map (14) from ρn, {fi}, and {µij} to
{

n̄′
j

}

is exact
but non-invertible. In addition to higher-order moments
of ρ′n that are not identified by

{

n̄′
j

}

, the map to the first-
moment conditions from interactions of {fi} and {µij}
with higher-order moments of ρn is also many-to-one.

A strong approximate moment-closure assumption,
valid when the distributions ρn and ρ′n are sharply peaked
around a single value, is the mean-field approximation

(MFA). It replaces Eq. (14) by a relation of similar form,
in which {fi} and {µij} are simply evaluated at n̄, which
is assumed to change slowly as well as having only small
fluctuations,

dn̄j

dt
= [fj(n̄)− φ(n̄)] n̄j +

D
∑

i=1

µji(n̄) n̄i. (15)

The MFA is a useful approximation but not a proper
moment closure, in that it will generally be violated even
within stochastic models that it was used to define.

23 That is, ρn might be a smooth distribution in the context where
a stationary population process has acted for a long time, or
it might be singular because it is the outcome of a shock, or
because it reflects a particular initial sample over types made
by the experimenter but outside the model of the evolutionary
dynamics.

C. Robustness of moment-closure approximations
and the concept of universality classification

Two related but slightly different approaches can be
taken to the problem of robustness. They bear slightly
different relations to the two dimensions of robustness
itself, which are sensitivity of model identification, and
prediction in the presence of fluctuations.
The approach of defining and closing recursion rela-

tions for moments in population genetics [13, 14] seeks
approximate solutions to fixed models. Predictive error
comes from errors of moment closure, and identification
error can be tested separately with parameter sensitivity
analysis.
An alternative approach recognizes (formally) that

models themselves are approximate, but that averag-
ing or aggregation can lead to convergence of groups of
distinct models into universality classes [28]. Each such
class is represented by an effective theory, which is self-
consistent under moment closure up to terms that dis-
appear under aggregation. An approach based on effec-
tive theories and universality classification seeks to derive
the interchangeable roles of moment-closure and model-
identification approximations.
A derivation of universality classes for games is be-

yond the scope of our review. However, the calculations
we present in the companion paper are those used in
background-field methods [96] to prove renormalizability,
universality classification, and the existence of effective
theories.24

D. k-player normal forms provide a polynomial
expansion in frequency-dependent selection

Suppose we restrict fitness models to be approximated
by polynomials in the agent numbers {ni}.25 Then the
coefficients of all order-k terms, in the expansion of the
vector [fi(n) ni], form a rank-k matrix that may be in-
terpreted as the expected-payoff matrix in a k-player
normal-form game with random matching.
To order k ≤ 2 this is the affine expansion

fi = αi +
∑

j

aij (nj − δij) , (16)

in which αi is an inherent fitness of type i, and aij is
the payoff to type i when matched with type j in a two-
player normal-form game.26 By the freedom to define

24 Examples of renormalization for closely related systems within
the Freidlin-Wentzell approach may be found in Ref’s. [70, 71].

25 These are simply the fitness functions that converge to their Tay-
lor’s series expansions.

26 By freedom to vary the magnitude of aij , we may reference fitness
to the case that each agent plays the others, on average, exactly
once in a generation.
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αi we adopt the convention of subtracting a term δij , so
that in the game interpretation, no agent plays against
itself.27 The two-player normal form is the form in which
evolutionary game theory was introduced by Maynard
Smith and Price [82].28

If a finite-order expansion such as Eq. (16) is estimated
by regression, for a stochastic process which may addi-
tionally have (unmodeled) higher-order frequency depen-
dence, the population-corrected fitness (10) becomes

wi − 1

∆t
=
∑

j

aij (nj − δij)−
1

N

∑

k

nkakj (nj − δkj) + ǫi

(17)
with residual ǫi.
The residual will have zero mean if the regression co-

efficients are chosen to minimize the residual sum of
squares (RSS)

∑

i

niǫ
2
i =

∑

i

ni

(

wi − 1

∆t

−
∑

j

aij (nj − δij) +
1

N

∑

k

nkakj (nj − δkj)





2

.

(18)

We will show in the repeated Prisoner’s Dilemma ex-
ample of Sec. IVE that, although the form of the re-
gression may be valid either as a characterization of in-
dividual interaction or by calibration of the population
equilibrium that includes fluctuations, the coefficients
may differ between the two descriptions. Another rea-
son regression coefficients may not correspond directly
to individual-level payoffs is that they incorporate effects
of non-random matching of individuals. We will not pur-
sue assortative matching further in this paper, but in
repeated game models where strategies can depend on
history, behavior can change as a result of “signaling” by
early moves in the game. Signaling within the course of
play presumably lives on a continuum with abilities to
recognize player type that determine whether they are
matched at all.

27 This convention leads to a simple map from the parameters in
the fitness function and those in the stochastic-process model,
which we develop in the companion paper.

28 The place of low-order polynomials and therefore low-order
games may be more important than their restricted form sug-
gests. The central limit theorem for many kinds of distributions
projects infinite-dimensional manifolds onto low-dimensional
subspaces under aggregation [28, 97]. In the large-deviations
rate functions computed in the companion paper, the parame-
ters in low-order polynomial models of fitness will occupy the
place of stable distribution parameters in the central limit the-
orem. Therefore low-order normal form games may be general
in population-level regressions even when they do not describe
individual interactions.

III. GENES IN THE PRICE EQUATION AND
IN GAME MODELS

We now consider the problem that type spaces which
are rich enough to satisfy the Markov condition may be
too large to sample, estimate, or analyze. Even with the
conventional notion of a gene as “a particular copy of
a non-recombining sequence at some locus in some in-
dividual” [14], this situation will be common for traits
that depend epistatically on a large number of genes. If
non-recombining DNA regions cannot be taken to define
genes [49] the fallback Markovian genotype space may
be as large as the space of sequences, which are too large
for natural populations to sample. In the domain of be-
haviors or institutions, there may be no standard tem-
plate comparable to DNA to provide a fallback Marko-
vian state space, even if “units of culture” functionally
comparable to genes do exist in some approximation.

Noting this range of possibilities, we suppose the
“genotypes” {i} in our population models are primitive
and are empirically defined, and we consider genes as a

basis for the course-graining of genotypes as the derived
quantities. We will introduce genes as partitions of geno-
types, beginning with the context of normal-form games
and general frequency-dependent selection. We then sup-
pose that the normal form can be refined to a particular
extensive form game representing the substructure within
development. In this case, the abstract problem of opti-
mal partitioning may be replaced with model-based par-
titions referring to the structure of the game tree.

A. The origin of biological genes in development

To provide intuition for our discussion of the gene as
a derived concept, we recall that the particulate heredity
of DNA in cell biology is not the source of the Mendelian
gene of evolution. App. A 1 argues that the error-
correcting role of a general-purpose digital substrate such
as DNA is optimized precisely when the substrate does
not carry the distinctions that define gene boundaries.

The gene as a source of robustness or compression must
be sought – even for cells – at the system level of phys-
iology and development. Transmission that violates the
modular structure of development will generally produce
non-viable phenotypes. To the extent that this exposes
the transmission mechanism itself to selection, we may
expect that transmission will come to actively preserve
developmental modules.

Just as DNA is a reflection but not a source for genes
in cell biology, the absence of any close analog to DNA
in behavioral or institutional systems need not preclude
the existence of a gene concept in these systems. The
proper question to ask is why coarse-grained genes have
been ubiquitous and relatively simple to identify in cell
biology, and whether the mechanisms responsible for this
simplicity are active in other domains as well.



11

1. Arguments from robustness and evolvability, that
modularity in system architecture should be common

Modularity in the architecture of complex systems ap-
pears common, even though proximate causes such as
those in cell physiology and development are system-
specific. Arguments that modularity is a condition for hi-
erarchical complexity have been put forward on grounds
of robustness [98, 99] and evolvability [100]. They are
persuasive, but are not yet sufficiently formal that we
see a way to incorporate them into model classification.

2. Genes, data-compression codes, and multilevel selection

The statistical problem of identifying good gene-
partitions for genotypes, as we will construe it, has
much in common with the problem of finding good data-
compression codes. The loci and alleles suggested by
simply following the structure of extensive-form game
trees will often give good (if not proven-optimal) com-
pressed representations, but they will also require the
use of variable-length moment-closures in order to pre-
serve predictive sufficiency. In the language of popula-
tion genetics, we will be required to keep non-linear as-

sociations of genes in regressions for fitness – that is, the
very genes that account well for variance in fitness with
additive models will also usually require the explicit re-
tention of a few contributions from multi-level selection.
From experience with variable-length data-compression
codes [79, 80], we expect that this property, which arises
for partitions motivated by the game tree, will remain
even as a property of optimal codes.

B. The space of gene decompositions: disjunction,
conjunction, and compression

We will formalize the notion of genes in our models
in terms of discrete partitions on the space {i} of geno-
types. We require that the gene description be invert-

ible, so that it changes the representation of genotypes
but does not lose information or the Markovian property
of completeness.29 A partition is also known as an equiv-

alence relation. The sets in the partition, called equiv-

alence classes, correspond to unions of genotypes. In
order for a representation by partitions to be invertible,
we require multiple equivalence relations, so that each
genotype can be uniquely identified by the intersection
of the sets from different equivalence relations in which
it appears. We will refer to any equivalence relation as
a locus, and to the equivalence classes in that partition
as the alleles. A gene is a particular allele at a particu-
lar locus. We further restrict, without loss of generality,
to sets of equivalence relations that are minimal, mean-
ing that that no partition consists entirely of sets that
may be identified by intersections of sets from the other
partitions. We do not, however, require that the decom-
position into genes reconstruct the genotype space as a
product space, or even that all individuals in the popu-
lation share the same loci.
A good set of partitions will be one in which many

equivalence classes contribute little to the variance that
drives population dynamics, and of those that remain,
most of the dynamically significant variance is captured
in additive models. We now consider the expansion of
game parameters in indicator functions for the presence
of genes.

1. Disjunction and conjunction systematically approximate
type-dependencies with associations of genes

Introduce capital indices I, J,K, . . . to indicate genes,
and indicator functions σIi, . . . to map genotypes i into
equivalence classes I. Then each indicator function σIi is
a disjunction (logical OR) of indicator functions for the
genotypes {i | i ∈ I}, and each genotype i is a conjunc-

tion (logical AND) of indicators σIi for some collection
of genes {I | i ∈ I}.
Each coefficient in the polynomial expansion of

frequency-dependent fitness then has its own expansion
in terms of gene-indicator functions. For the coefficients
in Eq. (16), this expansion may be written

αi =
∑

I

σIi

(

α
(0)
I +

∑

K

σKi

(

α
(1)
KI +

∑

M

σKiα
(2)
MKI + . . .

))

aij =
∑

IJ

σIiσJj

(

a
(0,0)
IJ +

∑

K

σKi

(

a
(1,0)
KI,J +

∑

M

σMia
(2,0)
MKI,J +

∑

L

σLja
(1,1)
KI,LJ + . . .

))

. (19)

29 These two criteria alone permit much more general models than
discrete partitions, including continuous partitions of unity. We restrict to discrete partitions for simplicity.
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The leading coefficients
{

α
(0)
I

}

in the expansion of αi

give the additive genetic contribution to (inherent) fit-
ness. In population genetics, the higher-order products
of indicator functions are known as associations, and
nonzero coefficients for associations represent epistasis.30

Note that the series for payoff aij contains an expan-
sion in associations for both the focal individual (i) and

the opponent (j). We use superscripts a
(p,q)
I1,...,Ip,J1,...,Jq

to

indicate the orders p and q of “epistatic” interaction in
each player.
Just as the polynomial expansion in frequency has

uniformly-mixed k-player normal form games as a de-
fault interpretation,31 the joint-gene expansion of payoff
coefficients, for suitably chosen partitions, has a default
interpretation in terms of interactions on an extensive-
form game that refines the normal form, with payoffs
that are additive over internal nodes on the game tree.
We return to develop this interpretation in the next sub-
section.

2. Compression, and the competition between obtaining
additive variance and minimizing multilevel selection

If partitions of the type space may be chosen so that
the number of genes |{I}| grows only logarithmically in
the number of genotypes |{i}|, then the truncation of
the series (19) to fixed order provides an exponentially
compressed representation of the dependence of fitness
on genotype. Whether this truncated approximation is
good depends on the rate at which the coefficients α(p)

and a(p,q) fall off with increasing p or q.
We expect as the general case, even for genes defined

purely for the sake of compression, that a typical gene
will be pleiotropic, with differing contribution to the ad-
ditive genetic variance for different traits. That is, a
partition I may account for most of the variance of one

30 Note that, if we are using players to model haplotypes, and
two-player games to model development in a diploid organism,
then inherent fitness is a transmitted property of chromosomes
(such as meiotic drive), and epistasis refers specifically to cis-
interactions among genes within a chromosome. Trans inter-
actions appear in the payoff matrix. Dominance appears as
a combination of an inherent fitness from the dominant allele,
and a payoff from pairing with any opponent having the domi-
nant allele. A model for dominance with saturation, in a pair-
ing of exactly two chromosomes of types i and j, might be
fi = ai + aiaj/ (ai + aj), where both ai, aj ∈ {a,A}. The inter-
action term then requires a slowly-converging polynomial series
to approximate.

31 This interpretation is only a “default” in the sense that it as-
sumes random matching as a parameter-free model. However,
random matching depends on on the representation of types for
its meaning. Therefore, like any Bayesian prior, it should be
regarded as a particular assumption which is a part of model
selection.

component of fi as additive variance, while it contributes
epistatically to other components of fi, perhaps to vary-
ing degrees depending on population state. Maximiz-
ing additive variance favors the status of I as a gene,
while pleiotropy and epistasis make any purely linear
model involving I insufficient to explain population dy-
namics, and require the retention of higher-order asso-
ciations involving I. This competition is analogous to
the problem of designing data-compression codes, which
leads (through Fano’s theorem [80]) to variable-length
codes. We will present an example in Sec. IVG with this
property, for which the precise components of variance
explained by each higher-order interaction in relation to
the main additive term are worked out in App. E 2.

3. The genotype space need not be a product space

The genotype space {i} need not be a product space,
with each individual having some allele at each of a fixed
set of loci. Our population models are free to represent
interactions of individuals from multiple “species” or “or-
ganelles”, a feature easily accommodated in games where
player roles are distinguished.
Product spaces are one class within which the number

of genes grows logarithmically in the number of geno-
types. However, for genes of unequal effect on fitness,
a simple product space may not provide the best com-
pressed approximations to fitness. By departing from the
assumption of a product space, we may use genes to label
higher-order functional modules, for which canalization
may have made the wild type insensitive to some forms
of mutation or recombination.

C. Extensive-form games, and partitions that
reflect structured interactions/development

Genes reflect the existence of structure in the fitness
function that, expressed as a normal-form game, makes
the representation of the game “compressible” in some
way. But if we know the source of structure in the nor-
mal form, it may be possible to suggest the compression
directly – at least approximately – rather than approach-
ing it as an optimization problem. The way to classify the
structure of normal-form payoff matrices in game theory
is to refine the game description by providing a particular
extensive form [24].
Extensive-form games, and the genetic descriptions

they induce, are a large topic,32 from which we con-
sider three points here: 1) the gene partition induced by
extensive-form games, which relates interaction structure
to mutation and recombination; 2) the problem of ex-
panding the strategies on repeated games in a systematic

32 A broader set of examples is developed in the monograph by
Cressman [23].
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hierarchy of complexity, memory and symmetry, in order
to relate repeated games in evolutionary and rational-
choice game theory; and 3) the directionality of solutions
on game trees from root to leaves, and the asymmetry
this creates between transient and recurrent states when
strategies are mapped to finite-state automata. We de-
velop examples of each of these points which are used in
the evolutionary game models of later sections.

1. The gene partition induced by an extensive-form game

An extensive-form game has three elements: 1) an un-
derlying game tree; 2) a collection of information sets

telling which nodes on the tree are to be regarded as
indistinguishable by players;33 and 3) an assignment of
information sets to players, telling who moves at each
information set. A strategy for a player on an extensive
form game is a specification of a move on every informa-
tion set assigned to the player by that game.
To complete a bit of terminology that will be needed

later, when the tree in an extensive-form game has a
repeated structure of the same simultaneous or sequen-
tial moves by the players, the repeated units are called
plies. The joint strategies of a collection of agents, who
together are sufficient to play a game, is called a strategy

profile. In an extensive-form game, which further decom-
poses strategies into sequences of moves, the joint moves
of the players at their respective information sets within
a ply is called a move profile.
If strategies in evolutionary game theory are to serve

as genotypes, then any mutation and recombination pro-
cesses must respect the information-set structure on the
extensive-form game. They may alter moves at informa-
tion sets, singly or jointly, but they cannot introduce dis-
tinctions at nodes within an information set,34 and must
under all conditions produce fully-defined strategies.
Any extensive-form game induces a gene decomposi-

tion of genotypes, in which the information sets are loci
and the moves on each information set are alleles.35 Mu-
tation is free to change moves in any fashion, while re-
combination acting on a set of existing strategies may
shuffle the moves on different information sets to pro-
duce one or more new well-formed strategies. In some
cases the topology of the game tree may define a useful
notion of adjacency, so that recombination by “crossover”

33 Information sets may be used to compensate for deficiencies in
the tree representation for handling simultaneous play, or they
may reflect limits of complexity or memory imposed on the avail-
able strategies.

34 The purpose of the extensive form is to separate the “reality”
defined by the game from the strategic freedom and solution
concepts of players. In the reality defined by information sets,
distinctions among the nodes within them do not exist as strate-
gic options for players.

35 This “natural” decomposition is also the one adopted in Ref. [23].

switches all information sets on the sub-tree descended
from the crossover point.

The gene decomposition induced by an extensive-
form game in this manner does reconstruct the geno-
type/strategy space as a product space. For games with
asymmetric player roles, a distinct product space exists
for the subsets of players who can take each role.

2. Separating mechanism from solution concept, and then
constraining mechanism

The extensive form for a game separates the mechan-

ics by which strategy profiles interact to produce an out-
come, from any consequences of that outcome, including
payoffs or solution concepts derived from payoffs, which
select strategies.36 The aspects of mechanism that will
concern us are the complexity of strategic interactions,
and the correlation among moves that can be created
by strategies with memory. Complexity can determine
whether symmetry breaking leads to simple or complex
ordered population states, and we will measure it by
the number of information sets a strategy distinguishes.
Long-range correlation can redirect the force of selection,
as in the literature on repeated games.

Rational choice game theory, emphasizing inductive
solution concepts, has taken a complicated approach
to achieving long-range correlation, often using indefi-
nitely repeated games and restricted forms of discount-
ing [56, 64].37 Evolutionary game theory, with its em-
phasis on causal mechanisms, has used recursively de-
fined strategies. To bring these two approaches together,
we introduce a way to systematically approximate strate-
gies of any complexity on a game tree of indefinite length,
with a sequence of finitely defined strategies. We thus re-
place the loosely formalized notion of “prior agreement”
in rational-choice repeated-game theory, with constraints
on the complexity or memory of strategies that may re-
flect costs or other mechanistic limitations.

36 The game also formally separates players from each other, in the
sense that a player’s strategy is not a function directly of other
strategies, but rather of the states of play indexed by the informa-
tion sets. Information sets are therefore Markovian states in the
sequence of play, encapsulating all information about history rel-
evant to future moves, within the frame of a given strategy. The
selection of strategies by solution concepts need not be Marko-
vian in this way, and is free to respond to arbitrary non-local
properties of strategies, as the concept of subgame perfect Nash
equilibrium does in rational-choice game theory. [20].

37 The general device is the trigger strategy, a correlated move
sequence based on some notion of “prior agreement”. Trigger
strategies overcomes Pareto dominance of some move in a stage
game through sequences of retaliatory moves, which individually
satisfy requirements for rationality, but cumulatively reverse the
advantage of the stage move which it is their function to prevent.
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3. Coarse-graining extensive-form games, and complexity
and memory of strategies

Our approach will be to start, not with the strategies,
but with the game trees on which they are defined. The
information sets on game trees provide a way to make
specific complex strategies impossible, by eliminating the
distinctions among states of play that those strategies
require.
We call this procedure coarse-graining of games.

For any game in extensive form, a coarse-graining is an-
other game with the same tree, in which the information
sets are unions of information sets in the original game.
The original game is then a refinement (generally one
among several that are possible) of the coarse-grained
game.
Here we give a procedure based on coarse-graining to

systematically extend the recursive complexity of strate-
gies, and to classify these according to the memory and
symmetries enabled by coarse-grained games. We illus-
trate with a binary, simultaneous-move, total information
game. For the sake of giving a form to payoffs that can be
used in examples, we will restrict to payoffs that can be
written as sums of values from the internal nodes visited
in the play of a strategy profile.

FIG. 1. The two-player game with simultaneous binary moves
and complete information. Information sets on alternating
rows belong to the first and the second player, and each pair
of rows represents one simultaneous move in the game. Two
plies of the tree are shown; a tree with indefinitely repeated
moves is obtained by extending this and all subsequent trees
from their leaf nodes, recursively. Since all paths of play are
distinguished by these information conditions, this game tree
supports solution concepts such as subgame perfection.

Fig. 1 shows an extensive-form game for two players,
each given two simultaneous, pure-strategy moves L and
R in each ply. This tree provides the largest possible
complexity of strategies and memory consistent with si-
multaneity and pure moves. We will refer to it as the
total information game.
For the game in Fig. 1 with Nply plies, the num-

ber of information sets assigned to either player is

(

22Nply − 1
)

/
(

22 − 1
)

, so the number of possible dis-

tinct strategy types is

|{i}| = 2
2
2Nply

−1

22−1 . (20)

The most general additive normal form giving payoff aij
to an individual of strategy-type i when matched with
an individual of type j is then

aij =
1

Nply

Nply−1
∑

k=0

∑

αk=L,R

∑

βk=L,R

σαkiσβkja
(k)

αkβk . (21)

In Eq. (21) a
(k)
αβ is the normal-form payoff in ply k. The

αk, βk take values L or R at each information set, and we
use indicator functions σαki that take value 1 for those
strategies i with move αk at position k.38

It is important that strategies specify moves at infor-
mation sets, but payoffs need not be the same at all nodes
within a single information set. In this way, the exten-
sive form permits independent control over the complex-
ity and memory of strategic opportunities, and the payoff
functions that may be used in solution concepts over the
available strategies. [24].

0

1

FIG. 2. Maximal coarse-graining of the simultaneous-move
game of Fig. 1, to one information set per player. The infor-
mation sets 0 and 1 belong to the first and second player, and
are understood to be extended as plies of the tree are added.

The maximal coarse-graining of the total-information
game in Fig. 1 is shown in Fig. 2. Each player has a single
information set, and therefore no memory and minimal
complexity. The size of the type space is

|{i}| = 2. (22)

38 The normalization by Nply is arbitrary, but provides a useful
way to handle scaling when we consider repeated games in later
sections.
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This coarse-graining projects the extensive form at any
Nply onto the normal form for a single ply, and reduces
the payoff aij of Eq. (21) to a one-ply effective normal

form aαβ , averaging the
{

a
(k)

αkβk

}

with equal weight.

0

1

3

2

FIG. 3. A coarse-graining of the total information tree 1
that distinguishes plies but not paths of play. Even-numbered
information sets belong to the first player, and odd-numbered
information sets belong to the second player. In this tree, as
plies are added, new information sets are introduced with each
ply.

An intermediate coarse-graining of the total-
information tree shown in Fig. 3 distinguishes plies
and permits strategy complexity to grow with tree size,
but precludes memory, because nothing in the history
of play is distinguished by the information sets. The
number of strategy types is

|{i}| = 2Nply . (23)

The adjacency relation between plies on the tree is the
same as that between loci on a linear chromosome, and
this tree will be used as the basis for a model that main-
tains linkage disequilibrium in Sec. IVH.

4. Recursion and repeated games: systematic
approximation of strategies

We may generate a variable-length description for
strategies of increasing memory by referring each strat-
egy to the simplest coarse-grained tree on which it is
defined. We then assign to refinements of the coarse-
grained tree, only the new strategies that each refinement
first enables.39 We illustrate this decomposition with the

39 In matching a strategy’s complexity to its description length,
we are following the minimum description length approach of
Rissanen [84] for representing algorithms. The decomposition
of strategies which are defined in a product space over normal
forms on each information set, into varying degrees of long-range

first level of refinement, back from the maximally coarse-
grained tree of Fig. 2 toward the total-information tree
of Fig. 1.
Strategies L and R, equivalent to a single 2×2 normal

form, are the only ones defined on the tree of Fig. 2.
The maximally coarse-grained tree permits three distinct
refinements having memory-depth of one ply, and equal
numbers of L and R moves, shown as Figures 4, 5, and 6.
Each tree has three information sets per player and thus

|{i}| = 23 (24)

possible strategies. However, the first two strategies on
each refined tree, which assign either L or R to all in-
formation sets, coincide with those on the tree of Fig. 2,
and are not counted again. Therefore each refined tree
brings six new strategies.

0

1

2 3

4 5

FIG. 4. A tree with memory of the player’s own previous
move. Here information sets 0 and 1 are opening moves for
the first and second player. Information sets 2, 3 are the
recurrent moves for the first player, and 4, 5 are the recurrent
moves for the second player. Information sets representing
recurrent moves are to be extended recursively as plies are
added to the tree. Strategy REP moves L on information
sets 2 or 4 and R on 3 or 5, while strategy ALT moves R
on 2 or 4 and L on 3 or 5, thus repeating or alternating the
player’s previous move.

The refinement tree shown in Fig. 4 describes mem-
ory of the player’s own previous move. The two new
strategies defined on the recurrent moves either repeat
the player’s previous move (REP), or do the opposite,
leading to alternation (ALT).
The refinement shown in Fig. 5 describes memory of

the opponent’s previous move. The new strategy defined
in the recurrent stage of of this tree is tit-for-tat (TFT),
which repeats the opponent’s last move (and its opposite,
anti-tit-for-tat, or ATFT).

order, is similar to the decomposition of a direct-product group
into its direct-sum components [101]. The product space over
normal forms is the most finely resolved genotype space that a
coarse-grained extensive-form game admits.
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0

1

2 3

4 5

FIG. 5. The coarse-graining of the total-information game
of Fig. 1 that defines one-period memory for the opponent’s
move in the previous round. Strategies 0 and 1 are again
opening moves, while 2–5 are recurrent moves. Strategy TFT
moves L on sets 2 or 4 and R on sets 3 or 5, and attempts to
achieve coordination between players by opening with L on
sets 0 or 1.

0

1

2

3

4
5

FIG. 6. A tree that distinguishes parity of the players’
previous-round moves. Sets 0 and 1 are opening moves, and
2–5 are recurrent. The strategy Win-Stay/Lose-Shift assigns
L to recurrent sets 2 or 4, and R to sets 3 or 5. It therefore
breaks parity with the recurrent move in every ply, and its
opening move is not needed for coordination and does not
matter in long repeated games.

Both of the previous refinement-trees have the prop-
erty that their non-trivial recurrent moves (those that
are not all-L or all-R) are symmetric with respect to joint
exchange of responses L and R together with reflection
of the information sets through the vertical. That is, by
taking in asymmetric moves from the previous round and
generating asymmetric responses, all four of REP, ALT,
TFT, and ATFT make symmetrically defined responses

to their inputs.
The coarse-graining of Fig. 6 describes memory of

the parity between the player’s and opponent’s previous
move. Its information sets are therefore symmetric under
reflection. The two non-trivial recurrent-move strategies

on this tree break the response symmetry by mapping
even or odd information sets to L or R moves. The
widely explored strategy of Win-Stay/Lose-Shift [60, 63]
(WSLS, also called Pavlov [61]) maps even parity to L
and odd parity to R. Its opposite, which we term anti-
WSLS or AWSLS, does the reverse.
The symmetry or asymmetry in the response of short-

memory strategies is fundamental to the way they cope
with imperfect moves (called “trembles”). As we show
in Sec. IVE4, this difference of symmetry determines
whether the repeated game even uses long-range correla-
tions to redirect the force of selection, or simply modifies
the effective normal form over short range.

5. Finite-state automata and behavior strategies

As we have shown with the tree of Fig. 3, the im-
portance of memory can be minimized or even removed
with the structure of information sets. Models with this
property can represent general epistasis in development
without an implied directionality.
When memory is used, however, it inherits a direction

from the branching of the underlying tree in the exten-
sive form.40 This directionality need not entail tempo-
ral sequence, but it does entail one-way contingency in
some form. In order to classify the forms of strategic irre-
versibility that can result, we map finitely-defined strate-
gies on an indefinitely repeated extensive form game tree
to their corresponding finite-state-automata (FSA) [102].
Any finitely defined strategy on a tree of infinite depth

must correspond to a coarse-grained tree in which in-
finitely many nodes are assigned to some information set
or sets. Because information sets are Markovian, we may
always collapse the tree onto a finite-state graph. For any
such graph, a minimal form exists [103]. The states in
the FSA may be divided into transient states, which are
not revisited asymptotically, and recurrent states. In the
simple examples above, the transient and recurrent states
correspond to the opening-move and recurrent-move in-
formation sets on the game tree.

L,L 

L,R R,L 

R,R 

40 This one-way branching during interaction is reminiscent of the
one-way branching of population processes described by popula-
tion genetics.
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FIG. 7. Possible moves in the recurrent stage of the repeated
game of Fig. 5.

Fig. 7 shows the recurrent FSA for the tree of Fig. 5.
The nodes are labeled with the move profiles that arrive
at them. This FSA will be the basis for the repeated
Prisoners’ Dilemma example in Sec. IVE.
Strategies defined by moves on the states of a FSA

are known as behavior strategies [85]. Depending on
the structure of the game tree, behavior strategies may
or may not be intrinsically reversible. We may isolate
behavior strategies as models of development by using
long extensive-form games in which payoffs from open-
ing moves are negligible, though transient states may still
coordinate the recurrent moves. An example using be-
havior strategies in which correlations are removed with
trembles is given in Sec. IVE4, using the recurrent moves
from Figures 4, 5, and 6

IV. SYMMETRY AND COLLECTIVE
FLUCTUATIONS

We now consider the major robust effects based on
symmetry groups and their representations by popula-
tion states, which distinguish categories of game models.
The most important of these is spontaneous symmetry
breaking, which may happen to either continuous or dis-
crete symmetry groups, and may lead either to groups
of population states whose number does not depend on
the size of the state space, or to groups of population
states that grow with increasing size. The fact that sym-
metry remains a property of the system as a whole can
be used to prove the existence of properties such as per-
sistent dynamics, in regimes where direct calculation by
approximation methods is infeasible.
We first review the essential definitions and summa-

rize the categories of symmetries and symmetry breaking
along with their qualitative effects. We then develop a
sequence of worked examples demonstrating each class.
These models based on symmetry also provide examples
of scale-dependent regression coefficients, different coor-
dinating roles for repetition, or the origin of essential
multilevel selection, introduced in the preceding sections.

A. Symmetry breaking by short-term dynamical
states and restoration by time averaging

We define the symmetries of a game model as the trans-
formations that leave the fitness and transmission coef-
ficients unchanged. These may be subgroups of permu-
tations among agent types (mirror reflection, or cyclic
permutation) known as point groups, or they may come
from displacing the time coordinate by any of a contin-
uous range of values, forming what is known as a Lie

group [101].

Symmetries written in as properties of the individual-
level transition coefficients may be hidden if population
states that determine frequency-dependent fitness be-
come asymmetrical. Such asymmetric states may be rest
points, limit cycles, or more complex attractors, onto
which the population state converges. Because invari-
ances of the underlying model are not changed by “ac-
cidental” properties of its solutions, symmetries hidden
from the agent-level transition rates by population states
must be expressed as degeneracies among the eligible
population states. For example, if the fitness function
has a reflection symmetry under exchange of two types
Left and Right, but the population state converges to ei-
ther a left/right-asymmetric rest point, then there must
be two rest points that are identical under the reflection
that either rest point alone masks. The same is true for
continuous symmetries, which lead when they are broken
to a one-dimensional manifold of solutions along a limit
cycle or attractor.
We may think of asymmetry of population states as an

extension of the asymmetry that any sample may have
with respect to its underlying distribution, and doing so
provides a useful way to formalize changes of represen-
tation. If asymmetries in samples of population states
decay rapidly – over timescales comparable to the gen-
eration time – then the system dynamics is said to be
ergodic.41 If asymmetries in sampled population states
persist over times much longer than the individual gener-
ation time, the population state is said to spontaneously

break the defining symmetries of the underlying pro-
cess.42

The fact that hidden symmetry implies strict degen-
eracy of population states ensures autonomous dynam-
ics at the population level.43 Emergent population dy-
namics will generally be stochastic, and the stochasticity

41 The technical definition of ergodicity is complicated to express,
because it requires that samples from a dynamical trajectory ac-
cumulate to a distribution that is statistically equivalent to some
reference distribution representing an ensemble. Here we will
be concerned only with the ensembles that reflect the defining
symmetries, and beyond this we will not require a more precise
criterion for ergodicity.

42 Symmetry breaking is familiar from (second-order) phase transi-
tions [27, 29, 77] in either equilibrium or non-equilibrium stochas-
tic processes. Spontaneous symmetry breaking sensu stricto

is defined formally by the existence of a large-system limit in
which, asymptotically, asymmetric population states persist for-
ever. Because we can always recover the asymptotic property
(if it pertains) as a regular limit of finite-time persistence, we
consider all forms of hidden symmetry in finite-time as well as
infinite-time samples. The more general case includes many
important forms of timescale separation, and the scaling ap-
proach to the asymptote contains additional information about
the symmetry-breaking transition beyond that present in the lim-
iting distribution itself.

43 This becomes a non-trivial property when the timescale separa-
tion between population state-changes and the generation time
becomes very large. At a small timescale separation, bifurcations
between asymmetric states and those between symmetric states
may not seem qualitatively different. Both cases have basins
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drives convergence to the ergodic distribution – which
restores the expression of the underlying symmetries –
under sufficiently long time-averaging. In such long-time
averages, fluctuations in the population state become an
autonomous variable with fitness consequences at the in-
dividual level, which then feed back to re-enforce the
stability of population states. Spontaneous symmetry
breaking is therefore an important source of multiple
units of selection, and of dynamics that is coupled over
multiple scales.

B. The major categories of symmetries and
symmetry breaking

Symmetry breaking, and restoration of an ergodic dis-
tribution by a time or ensemble average, are very general
phenomena [27, 29, 58, 77]. The particular symmetry
groups affected, however, and the ways they are broken
by sets of ordered population states, can vary widely.
Each type of symmetry and type of symmetry breaking
leads to a qualitatively distinctive kind of dynamics at
the population scale. Whether a discrete or a continuous
underlying symmetry is broken determines whether the
characteristic timescale for population dynamics grows
exponentially or only polynomially (or not at all) with
population size, relative to the generation scale. This dif-
ference affects the convergence of asymptotic expansions
and thus the computational methods that can be used.
More complex forms of symmetry breaking introduce a
new kind of macroscopic dynamics known as “creep”, and
require qualitatively new calculation methods developed
in the theory of glasses. [104, 105].

1. Simple versus complex symmetry breaking: how does the
number of ordered system states scale with the size of the

state space?

The distinction between “simple” symmetry breaking
(which we will also term classical) and “complex” sym-
metry breaking (which we will also term glassy) is made,

of attraction, and the non-symmetric case may simply have dif-
ferent occupancy times in different attractors. However, if the
population dynamics separates exponentially (in some parame-
ter such as selection strength) from the generation scale, in an
asymmetric bifurcation the relative state occupancies will sep-
arate exponentially as well. In other words, all but the most
frequently-occupied state will come never to be occupied, and
the population state will effectively become non-dynamical. The
observation that many properties of stochastic processes are frag-
ile under exponential separation of scales if they are not protected
by symmetries is known as the hierarchy problem. It is the origin
of the statement in Ref. [52], that stochastically stable equilib-
ria will “typically” be unique, suggesting that exceptions involve
some form of fine tuning and should occur rarely. The one class
of exceptions in which this violation of typicality is not regarded
as finely tuned is the case where it is ensured by symmetries.

not based on single models, but based on the behavior of
population states in collections of models among which
the number of agents, agent states, or some other vari-
able is changed as a scaling variable. In simple symmetry
breaking, the number of ordered population states and
the symmetry group that relates them do not change as
the scale of the underlying system changes. The classi-
cal pitchfork and Hopf bifurcations are examples of this
kind.
In complex symmetry breaking, the number of ordered

population states grows (typically exponentially) with
the scale of the underlying system. The model of link-
age disequilibrium among heterotic loci on a chromo-
some [37], in which the number of heterotic loci is the
scale parameter, shows an example of complex symme-
try breaking. Complex symmetry breaking in equilib-
rium systems was first worked out as a description of
glasses, and is now used to describe a number of other
combinatorial optimization problems [104, 106] in which
the constraints on a system cannot all be jointly satisfied,
a condition known as frustration.

2. Continuous versus discrete broken symmetries, and the
consequences for fluctuations

When a broken symmetry is discrete, as occurs in the
example of reflection symmetry for the pitchfork bifur-
cation, population-level dynamics occurs by hopping be-
tween basins of attraction, with hops becoming exponen-
tially rare in a product of the selection strength with
population size. Collective fluctuations must overcome
kinetic “barriers”, and the problem for fluctuation me-
chanics to solve is to compute the rates and trajectories
of population-dynamic escapes from the parameters of
the individual-level interaction.
A very different behavior results when the broken sym-

metry is continuous, as occurs for the supercritical Hopf
bifurcation from a fixed point to a limit cycle. In this ex-
ample the ordered states must form a continuum, along
with the group of symmetries that transform one or-
dered state into another. No “barrier” impedes the ac-
tion of collective fluctuations, and these therefore accu-
mulate as Brownian motion along the limit-cycle trajec-
tory [107, 108]. The diffusivity for this Brownian motion
scales as a polynomial (in our examples, it is constant)
in the population size, rather than exponentially as for
the case of discrete symmetry breaking.
The Hopf bifurcation shows a special feature of non-

equilibrium stochastic processes, including stochastic
evolutionary games: the space of states itself is discrete
and its symmetry group is the discrete group of cyclic
permutations. The Hopf bifurcation, however, does not
break this discrete group, but rather breaks the continu-
ous symmetry of time translation. The continuity of time
translation implies the degeneracy of positions around
the limit cycle through a topological argument, for both
the mean population state and its fluctuations, a result
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that would be difficult to derive directly from the fluc-
tuation expansion. The proof that a form of barrier-free
dynamics at the population level is protected by an un-
derlying continuous symmetry is the stochastic version of
Goldstone’s theorem [58].44

3. Spontaneously broken symmetry contrasted with
externally imposed symmetries

Systems that produce degenerate states through sym-
metry breaking behave differently from systems in which
degeneracy is imposed externally by symmetries of the
underlying process. We illustrate this below by contrast-
ing a coordination game with broken reflection symme-
try, against a deterministic repeated Prisoners’ Dilemma
game, in which a continuum of population states is ren-
dered degenerate by a defining (and essential!) symme-
try between certain strategy pairs. Whereas the hid-
den symmetry in the coordination game results in dis-
crete two-scale dynamics at any separation of scales, the
imposed symmetry of the repeated Prisoners’ Dilemma
leads to large fluctuations about a unique average popu-
lation state. The large fluctuations, however, cause the
actual mean state to differ from any limit suggested by
the näıve mean-field approximation.
Externally imposed degeneracies are an important

cause of neutrality in evolutionary dynamics. Neutrality
has been studied in the context of genotype-phenotype
maps [86–91], and the use of games to model devel-
opment introduces a way to study neutrality in the
genotype-development-fitness mapping. The distinctive
consequence of neutrality in stochastic evolutionary dy-
namics is that large collective fluctuations are important
determiners of even the average population state. They
can cause population-level regressions of fitness on geno-
type to differ from the payoffs in the underlying normal-
form game, by entropy corrections that persist even in
infinite-population limits. The companion paper shows
how such entropic corrections may be systematically ap-
proximated, and the results of those calculations (shown
below) agree well with stochastic simulations.

C. Simple discrete symmetry breaking and the
emergence of multiscale dynamics

Our first example illustrates simple (classical) sponta-
neous breaking of a discrete reflection symmetry. The
mean-field behavior is a well-known pitchfork bifurca-
tion, to which we add an analysis of collective fluctua-
tions. We study the emergence of the population as a

44 In equilibrium statistical mechanics, Goldstone’s theorem en-
sures the masslessness of particles brought into existence by sym-
metry breaking of the vacuum. In the stochastic version, it en-
sures the existence of noisy clocks.

distinct dynamical entity, whose asymmetric states lead
to group selection by a standard derivation of Hamilton’s
rule from the Price equation. We also show how discrete
symmetry breaking in evolutionary games has a repre-
sentation in terms of potential functions similar to the
energy potentials of equilibrium thermodynamics.

1. Reflection-symmetry breaking in a coordination game

Consider a population in which agents may have types
Left (L), Right (R), and M iddle (M). We write the in-
stantaneous population state as a column vector

n ≡





nL
nR
nM



 . (25)

We will define the affine model of frequency-dependent
fitness by the normal-form payoff matrix in the case of
random matching,

[a] = ā





1
1
1





[

1 1 1
]

+





a −a 0
−a a 0
0 0 0



 . (26)

This second-order expansion is completely defined by the
reflection symmetry between L and R, equal payoff to M
from all types, and the existence of a uniform-population
Nash equilibrium under all conditions. The parameters
ā and a are otherwise arbitrary, and the qualitative be-
havior of the model is associated with broad parameter
ranges.
Models of this form converge to their mean-

field approximations in the large-population (large-N)
limit (15). For weak selection, the model has a single
ESS at uniform population compositions. For strong se-
lection, the uniform population remains a rest point but
becomes a saddle point, while a pair of left and right rest
points emerge as the ESS. The set of these symmetric
ESS forms the Stochastically Stable Set of Ref’s. [2, 52].
We solve for these rest points in App. B 1, in terms

of two parameters β̄, γ̄. The uniform population state
corresponds to β̄ = γ̄ = 0. The two ESS at β̄, γ̄ 6= 0 are
related to average population numbers by

nL − nR

N
=

2β̄√
D − 1

(27)

and

nM

N
=

1

D
+ γ̄

√

D − 1

D
. (28)

The left-right asymmetry solves the equation

β̄2

(

D − Na

D +Na (D − 1) β̄2

)

= 1− D2

Na (D − 1)
. (29)
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In terms of this solution, the typical excess of nL+nR in
either ESS is given by

γ̄ =
−1

√

D (D − 1)

Na (D − 1) β̄2

D +Na (D − 1) β̄2
. (30)

The excess γ̄ will serve as a measure of the fitness due to
relatedness in correlated group states.
Fig. 8 shows dynamical trajectories solving the mean-

field flow equations with payoffs (26) and mutation (6).
The payoff strength a = 0.5 leads to a critical popula-
tion size N = 9 for instability to bifurcation. The figure
shows the strong-selection regime at N = 16. In this
regime, the deterministic solutions from arbitrary initial
conditions flow rapidly toward an arc running through
the uniform distribution and the ESS. Diffusion is then
slowest along this arc, with departure from the saddle
point that is exponential in time with a rate constant
linear in N , and approach to the stable points with the
same characteristics. Analytic solutions for these values
are given in App. B.

L R

M

FIG. 8. Discrete symmetry breaking in the normal-form co-
ordination game (26), at a = 0.5 and N = 16. The simplex
of constant N is shown, with the populations of fixed types
(L,R,M) indicated at the vertices. Dots represent arbitrary
initial values of n̄ in the mean-field approximation, and lines
are the solutions of the mean-field evolutionary game equa-
tion (15) from those initial conditions.

2. Symmetry breaking in the Price equation and Hamilton’s
rule

Hamilton’s rule for group selection follows as a gen-
eral result from the Price equation, whenever the vari-
ance within typical group states is smaller than the to-
tal variance shown by the population as a whole. The
origin of the ensemble over group states does not mat-
ter; they may be contemporaneous groups in an island
model, or temporally segregated group states of a single
population. The transitions in the coordination game (as
we will show below) with broken symmetry are typically
rapid compared to the time spent in either asymmetric
state. Therefore population states at successive times
form a natural ensemble of group states, whose frequen-
cies are the same as those sampled independently from
an ensemble of model instances. Here we derive the form
of Hamilton’s rule for the coordination game, following
Ref. [35].

We may write the Price equation for the change in
population state n̄ in a long-time average from times 0
to T , as the sum of terms of the form (14) at single
generations,

∑

n

(ρn,T − ρn,0) nJ =

T−∆t
∑

t=0

∑

n

(

ρ′n,t − ρn,t
)

nJ

=
T−∆t
∑

t=0

∑

n

ρn,t

(

∑

i

〈
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J|i

〉

n
− nJ

)
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T−∆t
∑
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∑
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= TN
{

Covρ
(

δJ ,w
)

+ Eρ

(

w ·∆δJ
)}

. (31)

Because the population process is Markovian, the update
is conditionally independent of t given any state n. The
fourth line is a covariance in the time-dependent distri-

bution ρ~n,t.

With respect to the same time-dependent distribution,
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we may define mean values over the whole interval

n̄J ≡ ∆t

T

T−∆t
∑

t=0

∑

n

ρn,tnJ . (32)

About the collection of these mean values, the variance
of observable δJ is then

VJ ≡ ∆t

T

T−∆t
∑

t=0

∑

n

ρn,t
1

N

∑

i

ni

(

δJi −
n̄J

N

)2

. (33)

If the instantaneous population distributions ρn,t flip
stochastically and symmetrically between rest points, the
average n̄J may be small while the instantaneous aver-
ages of the indicator functions δJi are large. Thus the
relatedness from switching of population states can dom-
inate the transient relatedness from fluctuations about
the instantaneous average.
Now we perform a regression for wi at each time in the

same variables as those of Eq. (17), but we require that
the set of (fixed) coefficients aij minimize the squared
error in the joint population/time covariance, rather than
in the single-time population covariance of Eq. (18).45

The time-averaged generalization of the regression (18)
then becomes

wi − 1

∆t
=
∑

kj

(

δik − nk
N

)

(αkj + akjnj) +O
(

1

N

)

+ ǫi.

(34)
We now wish to decompose the covariance term in the

long-time Price equation (31). Following Ref. [35] we
define a “cost” component for each type, normalized by
the variance (33), as

−VJCJ =

n̄J

N

∆t

T

T−∆t
∑

t=0

∑

n

ρn,t
∑

j

(
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nj
N

)

(

αj +
∑

k

ajknk

)

≡ n̄J

N

〈

∑

j

(

δJj −
nj
N

)

(

αj +
∑

k

ajknk

)〉

ρ

=
n̄J

N

[(

αJ +
∑

k

aJkn̄k

)

− 1

N

∑

j

(

αj n̄j +
∑

k

ajk〈njnk〉ρ

)



 . (35)

The cost measures the fitness contribution from the long-
term average population state n̄, and in the last line of
Eq. (35) we have separated the mean-field approxima-
tion from covariance corrections. In the regime of strong
selection, the latter will be small.

45 To reduce clutter in the next several equations, we will collect
terms arising from the −δij factor that eliminates self-play into
an overall summand at O(1/N).

In the case where multiple regressions against several
predictor types k are used, the “benefit” term in Hamil-
ton’s rule is a matrix indexed by “benefactor” k and
“beneficiary” J , with components

BJk ≡
∑

j

[(

δjJ − n̄j

N

)

ajk − akj
n̄j

N

]

− αk

N

= aJk − αk

N
−
∑

j

(ajk + akj)
n̄j

N
. (36)

Here “benefit” stands for the difference between the ac-
tual payoff coefficients per interaction, and the average
in the mean population state n̄.

The relatedness between benefactor and beneficiary is
also indexed by J and k, and is written as a set of regres-
sion coefficients against the variance of the beneficiary,
so

VJrJk ≡ ∆t

T

T−∆t
∑

t=0

∑

n

ρn,t
1

N

∑

i

ni

(

δJi −
n̄J
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)

(nk − n̄k)

=
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T−∆t
∑

t=0

∑

n

ρn,t
1

N
(nJ − n̄J ) (nk − n̄k) . (37)

We see from the second line of Eq. (37) that relatedness
may be mediated primarily by population state-switching
in the realm of strong selection.

Finally we may write the covariance term from Eq. (31)
as

Covρ
(

δJ ,w
)

= VJ

(

∑

k

BJkrJk − CJ

)

− 1

N

〈

(nJ − n̄J)
∑

jk

(nj − n̄j) (nk − n̄k)

〉

ρ

. (38)

The least-squares condition for the parameter αJ ensures
vanishing of Covρ

(

δJ , ε
)

. In the large-population limit,
the third-order variation in the second line of Eq. (38)
will be small and asymptotically ignorable compared to
terms kept in the first line.

We compute values for CJ , BJk, and rJk in App. B 1,
and there we also show how the long-term average over
population states coarse-grains the type space together
with the distribution. The two “types” that are left in-
variant by reflection, even in the domain of broken sym-
metry, are the union of L and R types, versus the M
types. The fluctuating population state appears within
this coarse-graining as a fluctuating phenotype within the
(nL + nR)-population. Both variants of the fluctuating
phenotype share the feature of being capable of coor-
dination which confers benefit when they coordinate on
the same phenotype, relative to the M type, who are not
capable of coordinating.
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3. The large-deviations scaling limit and multiscale
dynamics

Systems are said to take on the large-deviations prop-

erty when, under suitable conditions of aggregation, the
log-likelihoods for sample fluctuations separate into a
scale-independent term that depends only on the struc-
ture of the fluctuation, and an overall scale term appli-
cable to all fluctuations [73]. The structure-dependent
term is called the rate function (or entropy) of the large-
deviations principle. In this limit, the structure of the
state space for aggregate system dynamics has separated
from the details of individual behavior, and it becomes
possible to regard the aggregate system as a primitive
entity in its own right.
Large-deviations scaling is now understood to be the

basis for the emergence of thermodynamic descriptions,
and the reason that thermodynamics stands as a con-
sistent theory, whether or not it has been derived from
an underlying statistical mechanics [109]. The ability
to derive rate functions quantitatively (the topic of the
companion paper) provides a way to connect models of
evolutionary dynamics with multiple scales, in which the
same entity appears aggregate at one scale and primitive
at another.

4. The role of potentials in representing broken symmetries

The symmetries of potential functions were understood
to govern the properties of motion in mechanics with the
work of Lagrange and Hamilton [110]. The idea of an
effective potential whose purpose was entirely to capture
the symmetries of states in phase transitions was invented
by Landau [77]. Over time it became understood that the
energy-scale-dependence of the effective potential came
from absorbing fluctuation effects into average parame-
ters [27]. The free energy landscape of thermodynamics
is just such an effective potential [74]. For this reason,
the picture of symmetry breaking in equilibrium systems
is almost always conveyed in terms of symmetries of an
effective potential.
The use of potentials to visualize symmetry in non-

equilibrium stochastic processes is more limited, though
they still represent symmetries. A brief summary of the
ways in which potentials can be defined for evolution-
ary games is given in App. A 2. Here we note that, for
symmetry-breaking games whose stable trajectories are
rest points, it is possible to define a potential function
with many of the intuitive properties of the equilibrium
potential, including the direct expression of symmetries,
and also the control of escape probabilities.
Spontaneous symmetry breaking by pitchfork bifurca-

tion in equilibrium thermodynamics results from effective
potentials of the form shown in Fig. 9. The curvature
of the wells at their minima determines the strength of
mean-regression toward the mean population state and
thus the variance of fluctuations. The depth of the wells

determines the rate function46 in the large-deviations for-
mula for the rate of escapes from one well to the other.

FIG. 9. In equilibrium, the minima of a potential determine
the rest points of dynamics, the gradients of the potential in
neighborhoods of its minima determine rates of mean regres-
sion, and the barrier of the potential between wells determines
the leading exponential dependence of escape rates. Phase
transitions are described by changes of the potential from the
convex form shown on the left to the non-convex form on the
right, as an interaction strength is increased. As the wells
of an equilibrium potential deepen, the fluctuations in pop-
ulation states are suppressed [6] and the dynamics becomes
increasingly well-described by a two-state, continuous-time
Markov process, suggested by the dashed line with arrows.

The depths and curvatures of the two wells generally
depend on population size N , so the regression rates will
generally depend linearly on N and the escape times will
depend exponentially on N . Thus, these quantitative

properties of dynamics will not be independent of the sys-
tem scale. The underlying reflection symmetry ensures,
however, that the minima of the two wells are exactly
degenerate at any N . Therefore, unlike the escape time,
the relative occupation frequency in these wells does not
grow exponentially with N , allowing population-scale dy-
namics at any N .47

The quantity we call the “kinematic” potential for the
stochastic process of the coordination game is shown in
Fig. 10. The white dashed contour is drawn along the
saddle of the potential between the stable and saddle rest
points. It closely approximates the attracting contour of
slowest flow in Fig. 8. We compute escape trajectories
in the companion paper, and show that these closely ap-
proximate the slow-diffusion contour but travel in the
opposite direction.
It can be shown that, in the dynamical system of

Freidlin-Wentzell theory that we use to compute es-

46 See Ref. [73] for the definition of the scale factor and rate function
in a large-deviations rate formula. For all of the cases of classical
symmetry breaking demonstrated in this review, the scale factor
is population size N .

47 The absence of a protecting symmetry was used in Ref’s. [2, 52,
59, 75], along with a selection-strength relaxation protocol anal-
ogous to simulated annealing in Ref. [59], to provide a further
equilibrium refinement beyond ESS. This equilibrium refinement
works because, generically, all but the lowest effective minimum
becomes depopulated. The effective minimum, however, depends
on non-local properties of the basin of attraction, and therefore
requires the inclusion of fluctuation corrections to compute reli-
ably.
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N=7
N=9

N=16

FIG. 10. The “kinematic” potential V (ν) defined in Eq. (50)
of the companion paper, for the coordination game at the
parameters shown in Fig. 8. The greyscale and contours are
uniform in log V (ν). Dashed white line is drawn to follow
the saddle of V (ν), and closely approximates the direction
of slowest flow in the diffusive field of Fig. 8. It also ap-
proximates the most probable trajectory for escapes. (Inset)
Linear plot of the potential along the dashed white contour
at three values of N : N = 7 stable uniform rest point, N = 9
the classical critical value for phase transition, and N = 16
the ordered phase of Fig. 8. The symmetry breaking of the
potential resembles that shown in Fig. 9 for equilibrium sys-
tems, except that in the ordered regime both the saddle point
and the stable rest points are zeros.

capes [65], the dynamics of games with broken dis-
crete symmetries converge in the sense of large-deviations
theory to lie within one-dimensional heteroclinic net-

works [111, 112]. The orbits of these networks are the
deterministic diffusion paths from saddle to stable rest
points, and the escape trajectories in the opposite direc-
tions. The heteroclinic networks are well approximated
for this game by the paths along the saddle of the poten-
tial of Fig. 10.
The inset in Fig. 10 shows that the kinematic poten-

tial shares the reflection symmetry of its thermodynamic
analog, and likewise shows the degeneracy of rest points
under change of N through the critical value. It also
shows an important respect in which escape trajecto-
ries in irreversible stochastic processes differ from those
in equilibrium thermodynamics.48 Equilibrium escapes
run between the two minima of the effective potential
in Fig. 9, and their motion is fastest at the maximum
of the potential which is an unstable equilibrium.49 Es-
cape trajectories in the stochastic process pass through

48 Both of these are known as instantons [58], and their mathemati-
cal treatment is similar despite different properties of equilibrium
and non-equilibrium models.

49 Escape trajectories are all exponentially improbable paths, com-

the saddle, and both enter and exit exponentially slowly
compared to their passage through the intermediate con-
figurations. The kinematic potential of Fig. 10 correctly
represents these differences, so that the relation of the
escape trajectory to the potential is mathematically the
same as in equilibrium. The probabilities of escapes have
further asymmetries that are not captured in the kine-
matic potential, which are explained in the companion
paper.

5. Weak and strong selection

Characteristic timeseries for agent numbers nL/N and
nR/N , from samples of stochastic simulations of the
model (26), are shown in Fig. 11 and Fig. 12. These sim-
ulations illustrate the transition from the weak-selection
regime N >∼ 9 to the strong-selection regime N ≫ 9.

Fig. 11 shows the behavior of nL/N and nR/N in a
neighborhood of the bifurcation point. In this regime,
fluctuations involving large fractions of the population
are common, and transitions between the basins of at-
traction of the two ESS are frequent.
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FIG. 11. Characteristic timeseries of two number components
nL and nR for weakly broken symmetry, in a simulation of
the stochastic game model (26). The average occupancies
are asymmetric between domains of high-occupancy and low-
occupancy, because the numbers nL and nR project differently
onto the ESS in which they are dominant and in which they
are marginal. Fluctuations are also asymmetric between high-
and low-occupancy, because the projections onto the saddle
path of slowest mean-regression differs.

Fig. 12 shows corresponding timeseries, over the same
number of generations as Fig. 11, for a regime of strong

pared to fluctuations about the mean population state. Their
definition is that, conditional on the occurrence of an escape,
they are the least-unlikely trajectories to have mediated that es-
cape..
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selection. The typical residence time in domains is now
much longer than the time-window shown, so this win-
dow was selected to include one such transition. The
magnitude of fluctuations has decreased due to strong
mean regression, as indicated by the curvatures of the
kinematic potential in Fig. 10. More importantly the
frequency of large excursions has been suppressed rela-
tive to that of smaller ones, leading to rare but sharp
transitions between basins of attraction. The distribu-
tion over individual types is thus tightly entrained by
the mean population state, and this distribution changes
as a “coalition”.
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FIG. 12. Characteristic timeseries of number components
nL and nR for strongly broken symmetry, in comparison to
Fig. 11. Population variance about either rest point is now
much smaller than the separation between the two ESS, caus-
ing the large excursions that lead to escapes to become expo-
nentially rare with N .

Fig. 13 shows the effect of the transition between weak
and strong selection, on the time-averaged description
of the population state. A moving window was used
to time-average (nL − nR) /N , corresponding to the T -
generation average of Eq. (31). We denote this average
〈nL − nR〉T /N . The ensemble-average of this quantity
over window positions is then plotted in absolute value
versus 1/N . In the realm of weak selection, any window
long enough to suppress fluctuations within a basin of
attraction has high probability to include a transition,
and the ensemble mean of |〈nL − nR〉T | /N falls rapidly
to zero. Thus even short time averages fail to reflect
the analytic solution for the rest points given in App. B,
shown in the solid line. The point of departure of the
time-averaged population statistic from the analytic re-
sult depends sensitively on window length in this weak-
selection regime.
In the regime of strong selection, population states are

persistent, permitting long windows to average over Pois-
son fluctuations about the population mean while rarely
including transitions. In this regime, a time window
shorter than the typical persistence time readily identi-
fies group states as dynamical variables in the two-state
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FIG. 13. Short-term breaking and long-term restoration
of symmetry. The mean-field approximation for asymme-
try plotted against the time-averaged population composition
in samples. Average population asymmetry

∣

∣〈nL − nR〉τ
∣

∣,

over windows of length τ/∆t generations, is plotted versus
D2/ [aN (D − 1)], which takes value 1 at the mean-field crit-
ical point. When state changes have rate >

∼ 1/τ , the time-

average
∣

∣〈nL − nR〉τ
∣

∣ (symbols) approximates the symmet-
ric, ergodic distribution, departing from the analytic formula
(dashed line) for mean asymmetry given by Eq. (29) – even
though the typical population state is asymmetric as shown in
Fig. 11. When state changes have rate ≪ 1/τ ,

∣

∣〈nL − nR〉τ
∣

∣

captures the time-dependence of a two-state stochastic pro-
cess (symbols follow the line). The sample average begins to
deviate from the analytic form when the typical residence time
is comparable to the window timescale. For weak symmetry
breaking as in Fig. 11, changes in τ of order unity result in vis-
ible shifts of the transition point on the diagram. For strong
symmetry breaking as in Fig. 12, changes of τ by factors ≫ 1
are required to shift the transition point, corresponding to the
exponential dependence of the residence times on N .

Markov process. The persistence time, which grows ex-
ponentially with population size in the strong-selection
regime, sets the rate of convergence to the ergodic distri-
bution over L/R population states. The group-level de-
scription is not sensitively dependent on window length,
because a large separation of timescales has opened be-
tween Poisson fluctuations whose frequencies are polyno-
mial in 1/N , and escapes whose frequencies are exponen-
tial in −N .

6. Generic group selection versus literal kin selection

Group selection is defined by the need to include the
relatedness rjk in the covariance term (38) of the Price
equation, in order to generate the correct population dy-
namics. Whether or not relatedness depends on descent
of mutants from a common ancestor – hence on literal
kinship – depends on the particular scaling behavior of
first-passage times, as a function of the number of types,
the strength of selection, and group size.
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Increasing the number of types increases the impor-
tance of kinship, by standard Muller’s-ratchet arguments
for the infinite-alleles model.50 An important prop-
erty of independent-mutation models of this kind is that
first-passage time scales exponentially in both selection
strength and population size. The number of concurrent
new mutants does not depend on selection strength, and
depends only linearly on population size. As long as these
scaling properties of the model are roughly preserved, we
expect that, among states with sufficient mutants to tip
the population, the likelihood that almost all mutants
are kin will increase exponentially with both selection
strength and population size.

7. The transition from relatedness to the emergence of
coalitional behavior from non-cooperative interactions

The frequency with which subsets of a population de-
viate from the mean population behavior (in these exam-
ples) becomes exponentially rare in the regime of strong
selection, which is the essence of the large-deviations
principle [26, 73]. When the evolutionary game equa-
tion has a unique solution, the suppression of deviations
describes convergence to an adaptive optimum. When
broken symmetry requires multiple population states and
autonomous dynamics, we may view the population as a
coalition, and the convergence of individual behaviors to
the population mean as a mechanism for the emergence
of coalitional behavior from non-cooperative behavior.

The ability of coalitions to entrain the strategy choices
of individuals is the basis of cooperative solution concepts

in strategic game theory [22, 24]. Like other aspects of
game structure, the mechanisms that define coalitions,
such as side-payments to share game payoffs, are assumed
to be exogenous and given. Symmetry breaking provides
one mechanism to endogenize the formation of coalitional
behavior, and may provide an instance in which evolu-
tionary game theory provides a mechanistic underpinning
to strategically useful concepts. We provide an explicit
map from the shared benefit of coordinated group states
to a form of side-payment in App. B 1 c

In two respects, however, the particular mechanism of
symmetry breaking may miss concepts of importance in
cooperative game theory. Symmetry breaking will not
generally lead to rest points for all possible combinations
of coalitional action, so that concepts such as the core

50 Such example games should be understood to represent minimal
representations after good gene compressions have been found.
Two factors that increase the number of relevant types are the
number of alleles for a given relevant locus, and the degree of
pleiotropy of the trait, which may require the indices i in the
model to represent high-order associations of genes, resulting in
high type numbers even if the number of alleles of each gene is
small.

of a cooperative game may not be fully represented.51

Likewise, since coalition formation is given in cooperative
game theory, it has no characteristic timescale or inertia,
and switching of the population is effectively free between
any coalitional states. The long timescales for stability of
population states that accompanies suppression of devi-
ations may fail to capture this flexibility. An important
problem in systems ranging from neuronal memory [113]
to social dynamics [38] is how slow-timescale variables
may emerge which confer order on short-term individual
behavior, but which may also rapidly switch in response
to particular sets of local events.

D. Simple continuous symmetry breaking and a
new role for time in non-equilibrium processes

The next example illustrates simple (classical) break-
ing of a continuous symmetry. We extend the well-known
mean-field behavior of Hopf bifurcation from a fixed point
to a limit cycle to include the role of collective fluctua-
tions. The type space in this model has no continuous
symmetries, yet the Hopf bifurcation results in a con-
tinuous set of solutions because the broken symmetry is
continuous time translation. The stochastic Goldstone
theorem for continuous broken symmetry ensures that as
long as the winding number (a topological feature) of the
limit cycle is not broken, the ordered state will represent
the continuous symmetry of time in both the mean field
and the fluctuations, rather than the discrete symmetry
of the type space.

1. Continuous degeneracy of the order parameter even in
discrete type spaces

The simplest game with a supercritical Hopf bifurca-
tion is the totally-symmetric Rock-Paper-Scissors (RPS)
game [4].52

Types are indexed (R,P,S), and the population state is
denoted

n ≡





nR
nP
nS



 . (39)

The normal-form payoff matrix assuming random match-
ing is [8]

[a] = ā





1
1
1





[

1 1 1
]

+





−a b
b −a

−a b



 . (40)

51 The core, like the feasible set in repeated game theory, empha-
sizes maximum strategic flexibility. If restrictive mechanisms are
desired which enable the formation of only a subset of coalitions,
symmetry breaking may be applicable.

52 Similar conclusions apply, however, to a wide variety of stochas-
tic processes with limit cycles, and many of these have been
developed in reaction-diffusion theory [107, 108].
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This form is uniquely specified, up to the magnitudes of
a and b, by antisymmetry of payoffs and invariance under
cyclic permutation of the agent types.
The RPS model, like the coordination game, converges

to its mean-field limit in all respects besides the accumu-
lation of noise along the limit cycle in the broken phase.
The bifurcation in MFA is derived by introducing a ra-
dius variable

r2 ≡ n̄2
R + n̄2

P + n̄2
S

N2
− 1

D
. (41)

Evaluating Eq. (15) for log r2 gives

d log r2

dt
= (a− b)N

[

1

D
− 2D

(a− b)N
+O(r)− r2

]

.

(42)
The term denoted O(r) is oscillatory in the angular
coordinate on the simplex, and does not accumulate
over time, as revealed by the simple Floquet analysis in
App. C.
From Eq. (42), a < b+ 2D2/N gives a unique, stable,

static equilibrium at r = 0 (the uniformly mixed popu-
lation). When a > b + 2D2/N , the uniform population
becomes unstable, and all solutions to Eq. (15) converge
to a limit cycle, as shown in Fig. 14. Near the bifur-
cation, the cycle is approximately circular, with a mean
value given by

r̄2 ≈ 1

D
− 2D

(a− b)N
. (43)

Mutation is responsible for the stability of the limit cy-
cle along an interior trajectory, which otherwise would
accumulate to the simplex boundary.

2. Symmetries governing the Hopf bifurcation act on a
space of histories

Fig. 14 shows dynamical trajectories solving the mean-
field flow equations with payoffs (40) and mutation (6).
The projection onto the type space makes it difficult
to see, from symmetry alone, why the ordered popula-
tion state should follow a limit cycle or why fluctuations
should not cause the cycle to get “stuck” in one of the cor-
ners, so that the ordered states would respect the point-
group symmetry of the type space.
Fig. 15 shows the relevant symmetries of the prob-

lem by embedding population states in a 3-dimensional
space of both types and time. As developed at length
in Ref. [74] and in the companion paper, the elementary
entities to which non-equilibrium stochastic processes as-
sign probabilities are not single-time configurations, but
entire histories extended over time. In Fig. 15, the his-
tory representing the limit cycle is a spiral path that
winds around the symmetric fixed point, and which may
be periodically identified in time at integer multiples of
the limit-cycle period. The symmetry that transforms

P R

S

FIG. 14. The standard limit cycle for the rock-paper-scissors
game (40) with parameters a = 0.7, b = 0.2, and N = 48.
Dots represent initial mean states n̄, and light lines are solu-
tions to Eq. (15) from those initial states. Heavy line is the
limit cycle, to which all solutions converge.

different ordered histories is translation in time (vertical
displacement in the graph). Because the ordered his-
tories couple types and time, this translation maps to a
rotation on the projected limit cycle as well.53 The wind-
ing number of any ordered history about the vertical axis
through the unstable rest point is a topological feature
of the ordered history, which must change by “breaking”
the path in order for the continuous circle of trajecto-
ries to be replaced with a discrete set transformed by the
point-group symmetry of the type space.

3. Stochastic Goldstone’s theorem and noisy clocks

The quantitative derivation of the stochastic Gold-
stone theorem requires the dynamical-system representa-
tion from the Freidlin-Wentzell theory [65] for stochastic
processes, which we derive in Sec. III B 3 of the com-
panion paper. The theorem states that the cumulant
expansion in the distribution for fluctuations has zero-
eigenvalue modes corresponding to the direction of sym-
metry around the limit cycle. We derive only low-order
approximations to this cumulant expansion, to produce
quantitative estimates for fluctuations transverse to, and

53 To appreciate that it is the time translation which is fundamen-
tal, note that the time translation acts uniformly on the spiraling
history. If we wish to project this into an equivalent map on the
limit cycle in the base space, the map is not a uniform advance
along the line element of the limit cycle, but one that “stretches”
or “compresses” different segments to reflect the different rates
of advance along the cycle.
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FIG. 15. The order parameter in a space of histories, cor-
responding to a limit cycle, is an extended-time path. The
projection of the limit cycle onto the space of types is shown
in the base plane of the graph. For a limit cycle near the
boundary of the RPS simplex, the cycle slows at the vertices,
as shown by vertical inclination of the trajectory. Yet time
translation generates the set of all cycles, unless a topological
phase transition changes joint symmetry of time translation
and winding around the cycle.

Brownian motion along, the cycle, which we compare to
simulations in the next section. It is well-understood that
low-order approximations to cumulant expansions are not
by themselves reliable, especially for exact cancellations
such as zero eigenvalues. The hidden symmetry of time-
translation implies, however, that these zero eigenvalues
exist at all order of approximation, and even when the
approximate expansion in 1/N fails to converge, as long
as the topological winding number of the average ordered
history persists.

FIG. 16. Spontaneous symmetry breaking in a two-
dimensional equilibrium system. The exact degeneracy of a
continuous, one-dimensional loop of solutions requires a rota-
tional symmetry in the underlying potential. Cross-sections of
the potential are otherwise equivalent to the one-dimensional
case of Fig. 9. The exact degeneracy around the loop in the
equilibrium potential ensures that arbitrarily small energies
can reach any minimum, independent of the steepness of the
mean regression in the radial direction. These most-accessible
deformations are known as the Goldstone modes in the or-
dered state.

The analogy of the limit cycle in RPS to a continuous
circle of degenerate ordered states that leads to Gold-
stone’s theorem for equilibrium thermodynamics is lim-
ited. Ordinarily time-translation symmetry is not bro-
ken by the solutions of equilibrium thermodynamics.54

Therefore, in order for a continuous symmetry to emerge
among spatial ordered states, the potential would need to
have the form shown in Fig. 16. The type space of RPS
has no such rotational symmetry, and the kinematic po-
tential corresponding to Fig. 10 for reflection symmetry
shows a single zero, at the unstable rest point for the
uniform population. It also does not have constant value
along the spatial projection of the limit cycle.

4. Quantitative results for fluctuation strength in unbroken
and broken RPS

If we expand the instantaneous radial coordinate in
the RPS simplex about its mean value as r ≡ r̄ + r′,
with r̄ satisfying Eq. (43), we may use the results of the
companion paper to estimate the fluctuation magnitude
for r′ in either the broken or unbroken phase.
In the unbroken phase where r̄ ≡ 0, the estimate is

〈

(r′)
2
〉

=
2D

N

ā− a−b
3 + 1

N
∣

∣a− b− 2D2

N

∣

∣

. (44)

In the broken phase, fluctuations must be divided into
two components. For weakly broken symmetry, where
the limit cycle is nearly circular and r′ describes a ra-
dial fluctuation, we may write r̄θ′ for fluctuations in the
direction tangential to the limit cycle.
The quantitative consequence of Goldstone’s theorem

is that radial fluctuations regress, producing a stationary
distribution independent of initial conditions at late time.
In contrast, tangential fluctuations accumulate linearly in
time, and are therefore described by a diffusion constant
and must also be referenced to an initial distribution.
The quantitative relation between the width of the radial
distribution and the diffusion constant for the Brownian
motion is given by

54 Ordinarily equilibrium thermodynamics is defined through physi-
cal context, as a theory of time-independent states. However, the

mathematics of equilibrium may readily be extended by analytic
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〈[

r′

r̄θ′

]
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r′ r̄θ′
]

〉
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]〈[
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t− t′

]

(45)

Fig. 17 compares time averages of simulation results
for the squared radius

〈

r2
〉

to these expressions. In
the unbroken phase, fluctuations dominate the average,
and agree closely with the Gaussian-order estimate of
Eq. (44). In the broken phase,

〈

r2
〉

is dominated by the
limit cycle itself, which we estimate from numerical sim-
ulations of the solutions to the mean-field dynamics (15).
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0
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a

<
r2

>

FIG. 17. Comparison of fluctuation results from analytic es-
timates and simulations. Time-averaged squared radii

〈

r2
〉

(crosses), sampled at all a values, are well-defined without
regard to the circular approximation to the Frenet frame.
Eq. (44) for radial variance in the unbroken phase (solid)
agrees closely. In the broken phase, where most limit cy-
cles are close to the periphery and the Gaussian fluctuation
approximation (45) is poor, time averages

〈

r2
〉

over an inte-

ger number of limit cycles are computed numerically (dashed

line). These underestimate stochastic
〈

r2
〉

by omission of
variance terms. Here b = 0.2 and N = 10000.

Certain features of this model lead to a rapid transition
away from the critical point and into the strongly non-
gaussian regime of fluctuations near the boundary of the
simplex, making quantitative comparison to the radial
and tangential estimates of Eq. (45) difficult. If we insert
Eq. (43) for the mean r̄2 on the limit cycle, into Eq. (45)

continuation to the range of thermodynamically reversible dy-
namics, and systems in this domain may break time-translation
symmetry [114, 115]. The paired state of superconductors may
also be said to break time-translation, in the collective phase of
the pair wave function, though this is not an observable under
most conditions [116].

for
〈

(r′)
2
〉

, we obtain the result that for large N ,

〈

(r′)
2
〉

≈ ā

(2Dr̄)
2 (46)

near the critical point, asymptotically independently of
N . For the parameters in Fig. 16 and ā ∼ 1 (needed so

that ā >∼ a), r̄ only becomes large enough for

√

〈

(r′)
2
〉

≪
1 near the simplex boundary. At interior positions of the
limit cycle, large fluctuations fill most of the simplex.
This feature, together with the coordinate singularity at
r = 0, makes numerical assignment of fluctuations to the
Frenet frame55 ambiguous. The Gaussian approximation
for fluctuations is therefore corrected by boundary terms,
until the limit cycle enters the strongly non-linear regime
near the boundary. A thorough treatment of the oscil-
latory diffusion constants of very similar models in this
non-linear regime is given in Ref. [107, 108], so we do not
duplicate that analysis here.

E. Collective fluctuations that impact model
estimation and model interpretation

We next consider a model in which no symmetries are
spontaneously broken, but a symmetry is imposed as a
defining feature of the model, which makes both the play
and the fitness of two types of agents indistinguishable
when only they occur in a population. Exogenous sym-
metries of this kind are less widely modeled with evolu-
tionary game theory than the bifurcations of the last two
sections, because they result in mean-field approxima-
tions that show no fitness difference between agent types
in certain population contexts. Therefore the MFA itself
does not define a solution. The problems created by such
neutrality in the fitness map are widely understood, but
to our knowledge, a systematic solution of these prob-
lems based on symmetries and collective fluctuations has
not been carried out.
We choose a canonical form of the repeated Prison-

ers’ Dilemma (RPD) game [8] as our example because it
touches many of the key concepts that arise from the use
of games to model evolution and development. Repeti-
tion redirects the force of selection to favor high pene-
trance of a cooperative move C, which is strictly dom-
inated in the stage game, but neutrality in the normal

55 The Frenet frame is the coordinate system instantaneously tan-
gent of the limit cycle, explained in App. C.
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form of the repeated game is essential to this result.56

At the same time as neutrality is essential, it is fragile.
The formally undefined solution of a strictly neutral evo-
lutionary game can be regulated with mutation, which
introduces näıve “defector” types as a kind of police to
stabilize a mixed, cooperative population. However, in
the large-population limit, the police do no work, and the
mean-field equilibrium based on their function is not, in
fact, the equilibrium about which the population settles.
We compute the correct equilibrium, which is stabilized
not by the vanishingly small mean fraction of police, but
by large fluctuations among all types in the population.
This role of fluctuations leads to a normal-form expan-
sion for fitness with the properties of RPD either at the
individual or the population-average level, but with dif-
ferent coefficients at the two levels.
The other fragilities stemming from a solution that

requires neutrality come from non-deterministic moves
(called “trembles”) in the repeated game, and from
crossover leading toward linkage equilibrium if we model
the game moves as genes. We explore the consequences
of trembles, and develop a small combinatorial example
to suggest that neutrality of this form will become typical
in models with large extensive-form games. Finally, we
consider the dynamical maintenance of linkage disequi-
librium in RPD, and show why fourth-order associations
in the regression model for fitness are essential to explain
linkage and hence the maintenance of neutrality.

1. Externally-imposed symmetries: neutrality and the
fragility of the mean-field replicator equation

The normal-form Prisoners’ Dilemma is the simplest
non-cooperative game in which a Pareto-superior strat-
egy profile (C,C) is strictly dominated by the Pareto-
inferior profile (D,D) [117]. Therefore it has become
the most widely-used stage game against which to study
what can be accomplished with repetition. The finitely
repeated Prisoners’ Dilemma (RPD) in evolutionary
game theory uses a combination of recursively-defined
strategies in an extensive-form game, with a replicator
dynamic, to achieve high penetrance of (C,C) as the
move profile that determines population-averaged fitness.
It may be understood as showing how repetition together
with evolutionary stability can select Pareto superiority
over stage-game dominance, while remaining within the
space of non-cooperative solution concepts.
Minimal RPD is played by two memory-zero strategies

labeled ALLC and ALLD, identical to C and D in the
stage game, and a single memory-one strategy. The zero-
memory strategies are defined on the maximally coarse-
grained tree of Fig. 2, and the memory-one strategy uses

56 The neutrality is between a a näıve C strategy and a defensive

strategy that can protect both näıve C and itself.

only opponent’s move in the previous round, and so is
one of the six additional strategies on the coarse-grained
game tree of Fig. 5. The memory-one strategy, known
as Tit-for-Tat (TFT) [62], consists of an opening move
C, followed by a recurrent-stage move that copies the
opponent’s move in the preceding round. The subset
of moves from the finite-state machine of Fig. 7 – with
an initial state added – that are visited by deterministic

RPD are shown in Fig. 18.57

L,L 

L,R R,L 

R,R 

(AllC,TFT);(AllC,TFT) 

AllC;AllD 

AllD,AllD 

AllD,TFT 

FIG. 18. Subset of transitions from the finite-state automaton
(FSA) of Fig. 7 produced by the deterministic repeated Pris-
oner’s Dilemma. Each possible pair of information sets Fig. 7
corresponds to a state of the FSA. An initial state (heavy
circle) represents the state of play before either player has
moved. The moves out of this state correspond to the moves
from information sets 0 and 1 in Fig. 7. After any stage has
been played, since only memory-one is possible, pairs of infor-
mation sets are uniquely labeled by the pairs of moves that
lead to them, in the same manner as sufficient statistics are
associated with symbolic histories in [103, 118]. (Player roles
are symmetric, and only ordered matches are shown to sim-
plify the diagram while emphasizing strategy asymmetries.)

The population state in RPD is denoted by a vector

n ≡





nC
nD
nT



 . (47)

The normal-form payoff, following Rapoport’s nota-
tion [117], is given by

[a] = ā





1
1
1





[

1 1 1
]

+





R S R
T P P + ǫTP

R P + ǫSP R



 .

(48)
The payoffs R, S, T , and P , for moves C and D are
those of the stage game. The corrections to infinitely-
repeated play when TFT plays D, ǫTP ≡ (T − P ) /Nply

and ǫSP ≡ (S − P ) /Nply, account for first-round effects.

57 We consider the effect of “trembling-hand” moves in the next
subsection.
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The equality of the four R entries in Eq. 48 (any com-
bination of ALLC and TFT) is the important feature
that distinguishes deterministic RPD from the Prisoners’
Dilemma stage game. This feature makes a neutral space

of all population states with nD = 0. The connection
of these population states by mutation and replication
makes the space into a neutral network [86–91]. Neu-
trality is an externally imposed symmetry of the model.
Together with the ordering of payoffs R, S, T , and P for
the stage game, these define the qualitative features of
minimal RPD.
Fig. 19 shows solutions to the mean-field dynamics (15)

with payoffs (48). For the parameters used, the correc-
tions ǫTP and ǫSP are ignorable compared to mutation,
and the ratio of selection strength to mutation rate is
set by N . Neutrality between ALLC and TFT results
in a contour of slowest diffusion (the concentrating con-
tour for flow lines) toward the rest point of the classical
equations. Comparing the two panels with N = 100
versus N = 300 in Fig. 19 shows that the speed of ap-
proach along this line becomes slower (flowlines bend
more sharply into it) and the offset of the line from the
pure C-T axis smaller, both ∼ 1/N . The asymptoti-
cally zero MFA flow at 1/N → 0 is responsible for large
fluctuations between ALLC and TFT (comprising finite
fractions of the population) in the stochastic model.

D C

T

D C

T

a) b)

FIG. 19. Repeated play of the standard Prisoners’ dilemma
between types ALLC, ALLD, and TFT, labeled C, D, and
T . Neutrality leads to one vanishing eigenvalue of the de-
terministic replicator, and a line of absorbing states between
ALLC and TFT. Finite mutation rate produces an interior
solution, in which a small number of ALLD types distinguish
ALLC from TFT. Parameters are R = 0.6, S = 0.1, T = 0.8,
P = 0.3, and Nply = 150 in both panels. Number of players
– N = 100 (a) versus and N = 300 (b) – determines the con-
vergence of the slow-flow line and rest point toward the C-T
axis.

2. Collective fluctuations relate model parameters across
scales

The speed of approach toward a rest point in the de-
terministic evolutionary game equation determines the
rate of mean regression for fluctuations in the stochas-
tic process. For a fixed rate of random type change, the
half-width of fluctuations is inverse to the rate of mean

regression. The convergence scales as 1/N , while the
population size scales as N along the direction of slowest
approach in Fig. 19. Therefore, these two scaling effects
cancel and in the large-population limit, fluctuations of
a finite fraction of agents characterize the stationary dis-
tribution at large N .
The self-consistent average of the flow equations for

mean population state, in its own fluctuation distribu-
tion, are derived in Sec. III C of the companion paper.
Fig. 20 shows the consequences of fluctuation corrections
to the mean large-N rest points.

D C

T

FIG. 20. Self-consistent solutions for rest points of the mean
behavior of the (infinite-population) stochastic replicator with
neutral directions (points with crosses) show systematic de-
viation from the rest points of the deterministic replicator
(points without crosses).

The circles without axes drawn through them in the
figure are the rest points corresponding to Fig. 19, for a
sequence of increasing N .58 The mean population com-
positions, when self-consistently averaged over fluctua-
tions, are shown as the circles with crosses. The crosses
identify both the major and minor axes of the noise co-
variance as it would appear in a Langevin equation for
this system (heavy small axes), and the resulting fluctu-
ations in population state from the combination of noise
accumulation and relaxation (light large axes). Both se-
quences have regular limits at largeN , but if the observed
limits were fit by regression to the näıve deterministic
model, either payoff or mutation parameters would be
forced to differ by O(1) from the values experienced by
the individuals.
This example illustrates an important general way to

understand and resolve singular limits in evolutionary

58 N values used were, from left to right in the figure: 90, 100, 150,
200, 250, 300, 350, 400, 450, 500, 600, 700, 900.
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D C

T

FIG. 21. Simulation results (dashed) compared to the leading-
order fluctuation corrections (solid) and to the näıve mean-
field limit (points with rings), for the same sequence of N
values as in Fig. 20.

game theory. In the deterministic theory, the strength
of policing scales as the strength of mutation, ∼ 1/N .
The policed mean-field rest point has a regular limit as
1/N → 0. Yet the formal theory at “1/N ≡ 0” has no
well-defined equilibrium. This is a removable singularity,
but it reflects the non-removable feature that in a finite
range of small 1/N , the policing is doing nearly no work
on the population.
The interpretation of the removable singularity is that

the policing function is fragile at large N . In the stochas-
tic theory, fragile policing never reaches the singular
limit, because within the interior of the simplex, the sta-
bilizing function shifts from the mean-field parameters to
the distribution over fluctuations.

3. The map from population states of RPD to the Folk
Theorems of rational-choice game theory

For games in the normal form, the association between
evolutionary and rational-choice game theory known as
the Folk Theorem of Evolutionary Game Theory [4, 82]
associates rest points of the replicator equation with Nash
equilibria, and stable ESS with strict Nash equilibria.
Under this association, homogeneous populations map to
pure strategies in the strategic interpretation, and hetero-
geneous, randomly matched populations map to mixed
strategies.
The mapping from the evolutionary to the rational-

choice approach to repeated games is less apparent, be-
cause both refer to the normal form of the stage game,
but they use it in different ways. A simple evolutionary
repeated game such as our RPD example introduces one
new type of agent (TFT) distinguished by memory, and

a larger normal-form representation (48) of the repeated
game, determined by the way that memory implements a
kind of player-identification and long-range correlation.
The Folk Theorems of rational-choice game theory [55–

57, 64, 119] define a feasible set of move profiles, and
derive trigger strategies that are compatible with indi-
vidual rationality but can prevent deviation from any
pre-arranged move profile in the set. However, the set of
non-cooperative, mixed strategies of the stage game is too
restrictive to define a feasible set that captures long-range
correlation in the repeated game, so the rational choice
Folk Theorems introduce additional models of “public
signals” that extend the notion of non-cooperative equi-
librium to include specific forms of coordination.
In App. F we construct the map from population

processes to the two key requirements of the rational-
choice approach. The first shows how neutrality involv-
ing ALLC, TFT, and ALLD makes repeated move pro-
files in evolutionary RPD strictly individually rational by
the strategic definition. The second shows how the sig-
naling coordination by TFT – which falls outside the
non-cooperative solution concept – is mapped through
the population state to the notion of a public signal in
the non-cooperative game. When these correspondences
are established, it becomes clear how the evolutionary
population dynamics of these three strategies form the
equivalent of a “prior agreement” to implement a partic-
ular coordinated move profile within the feasible set.
The function of the population state that maps to the

public signal is Φ ≡ nT / (nC + nT ) ∈ [0, 1], which has
the interpretation of a reliability. The feasible set of non-
cooperative move profiles in the stage game is shown in
Fig. 26 of App. F, and maps to the entire space of pop-
ulation states in Fig. 19; move profiles outside this set
cannot be achieved by random matching of players in
the evolutionary game. In particular, each value of Φ
– exogenously given in non-cooperative repeated game
theory – corresponds to a ray from the vertex D to some
point on the C-T line in Fig. 19. The value Φ = 0 is
the boundary of the feasible set formed by independent
mixed strategies, which maps to the D-C line. The op-
posite boundary Φ = 1 comprises the fully-coordinated
mixed strategies, and maps to the D-T line.59

4. Trembles in finitely-repeated Prisoners’ Dilemma and
other sources of fragility in overcoming stage-game

dominance

Neutrality between a policing strategy, and the uncon-
ditionally cooperative strategy ALLC, is essential for the

59 We show in App. F how the same population state may be dif-
ferently decomposed, into a population of “blind” memory-zero
players, and the “sighted” type TFT. In the latter decompo-
sition, sighted players achieve the signal-mediated coordination
of the evolutionary supergame, using moves that cannot be de-
scribed with non-cooperative solution concepts.
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normal-form payoffs to direct the force of selection to
overcome the dominance of ALLC by ALLD in the stage
game. In addition to the fragility of policing at large N ,
the property of neutrality itself is fragile in many lim-
its. A symmetry analysis of the game trees and strate-
gies that are used to work around various dimensions of
fragility can be very helpful in understanding when differ-
ent games even address the same coordination problem,
and when they do not.
The most widely studied fragility of RPD replaces the

deterministic repeated game by one with “trembling-
hand” moves [20], which have a small independent proba-
bility in each round to be opposite the move in the deter-
ministic strategy. Trembles, in very long repeated games,
unravel the ability of TFT to coordinate and hence to
achieve neutrality with ALLC and assure high penetrance
of the C move, as shown in Fig. 22. In the limit of in-
finite repetition, the coordination of deterministic RPD
is a (non-removable!) singular limit with respect to any
probability of trembles. This fragility, like the fragility
of policing, can be regulated by choosing the number of
repetitions in relation to the rate at which trembles cause
coordination in TFT to decay to the equivalent of random
play. However, sufficiently long repeated games are re-
quired to reduce first-move effects in the payoffs (48) be-
low the randomizing strength of mutation, so the fragility
of trembles is meaningful and is tied to the fragility of
policing at large N .
An attempt to circumvent the fragility of coordination

that is displayed by TFT with trembles, which has come
up intermittently over the years, is to replace TFT with
a parity strategy known as “Pavlov” (or Win-stay/lose-
shift, WSLS) [60, 61, 63]. The parity strategy is defined
on the game tree of Fig. 6, and moves left (C) for even
parity and right (D) for odd parity.
It is important to understand that replacing TFT by

WSLS does much more than address trembles. The
“other’s-move” game tree of Fig. 5 is symmetric under
interchange of left and right moves, so there is no value-
asymmetry in the move-space of a population of strate-
gies containing ALLC, ALLD, and TFT. All value asym-
metry is written explicitly in the payoffs of the stage
game. Thus the problem solved in deterministic RPD
is to redirect the force of selection using only properties
made explicit within the stage game. WSLS takes the
left/right symmetric information sets of the parity tree
of Fig. 6 and imposes an asymmetric response, converting
even parity to C and odd parity to D. This asymmetry,
being a feature of the type of the player, is constant not
only over stages within the repeated game, but over the
matches that a player experiences within a generation.
It is robust against trembles because it fundamentally
does not rely on correlations within the repeated game
at all. Rather, it introduces an asymmetry into the type
space,60 which happens to be matched to the Pareto-

60 In the language of the previous century, this asymmetry is “in-

AllC,AllC

L,L

L,RR,L

R,R

L,L

L,RR,L

R,R

AllD,AllD

L,L

L,RR,L

R,R

TFT,TFT

L,L

L,RR,L

R,R

AllC,TFT

L,L

L,RR,L

R,R

AllD,TFT

L,L

L,RR,L

R,R

AllC,AllD

FIG. 22. Decomposition of the possible recurrent moves
(heavy lines) from Fig. 7 according to the matched strate-
gies. (Only ordered matches are shown, as in Fig. 18, to aid
viewing.) All strategy pairs formed from ALLC, ALLD, and
TFT – except TFT,TFT – are robust against both recombi-
nation and trembles (trembles result in moves in light grey),
returning players within no more than two moves to the ab-
sorbing states. TFT,TFT, however, will sustain three recur-
rent patterns, one of which involves a two-state alternation.
If the opening move is mixed as in Sec. IVG, each sub-graph
is stable. If instead non-canonical starting states result from
unbiased trembles, the three sub-graphs (L,L, L,R/R,L, R,R)
are visited in ratios 1:2:1. Mixing of sub-graphs in these ratios
leads to the same mixture of payoffs as pairing of equal-weight
mixed strategies (purely random play) for both players. In
long-repeated supergames, convergence to this distribution
over the repeated move profiles removes the neutrality of TFT
with ALLC, requiring replacement of TFT by WSLS [60] to
evolve cooperation. The rate of trembles in relation to the
number of repetitions may be used to tune the transition be-
tween the deterministic and random limits.

dominance of Prisoners’ Dilemma. The asymmetries of
the problem, however, are no longer completely repre-
sented by the payoffs of the stage game, so the problem
addressed is fundamentally different from that of redi-
recting the force of selection through correlations within
development.
Pavlov strategies have been described as providing

robust evolutionary solutions to the “paradox of co-
operation”. However, these strategies are themselves
fragile against innovation. They were known already
to Rapoport [117], who characterized them with the

stinctive” to WSLS, in contrast to something constructed within
the course of development.
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name “The Simpleton” [62]. In the tournaments of Ax-
elrod where TFT achieved a high percentile of wins,
Pavlov strategies typically fared in the lowest quarter
percentile [120]. It seems appropriate to say that, much
as TFT relies on sufficient reliability to create the es-
sential feature of neutrality with ALLC, Pavlov relies on
sufficiently limiting the inventory of behaviors admitted
within the arena of selection.

F. Neutrality will be a typical feature of
extensive-form games

In deterministic RPD, the neutrality between ALLC
and TFT is a form of payoff neutrality, externally im-
posed but not a feature required by the structure of the
game itself. A simple counting argument suggests that, in
extensive-form games with more plies, a different struc-

tural neutrality may become very typical. Structural
neutrality is distinguished from mere payoff neutrality,
in that structural neutrality is enforced by the combina-
torics of the extensive-form game, no matter what payoffs
are assigned at the leaves.
The counting argument goes as follows; we will use the

total information simultaneous-move tree of Fig. 1 as an
example. Eq. (20) gives the total number of strategies
for one player on a tree of Nply plies. The total number
of strategy profiles (pairs of strategies for both players)
is then

|{i}|2 = 4
2
2Nply

−1

22−1 . (49)

However, the number of leaves on the game tree is only
4Nply . Therefore in a large game tree many strategy pairs
must lead to the same leaf and, no matter how payoffs are
assigned, to the same payoff. A change to either strategy
in a profile, on a node that is not played, must be neutral
to the payoff of both players. If the mutation process
defines a notion of adjacency between strategies, then
neutral sets are given the topology of neutral networks.
To demonstrate structural neutrality, we continue with

the paradigm of trembling-hand play of a repeated game
with two-player, normal-form stage game, but we admit
a more complete and balanced collection of memory-one
strategies. Rapoport’s notation will continue to denote
payoffs in the stage game, but in this example we are not
concerned with their numerical values or the particular
equilibria of the stage game.
We consider the three memory-one trees in Figures 4,

5, and 6. These trees jointly admit 18 new strategies
with equal numbers of L and R moves, in addition to
the two strategies from Fig. 2. From these four trees,
we select 23 = 8 strategies (two binary complements
from each tree) that contain TFT and its opposite (from
Fig. 5), WSLS and its opposite (from Fig. 6), and strate-
gies REP and ALT (from Fig. 4) that repeat or alternate
the player’s own previous move.
The recurrent finite-state diagrams for all pairs of these

strategies are shown in Table II of App. D. Ignoring first-

move effects, the payoffs from a long-time trembling hand
recurrent move for all pairings of these strategies against
one another are shown in Table I.

ALLC TFT WSLW REP ALT AWSLS ATFT ALLD

ALLC R R R+T
2

R+T
2

R+T
2

R+T
2

T T

TFT R X X R+P
2

T+S
2

X X P

WSLW R+S
2

X R X X S X P+T
2

REP R+S
2

R+P
2

X X X X T+S
2

P+T
2

ALT R+S
2

T+S
2

X X X X R+P
2

P+T
2

AWSLS R+S
2

X T X X P X P+T
2

ATFT S X X T+S
2

R+P
2

X X T

ALLD S P P+S
2

P+S
2

P+S
2

P+S
2

S P

TABLE I. Payoffs for the player whose strategies are listed
across the top of the table, when paired with the player listed
on the left. Strategies have memory zero or one, and even
numbers of L and R moves. X stands for the equally mixed
payoff (R+ T + P + S) /4, which would be achieved also by
random play. Note that, like the payoffs (48) of RPD, the
table goes into its transpose under T ↔ S.

The eight strategies may be assigned a three-digit bi-
nary “genotype”, given by

000 ↔ ALLC

001 ↔ TFT

010 ↔ WSLS

011 ↔ REP

100 ↔ ALT

101 ↔ AWSLS

110 ↔ ATFT

111 ↔ ALLD, (50)

and illustrated in Fig. 23. We may introduce a “Ham-
ming” mutation process that allows single bit-flips, mov-
ing player types one step over edges in the cube. In this
mutation metric, each strategy is antipodal to its binary
complement, and the two zero-memory strategies ALLC
and ALLD are each connected to their three refinements
in the memory-one trees.
The neutral sets of an evolutionary game with these

strategy profiles are readily seen from Table I. The mu-
tation process requires a six-dimensional hypercube to
illustrate, but the neutral networks formed by the Ham-
ming mutation process can be illustrated with ties in the
original matrix, as shown in Fig. 24.
Even for this small strategy set, the neutral space con-

sists of two large, interwoven cycles of 12 pairs, one chain
of 3 pairs, ten sets with 2 pairs, and 13 singletons. The
adjacency structure of these neutral networks to one an-
other under the Hamming mutation can be seen from the
graph of the hypercube in Fig. 25. In the figure, horizon-
tal moves represent strategy changes by single bit flips
on the hypercube of Fig. 23 for the first player; vertical
moves represent strategy changes by single bit flips for
the second player. The smallest squares represent flips
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LLLL

(AllC)

RRLL

(ALT)

RRRR

(AllD)

LLRR

(REP)

LRRL

(WSLS)

RLLR

(AWSLS)

RLRL

(ATFT)

LRLR

(TFT)

FIG. 23. An assignment of the eight strategies of Table I to
the vertices of a cube. Mutation moves player types between
vertices connected by an edge. The Left or Right move at
each node in the information sets (2-3) is indicated above the
strategy name at each vertex.

AllC AllDTFT ATFTWSLS AWSLSREP ALT

AllC

AllD

TFT

ATFT

WSLS

AWSLS

REP

ALT

R

P

T

T

T

R

P

P

P S

S

S

(R
+

S
)/

2

(R+T)/2 (R+T)/2

(P+S)/2 (P+S)/2

(R
+

S
)/

2

(P
+

T
)/

2
(P

+
T

)/
2

X

X

FIG. 24. The neutral networks of Fig. 23 drawn on the payoff
Table I. Neutral networks are labeled with the values of the
nodes to which they correspond, and as in the table X stands
for (R+ T + P + S) /4. There are two neutral networks for
each of (R+ T ) /2, (R+ S) /2, (P + T ) /2, (P + S) /2, and
X. Eight internal nodes, which have no nontrivial networks,
remain unlabeled for clarity.

in the direction from ALLC to TFT. The squares formed
by the next level of nesting represent flips in the direc-
tion from ALLC to WSLS. The outermost level of nesting
represents flips in the direction from ALLC to ALT.

The spaces in which large fluctuations can exist will
depend on both the cardinality and the topology (degree
of convexity) of these neutral sets. We anticipate that,
for extensive-form games with many plies, even if most
fluctuations in a single direction are not large, the com-
binations that accumulate from structural neutrality will
lead to important fluctuation effects in many cases.

R

TS

P

(R+T)/2

(S+T)/2

(R+S)/2

(T+R+P+S)/4

FIG. 25. Hypercube of strategy pairs from Table I, showing
the adjacency induced from the mutation metric of Fig. 23.a

a In the color version of the figure payoff values are indicated by
the color scheme. (The three intermediates (R+ P ) /2,
(T + P ) /2, (S + P ) /2 are not labeled for clarity.) Neutral
networks in the hypercube are drawn with heavy links in the
same colors as the nodes they connect.

In the b/w version of the figure, neutral nets are indicated
with heavy links, and labeled with their corresponding payoffs.
The two networks with payoffs (T +R+ P + S) /4 are shown
solid and dashed, to make them easier to follow visually.

G. Multilevel selection and explanatory sufficiency
in the repeated-game setting

Many approaches to overcoming paradoxes of stage-
game dominance require the maintenance of linkage be-
tween moves that enable coordination and moves that
confer fitness. Examples include costly signaling or the
recognition of kinship or identity.61 The requirement to
actively maintain linkage is another source of fragility in
such coordinated solutions.
In this section we expand minimal RPD into a gene-

based population process with genes described from the

61 Since many of the moves described occur at a very high level of
development (or are institutional in origin), we refer heavily to
the “statistical” nature of the gene, and to “crossover” in models
of linkage as a coarse-grained reflection of any process that dis-
rupts the integration of behaviors while preserving the identity
of the individual behaviors in some adequate approximation.
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coarse-grained extensive-form tree of Fig. 5. We re-
gard the information sets on the tree as loci, and permit
crossover between the first move and the recurrent move
of the game tree. The moves C or D are allowed as alle-
les on every information set. The possible opening moves
will therefore be C and D, and four recurrent-move alle-
les will be possible. Three are C, D, and the recurrent
move from TFT, which we will denote T . (The fourth
is the complement to recurrent T , shown as ATFT in
the previous subsection. We will suppress this possibility
from the analysis, in order to simplify the presentation
and because it never plays a significant role in late-time
stable populations.)
The resulting process demonstrates the following gen-

eral properties involving genes based on the extensive
form: 1) the asymmetry in fitness contribution between
different loci, here opening-move and recurrent-move on
the coarse-grained tree; 2) the non-equivalence of differ-
ent recurring moves for providing contextual importance
to the opening move; and 3) the way an additive model
for which opening and recurrent moves are very good
explanatory loci can still require multilevel selection to
achieve any explanatory sufficiency over the main behav-
ior of the population process, in this case ensuring high
penetrance of the C move.
In the spirit of refining regression models to identify

mechanism statistically, we will construct best-estimators
for model fitness in a sequence of increasing polynomial
order, starting from additive models, and terminating
when a stable, dynamically sufficient model has been
identified. As higher-order models are used, parts of
the regression coefficients, which depended on population
state in lower-order regressions, are successively trans-
ferred to higher-order interactions where they become
constants. Nothing less than a a fourth-order interaction
term in the genetic model for fitness leads to regression
coefficients that can successfully account for emergence
of (C,C) as the most-frequent move profile, without ex-
plicit reference to the population state as an external
variable.62

When crossover and mutation at all loci are introduced
into evolutionary RPD, the genotype space expands to
include eight types (of which we consider six). Using (′)
to denote a genotype with the same recurrent move as
the types in canonical RPD, and opposite opening move,
we denote the composition vector

n ≡



















nC
nC′

nD
nD′

nT
nT′



















, (51)

62 For comparison, the linked-heterosis model developed next will
require only second-order interactions.

The repeated-play payoffs to agents in this larger popu-
lation a′ij equal the values of aij for types with the same
move in the recurrent stage to O(1/Nply), for all pair-
ings except T and T ′. For these latter four pairings, the
payoffs become

[a′]TT ′ = ā

[

1

1

]
[

1 1
]

+

[

R 1
2 (S + T )

1
2 (S + T ) P

]

.

(52)
The values in Eq. (52) follow from the states visited in
the bottom diagram in Fig. 22.
App. E provides an analysis of the dynamics of this

population. First, we show that the type T ′ is suppressed
by selection relative to T , so that the population comes to
be dominated by canonical TFT, and whatever mixture
of C and D types is created by crossover and mutation.
(The latter effects are silent for C and D types, so they
serve only as an enhanced reservoir of mutants that may
back-cross with T , reducing the degree of linkage to pro-
duce TFT.) We then develop a sequence of regression
models, and show that the fourth-order interaction term
is both necessary and sufficient to explain the presence of
T as a competitive allele, which in turn is the requirement
for (C,C) move profiles to occur with high frequency.

H. Complex discrete symmetry breaking through
selection on both genes and covariance

Our last example emphasizes the use of extensive-form
games in a traditional model of development, and the
emergence of complex symmetry breaking from a fitness
function with a large permutation symmetry group.
The example originates in a model of linked heterosis

due to Lewontin [37]. It illustrates well the use of games
to model heredity in diploid organisms, where chromo-
somes (or regions within chromosomes not disrupted by
crossover within a given generation) are the hereditary
“individuals”, and the diploid “organism” that develops
from the match of a pair of chromosomes is represented
by play of the game. The linked-heterosis model was pre-
sented as one mechanism to explain the high frequency of
observed heterozygosity in natural populations, without
recourse to the assumptions of neutral theory, but with
plausible (meaning, small) levels of heterosis at each lo-
cus. The main result of the model is that selection can act
cooperatively at many loci, amplifying the effects of het-
erosis, by effectively selecting for linkage between nearby
loci. The model isolates selection on linkage by removing
all other sources of fitness differentiation among alleles
through an imposed symmetry.63

63 Random matching, together with recombination that is not sub-
sequently filtered by selection, lead eventually to the condition of
Hardy-Weinberg/Linkage-Equilibrium [15] (HWLE, also known
as the Wright manifold). This thoroughly-studied limit in pop-
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This example illustrates a new role for collective fluc-
tuations, as transient sample excesses of linkage in the
population become the only source of fitness differences
among genotypes, and through that mechanism become
self-amplifying. It also illustrates that plies in an ex-
tensive form game, under appropriate information con-
ditions, can be equivalent to loci on a chromosome with
respect to epistasis and crossover, without connotation of
any temporal sequence in development. Finally, it illus-
trates the parallel role of repetition within and between
generations, by showing the homology between linkage
in a repeated game, and the expression for relatedness in
Hamilton’s rule derived in Sec. IVC2.

1. An anti-coordination game that isolates the dynamics of
linkage from a neutral manifold of allele frequencies

The extensive-form game that captures both hetero-
sis and linkage is defined on the tree of Fig. 3, with
crossover between successive plies.64 The gene indices

are I ∈
{

L0, R0, . . . , LNply−1, RNply−1
}

, where the su-

perscript indexes the locus. Indicator functions σIi take
value one if strategy i has move I at the appropri-
ate locus. Since a fully-specified strategy must have
σLki + σRki = 1 at every k, we may represent strategies
compactly in terms of a “spin” variable

σk
i ≡ σLki − σRki, (53)

which takes value ±1 according to the move at locus k.
Plies serve as loci, and a model that treats all loci iden-

tically corresponds to a repeated game. The normal-form
stage game for heterosis at each locus is an anticoordi-
nation game, which we may write by replacing a by −a
in the upper-left 2 × 2 sub-matrix for moves L and R
in Eq. (26). Setting a = 1 without loss of generality,
the payoff when two genotypes i and j are matched is
symmetric in i and j, given by

aij = − 1

2Nply

Nply−1
∑

k=0

σk
i σ

k
j . (54)

ulation genetics leads to simplifications for the identification and
analysis of extensive-form games, considered in Ref. [23]. We will
assume random matching and thus Hardy-Weinberg equilibrium,
but in the limit of strong selection, the absorbing states of the
Lewontin model will lie maximally far from linkage equilibrium.

Because the strength of selection determines whether hetero-
geneity or drift to fixation will be the persistent state of the
population, we regard the contribution of linkage to the strength
of selection as a kind of Hill-Robertson effect. Like other Hill-
Robertson effects [19], the cause of population structure will not
be found in the direct selection coefficients, but will depend on
fluctuations in fitness.

64 Here we do not explicitly model crossover. We consider only the
effects of selection, particularly in relation to fluctuations, and
for other properties of solutions we draw on Ref. [37].

These two equations define the genotype space and the
payoffs per-match for a pair of individual chromosomes.

2. Fluctuations are responsible for population covariance
and linkage disequilibrium

In systems where different genotypes have different fit-
ness at mean-field approximation,65 an “ecological” re-
gression model, in which many matches per generation
determine mean fitness, captures the main cumulative ef-
fects on population dynamics.66 In this model of linked
heterosis, not only does a single play of the game liter-
ally represent the life of a single diploid organism, but the
large sample fluctuations that come from pair matching
will be essential to driving linkage disequilibrium. There-
fore we begin by contrasting the mean fitness of alleles,
which approaches zero for balanced populations, with the
fluctuations in fitness due to sampling of partners within
generations.
The population-averaged frequency of the indicator

function σk = σLk −σRk at each locus k, in a population
state n, is given by

〈

σk
〉

n
≡
∑

j

nj
N

σk
j . (55)

The fitness of any complete genotype i in population n,
as it would appear in expectation under random pairing
against all members of the population, is then

fi = − 1

2Nply

Nply−1
∑

k=0

σk
i

〈

σk
〉

n
. (56)

The corresponding population-averaged fitness is

φ =
∑

i

ni
N

fi = − 1

2Nply

Nply−1
∑

k=0

〈

σk
〉2

n
. (57)

These are reference values, which provide estimates of
the cumulative selection strength on alleles over many
generations. In any population with balanced alleles (all
〈

σk
〉

≈ 0), both fi and φ will be near zero. Therefore it
can only be fluctuation about these values from particu-

lar pairings that leads to non-random association at the
population level.
The average correlation of alleles at two loci k and k′

in the population is given by

Ckk′ ≡
∑

i

ni
N

σk
i σ

k′

i . (58)

65 All previous models have been of this sort, except for the neu-
trality between ALLC and TFT in the model of the repeated
Prisoners’ Dilemma.

66 Indeed, the generation structure in such models is of secondary
importance, and can be coarse-grained if appropriate related-
ness terms are included in the covariance matrix, as shown in
Sec. IVC2.
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Subtracting the expected values of these alleles in the
population state n leaves the covariance between loci,

Cov
(

σk, σk′

)

= Ckk′ −
〈

σk
〉

n

〈

σk′

〉

n
. (59)

The covariance at a single locus k is the variance of σk,

which evaluates to Cov
(

σk, σk
)

= Var
(

σk
)

= 1−
〈

σk
〉2

n
.

Referring back to the form of the Price equation (12),
and letting σk for an allele be the indicator function
whose frequency in the population we wish to follow,
shows that allele frequency is controlled by the covari-
ance (59) in state n, as

d

dt

〈

σk
〉

n
= − 1

2Nply

Nply−1
∑

k′=0

Cov
(

σk, σk′

)〈

σk′

〉

n

= − 1

2Nply

(

1−
〈

σk
〉2

n

)

〈

σk
〉

n
− 1

2Nply

∑

k′ 6=k

Cov
(

σk, σk′

)〈

σk′

〉

n
(60)

Comparing Eq. (60) to the expression (38) for Hamilton’s
rule, we see that linkage disequilibrium plays the same
role with respect to moves in the extensive-form game,
that relatedness plays among populations that fluctuate
on the generation scale.

If covariance in the population remains near zero, the
rate of mean regression for any focal allele will fall as
1/2Nply with increasing Nply, because of the normaliza-
tion assumed for fitness in Eq. (54). However, if covari-
ance is large over a range of adjacent plies whose number
grows with Nply, the mean regression for

〈

σk
〉

may re-
main stronger than 1/2Nply, ensuring the preservation of
heterozygosity against drift in the population even with
very weak heterosis per locus. This mechanism for the
maintenance of heterozygosity was the motivation behind
this model in Ref. [37].

A similar construction may be performed for whole
genotypes. We now suppose that a single pairing of zy-
gotes determines the fitness of both partners within each
generation. The mean fitness of type i relative to the
population average remains the same as the expectation
over multiple pairings, given by

fi − φ = − 1

2Nply

Nply−1
∑

k=0

(

σk
i −

〈

σk
〉

n

) 〈

σk
〉

n
. (61)

The variance in the expected number of offspring left
by any individual of type i, due to random pairing of
players, is much larger for single pairings than for samples
of the population average. The sample fluctuation now
depends on details of the probabilities of reproduction,
which we absorb into a characteristic time increment ∆t.
The time increment per typical reproduction scales the
overall variance in reproductive success, which is then
given by

(∆t)
2
∑

j

nj
N

(aij − fi)
2
=

(∆t)
2

4N2
ply

∑

k,k′

σk
i σ

k′

i Cov
(

σk, σk′

)

.

(62)

The expected number of offspring from all parents of type
i in the population is then

〈n′i〉 = ni (1 + ∆t (fi − φ)) . (63)

By the central limit theorem for independently drawn
partners for each of ni individuals, the corresponding
variance in offspring due to the distribution over pair-
ings is then

〈

(n′i − 〈n′i〉)
2
〉

= (∆t)
2
ni
∑

j

nj
N

(aij − fi)
2

=
(∆t)

2
ni

4N2
ply

∑

k,k′

σk
i σ

k′

i Cov
(

σk, σk′

)

.

(64)

These expressions for reproductive variance due to
sampling may be used to estimate dynamics for the co-
variance itself. In App. G we make these estimates using
a stochastic differential equation (Langevin equation) in
which the variance of the fluctuation field is given by
Eq. (64).

The Appendix shows that that fluctuations in geno-
type numbers ni transiently polarize the population to fa-
vor of growth of genotypes that are complementary (het-
erotic at many loci) to the transiently increased type i, in
proportion to the reproductive variance given in Eq. (62).
Positive covariance between fluctuations in the number
ni, and fluctuations in the complements that enhance
the fitness of i through heterosis, lead to an effective fit-

ness. The magnitude of this effect, which comes from the
second-order term in the stochastic differential equation,
is given by Eq. (G14) in the appendix.

The effective fitness is largest for genotypes that over-
lap with the covariance in the population, and their own
reproduction then reinforces this covariance, leading to
growth in the linkage of alleles in the population. The
variance in total reproductive success, averaged over the
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population, is proportional to

∑

i,j

ni
N

nj
N

(aij − φ)
2
=

1

4N2
ply

∑

k,k′

(

C2
k,k′ −

〈

σk
〉

n

〈

σk′

〉

n

)

.

(65)
The population-level variance (65) is maximized when

Ck,k′ → 1, ∀k, k′, and
〈

σk
〉

n
→ 0, ∀k. This condition

is met on any of 2

(

Nply−1
)

independent solutions, each
having exactly 2 population types that oppose each other
at each locus. Which type carries which allele at a locus
is otherwise arbitrary, reflecting the independence and L-
R exchange symmetry of payoffs at each move. These are
absorbing states of the replicator dynamic, in the absence
of mutation or crossover.

3. The group of representations by ordered population states

Ref. [37] (Ch. 6) shows that, if crossover is introduced
with equal probability between any two adjacent plies
k, k′, the resulting stable distributions have correlation

coefficients falling off as C2
k,k′ ≈ e−2|k−k′|/Ncorr . The

correlation length Ncorr is proportional to the ratio be-
tween the rate of crossover and the magnitude of the
payoff per allele, which is 1/Nply in Eq. (54). Therefore
a fixed probability of crossover between any two adja-
cent loci leads to a correlation length scaling as a fixed
fraction of the whole-genome length, which defines the
continuum-limit description of the chromosome as a unit
of selection [37].67

The number of possible genotypes occupied with sig-
nificant frequency in any such correlated equilibrium is

∼ 2

(

Nply−Ncorr
)

. Therefore the number of indepen-
dent and mutually exclusive population-state equilibria
is ∼ 2Ncorr . Any population equilibrium will be char-
acterized by a pair of mirror images of a “consensus”
sequence which produce the greatest heterosis when the
two complements are matched.
In the presence of both mutation and sampling fluctua-

tions from matching, population states polarized around
any given consensus pair are not asymptotically stable,
because symmetry among all loci guarantees an exact

degeneracy of all 2

(

Nply−1
)

mirror-image genotypes as
possible consensus pairs. Therefore polarized population
states will be subject to drift on a timescale which is
slower than the generation timescale and increasing with
Ncorr.

68

67 Readers familiar with the notion of “dressed” particles in renor-
malized condensed-matter physics [29, 121] may recognize these
correlated regions as “dressed” genes, and the overall construc-
tion as the “effective theory” of the chromosome.

68 Drift of this form in systems with large number of mutually exclu-
sive equilibria, and with very slow time constants, is sometimes
given the name creep.

This model possesses no additive, heritable, compo-
nent of zygote fitness from any allele, even if the popula-
tion has attained one of its optima. Instead, a regression
of fitness in a particular population background yields in-

teraction terms with coefficients ∝ Cov
(

σk, σk′

)

between

any two loci k and k′ within the same genome. Interac-
tion leads to a fitness function f eff

i in Eq. (G14) in which
epistasis has replaced the additive interaction terms of
Eq. (54). Therefore regression models in the Price equa-
tion, which attempt to characterize fitness of haplotypes,
can at most reflect the symmetry broken by the popula-
tion state. Their magnitude will be predictable from first
principles, but the particular haplotypes favored will not.

V. DISCUSSION AND CONCLUSIONS

In this review we have attempted to show how sym-
metry provides a bridge between the robust regression
methods of Fisher and Price, and the imputation of mech-
anisms and causation to development and evolution. Our
main use of symmetry has been to assign distinctive
forms of of multiscale dynamics to classes of game mod-
els, and to connect descriptions at multiple scales through
the aggregate properties of collective fluctuations. A sec-
ondary use of symmetry has been to classify extensive-
form games and the strategies defined on them.
We have tried to suggest the richness of paradigms be-

yond two-player normal-form games, but to avoid turning
them into a wilderness of models, by emphasizing robust
effects and universality, and by linking these to very gen-
eral concepts such as neutrality, the origin of the gene
concept, or multilevel selection. Beyond these general
themes, we mention three specific points that we believe
are clarified from the perspective of symmetry.

Complex symmetry breaking and open-ended evolution

Simple symmetry breaking is widely recognized in evo-
lutionary games, but complex or glassy symmetry break-
ing less so. We have emphasized it here, because glasses
are the only class of statistical systems whose stable or-
dered states are well understood from first principles, for
which a single symmetry-breaking mechanism can pro-
duce an “open-ended” collection of essentially degener-
ate ordered states. The property of “open-endedness”
of viable forms is often regarded as a hallmark of Dar-
winian evolution [122], and the inability of classical sym-
metry breaking to produce this feature has stood as a
barrier between the theory of stability through large-
deviations and phase transition, and the paradigm of
Darwinian evolution. Glasses and their non-equilibrium
counterparts combine the large-deviations theory of sta-
ble states with open-endedness of the number and sym-
metry among states.
The glasses still remain in many ways an unsatisfying
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paradigm for Darwinian evolution. The well-understood
cases require a high degree of statistical homogeneity in
the underlying system and therefore in the hidden sym-
metry group, unlike the remarkable heterogeneity within
and among organisms and ecosystems. Also, a general
feature of glass phases is that the ordered states are
discrete, and transitions between them are “saltations”.
Evolution in the biosphere appears to combine gradual
and punctuated transformations, and extant models of
complex symmetry breaking do not produce this combi-
nation in a natural way.

The root of “as if” arguments in universality

Both economics, justifying evolutionary solution con-
cepts, and biology, justifying the game representation,
commonly employ “as if” arguments. Economic agents
rationalize as if they know the evolutionary optimum,
because those who didn’t have been eliminated from the
economy [123]. Animals interact as if under the rules
of a game, when those rules reflect either constrained or
highly generic dimensions of conflict [82].
From a stochastic-process perspective, an even more

elementary justification may be convergence of many
paradigms to the same low-order descriptions as a con-
sequence of averaging over fluctuations. In constructing
complex, hierarchical dynamics, nature builds using what
is robust [98, 99], because it better supports induction
and is more easily maintained. In some cases it may be
that the emergence of both game structures and predic-
tive models encoding rational behavior follow a scaffold
that originates in regression.

Toward a more unified theory of games

Our three views of repeated games show that the over-
coming of dominant stage-game strategies is not a single
“paradox”, but rather a collection of differently framed
problems that are not always comparable. The “prior
agreement” or “public signals” of the rational-choice Folk
Theorems serve as abstractions for law, conventions, or
other institutions whose justification comes from outside
the game being formalized. While not required to pro-
vide coercive force (this is the reason to restrict to strictly
individually rational punishment strategies), these insti-
tutions are required to provide significant coordination
services.
The mechanistic approach more commonly pursued

in evolutionary repeated-game theory can provide both
constraining force and coordination, from limitations of
memory or complexity. Yet even here, the different solu-
tions to trembling-hand moves address two distinct prob-
lems. Win-Stay/Lose-Shift frames cooperation as a para-
dox of crypticity ; the dominance defined by the stage
game is not the only local force, if a strategy (WSLS)
exists that binds asymmetric local action directly to the

generation scale. The tit-for-tat solution, in contrast,
depends on maintaining long-range correlation within an
encounter. The symmetry of the recurrent move in TFT
makes this strategy more flexible against diverse oppo-
nents [62], but more fragile against trembles [63].
A more unified theory of games might integrate the em-

pirical, mechanism-from-regression approach presented
here, with the recognition that both prediction and rein-
forcement are co-present in the solution concepts to many
games.69 Limited prediction or coordination may be en-
abled by mechanisms which have been evolved or learned
through reinforcement, and whose costs derive from their
memory or complexity.
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Appendix A: Historical notes

1. The limited role of DNA in creating the gene
concept for cell biology

a. A reminder: why DNA is not the source of genes

The chemical properties of the DNA molecule are sep-
arated from the information it carries (in sequences), to a
degree that is unique among the systems in biochemistry.
This enables DNA to serve as a near-universal carrier of
information, and an excellent platform for error correc-
tion.70 To a good approximation, every ester linkage in
the molecule is equivalent. The Mendelian gene, when
it coincides with a non-recombining sequence of DNA, is
defined by the inequivalence between positions where re-
combination is nearly free and those where it is effectively
forbidden. Many such regions correspond to protein-
folding domains, while others may come from suppressed

69 This may be seen even in the interplay between backward induc-
tion and qualitative position evaluation in hard combinatorial
games [124, 125].

70 General-purpose error correction is achieved by identifying and
repairing error states, without the repair mechanism’s needing
to know what message the system should carry.
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crossover within operons. Recombination may be forbid-
den by lethality of most crossovers, or it may disappear
if almost all loci sweep to fixation within a gene in a
population. The particulate heredity of DNA may serve
these functions by providing a reliable substrate for er-
ror correction, but is optimized to be the last source in
the cell for distinctions between recombining and non-
recombining bonds.

b. How the gene concept got lost with the understanding of
epistasis as a source of blending inheritance

The statistical origin of the gene concept might have
retained more of the salience it deserves in biologi-
cal thought, had it not been submerged under solu-
tions to quantitatively greater problems. The prob-
lem of accounting for blending inheritance [126], and
the covariance of characters in development [127], in a
Mendelian model, required the ability to treat epista-
sis and pleiotropy abstractly without necessarily having
models of development. The demonstration that this
could be done at least in principle resolved the major con-
flicts that had driven the modern synthesis [44]. Showing
that blending inheritance can be achieved from particu-
late heredity is equivalent to demonstrating that digital
systems can simulate analog systems; the successes of the
modern synthesis did not (of course) demonstrate that
the underlying systems were digital at the coarse level of
genes required for practical modeling. The optimism that
DNA would provide a reification of genes further pushed
critical thought about the justification for genes into the
background. The modern return of inquiry into the ori-
gins of particulate heredity has been forced by studies of
post-transcriptional modification and regulation, which
can show modularity at many levels [50, 51].

2. Uses of potentials in non-equilibrium stochastic
processes

The term “potential” can be applied in at least four
ways to stochastic evolutionary games. Only one of these
preserves the feature of the potential energy in mechan-
ics, that its local minima are fixed points of the dynamical
system, so that these furnish a representation of the sym-
metries of population states. We will briefly summarize
here the meanings of the four uses, and their relations to
each other.
The most common usage refers to potential games [4],

for which the vectors of population change (15) may be
written as the gradient of a scalar “potential” function
of the state n̄. Non-equilibrium stochastic processes do
not generally admit such potential descriptions, so the
potential games are a restricted class. The results pre-
sented here do not depend on any of the simplifications
provided by potential games, so we do not assume these
restrictions.

Two generally-applicable notions of potential emerge
from Freidlin-Wentzell theory [65], which we develop in
the companion paper as a method to extract leading
asymptotics of probability distributions. They corre-
spond formally to the mechanical and thermodynamic
potentials in equilibrium systems, and they will always
reflect the symmetries of population states. However,
they exist in a dynamical space where “momentum” re-
flects constraints from inference about the past, and does
not correspond to the momentum of mechanics that ap-
pears in equilibrium potentials.71 A quantity known as
the quasipotential [128–132] arises as the rate function in
a large-deviation principle [72, 73] for fluctuation proba-
bilities at the macroscale. It is so-named because it is a
non-equilibrium generalization of the thermodynamic po-
tentials such as the entropy or free energies. A slight vari-
ant on the quasipotential is constructed by Young [52],
which counts events of improbable movement rather than
accumulating their log-likelihoods.

The quasipotential is constructed as an action func-
tional for the dynamical system defined by Freidlin-
Wentzell theory. Within that functional, a third kind
of potential fills the role of a Hamiltonian. This po-
tential equals the Liouville operator (constructed in the
companion paper) that evolves the moment-generating
functions for probability densities over population states.
The Freidlin-Wentzell Hamiltonian is like an energy func-
tion in that it is conserved in systems without explicit
time-dependence, and provides the symplectic structure
on the space of stationary solutions. However, due to
important differences that arise from irreversibility, this
dynamical-system Hamiltonian generally does not carry
the interpretation of the mechanical potential responsible
for trapping and domain escapes72 in thermodynamics.

The last case is our “kinematic” use of the term poten-
tial. For games with discrete symmetry that may be hid-
den by strong selection, the Freidlin-Wentzell dynamical
system represents the population state as a particle mov-
ing in an energy potential with an additional velocity-
dependent force [74]. The fixed-points of the energy po-
tential (having zero velocity) are also the rest points of
the dynamical system and so are rest points of the evolu-
tionary dynamics. For systems with point-group symme-
try, the local minima of the kinematic potential furnish
a representation of the broken symmetries. We construct
these potentials in the companion paper, and they pro-
vide our graphical representations of broken symmetry
in the main text.

71 For a systematic description of the meaning of position and mo-
mentum coordinates in Freidlin-Wentzell theory with respect to
inference, see Ref. [74].

72 For a discussion of equilibrium potentials and escapes, see
Ref. [58], Ch. 7.
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Appendix B: Relatedness and effective fitness for
models with bifurcations

1. Emergence of a “genic” distinction between
coordinating and non-coordinating types in the case

of pitchfork bifurcation

To give an example of a component of effective fitness
that emerges in long-term regressions as a result of tran-
sient relatedness, we consider the coordination game of
Sec. IVC. For this model, the time-segregating counter-
part to Hamilton’s rule, developed in Sec. IVC2, is as
similar as possible to Hamilton’s rule in a spatial model
with two patches. The dynamics of ordered populations
in the coordination game may be described by a two-state

Markov process, with symmetric and time-independent
probabilities of “hopping” between them, over any time
intervals longer than a typical escape time. Therefore the
time average of Eq. (31), for the population composition
in which an individual finds itself, decomposes into a set
of uncorrelated states on the generational scale, which
could as well be spatial islands as sequential snapshots
in time.

a. Simplex coordinates and rest points of the replicator
dynamic with mutation

We first provide an explicit basis in which to represent
the population fractions of the three types Left, Right,
and M iddle. We denote by (ê0, ê1, ê2) the three basis
vectors

ê0 ≡ 1√
D







1

1

1






; ê1 ≡ 1√

D − 1







1

−1

0






; ê2 ≡ 1

√

D (D − 1)







−1

−1

2






, (B1)

the last two of which form an orthonormal basis in the
simplex

∑

i ni/N ≡ 1. (As in the main text, we keep D
explicit to follow normalization factors.)
A general population state with the coordinates of

Eq. (25) may be expanded in two simplex coordinates
β and γ as

n

N
=

1√
D
ê0 ± βê1 + γê2. (B2)

The basis vectors are chosen so that

nL/R

N
=

1

D
± β√

D − 1
− γ
√

D (D − 1)

nM

N
=

1

D
+ γ

√

D − 1

D
. (B3)

Vector ê2 is the vertical axis in the figures of the main
text, distinguishing M from L and R, while ê1 is the hor-
izontal axis, distinguishing L and R from each other.
The non-constant part of the payoff matrix in Eq. (26)

is written in the simplex basis vectors as

[a] = a (D − 1) ê1ê
T
1 . (B4)

The isotropic mutation matrix used in all models in the
text is written in the simplex basis as

[µ] = −D
(

ê1ê
T
1 + ê2ê

T
2

)

. (B5)

The Nash equilibria of this game in the ordered-
population regime are then β̄ = γ̄ = 0 (saddle point),
and the two ESS solutions ±

∣

∣β̄
∣

∣, γ̄ given in the main text
Equations (29) and (30). In a time-average long enough

that the population state has flipped many times between
the left and right ordered forms, the time-averaged pop-
ulation number for each type J ∈ {L,R,M} becomes

n̄J

N
=

(

1√
D
ê0 + γ̄ê2.

)

J

. (B6)

A regression on this long-time average would resolve
only the distinction between type M and the union of
types L and R, corresponding to indicator variables σM

and σL+R which partitioned the population into two sets.
We could characterize this “genic” description by pres-
ence/absence at a single locus of an allele for “ability
to coordinate”, irrespective of which move (L or R) the
players coordinate on. In this course description, only γ̄
is directly estimated from the average population state,
so we regard the typical population configuration as a
random variable converging in probability on one of the
two values ± |β(γ̄)|, where the solutions to the equation

β2(γ̄) =
−γ̄

√

D (D − 1)
+

1

D
− D2

Na (D − 1)
(B7)

will be proportional to the typical relatedness among in-
dividuals in the long-time average.
In the decomposition of Sec. IVC2, the expression (35)

for “cost” – the regression of fitness on individual type J
in the context of the long-time average population com-
position – evaluates to

VJCJ = a (D − 1)β2(γ̄) n̄J

= Na (D − 1)β2(γ̄)

(

1√
D
ê0 + γ̄ê2.

)

J

. (B8)
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The expression (36) for the benefit conferred by any type
J on any type k – the regression of k’s fitness given en-
counters with type J in the instantaneous population –
evaluates to

BJk = a (D − 1) (ê1)J (ê1)k. (B9)

Finally, the relatedness (37) between types J and k de-
termining their frequency of encounter – the regression
of the frequency of type J in the environment on the
indicator variable for type k – evaluates to

VJrJk = Nβ2(γ̄) (ê1)J (ê1)k. (B10)

Whereas the cost (B8) contains a term decreasing lin-
early in γ̄, the product of benefit and relatedness projects
into the same subspace spanned by ê0 and ê2 with con-
stant coefficients, as
∑

k

BJkVJrJk = Na (D − 1)β2(γ̄) [(ê1)J ]
2

= Na (D − 1)β2(γ̄)

(

1√
D
ê0 +

1
√

D (D − 1)
ê2.

)

J

.

(B11)

b. Absorbing relatedness from time segregation into
effective fitness in a time-averaged model for two populations

We may now see how nonzero average relatedness leads
to time-evolution in the “genic” description in terms of
± “alleles for coordination”, and how we may absorb
relatedness terms into an effective fitness parameter in
the regression on slow timescales. We suppose that the
weak average selective advantage of types L+R leads to
a slow shift out of type M that can be described in a
coarse-grained theory over long times, while the strong
selection between L and R in most population configu-
rations leads to internal fluctuations of the L + R popu-
lation that we absorb into the coefficient of relatedness.
The Price equation (31) becomes an equation of motion
for γ̄ written as

Covρ

(

~δJ , w
)

+ Eρ

(

w∆~δJ
)

=
dγ̄

dt
(ê2)J

= VJ

(

∑

k

BJkrJk − CJ

)

+
1

N

∑

k

µJkn̄k

= −
[

Na (D − 1)β2(γ̄)

(

1
√

D (D − 1)
+ γ̄

)

+Dγ̄

]

(ê2)J .

(B12)

(As required, terms proportional to ê0 in the direct (B8)
and population-mediated (B11) fitness have canceled,
leaving motion only within the simplex.)
Recognizing that

γ̄ =

√

D

D − 1

(

nM

N
− 1

D

)

= −
√

D

D − 1

(

nL + nR

N
− D − 1

D

)

, (B13)

Eq. (B12) is, as required, an evolutionary game equation
for a game between two types, M and L+R. The quantity
expressed explicitly in Eq. (B12) is n̄M (in parentheses in
the third line), which we may interpret as a combina-
tion of an intrinsic fitness fM ≡ 0 minus a population-
averaged fitness φ ≡ (n̄L + n̄R) fL+R/N . The effective
fitness for the joint population L + R is then given by

fL+R =
Nφ

n̄L + n̄R

= a (D − 1)
N2β2(γ̄)

n̄L + n̄R

= a (D − 1)

〈

(nL − nR)
2
〉

ρ

4 (n̄L + n̄R)
. (B14)

c. Scaling of within- and between-population variance, and
the emergence of coalitional action

For a Poisson process,
〈

(nL − nR)
2
〉

ρ
/ (n̄L + n̄R) in

Eq. (B14) would typically scale as N0. This scaling is
characteristic both of the symmetric state when selection
is too weak to lead to bifurcation, and of the population
fluctuations about either of the asymmetric states indi-

vidually in the ordered regime. In order to produce fixed
γ̄ in a population with large N , we must scale a ∼ 1/N
so that fitness remains in a fixed proportion to mutation.
With this scaling, the contribution to excess fitness for
the L + R population from Poisson fluctuations is there-
fore O(1/N), comparable to terms we have ignored.
In contrast, in the ordered regime produced when

Na (D − 1) > D2 – so that related sub-populations
at (nL − nR) /N ∼ ±2β(γ̄) /

√
D − 1 become typical –

the variance
〈

(nL − nR)
2
〉

ρ
/ (n̄L + n̄R) scales as N1,

and L + R types have an asymptotically finite excess
fitness in the infinite-population limit. In the limit
Na (D − 1) /D2 ≫ 1, where the within-group variance
remains O(1) as N grows large, it becomes sensible to
regard the group as the dynamical actor, whose strategy
is the ± sign for β in Eq. (B3). As the benefits to related-
ness are apportioned equally to all group members, they
constitute a sort of side-payment, leading to an interpre-
tation of the group as acting in coalitional form relative
to agents of type M, who are effectively independent.
This transition from large fluctuations and Hamilton-

type relatedness near the bifurcation point, to an effec-
tive description of the group as a coalition, provides an
example of the emergence of both coalition-constrained
moves and coalition switching, suggested as a mechanism
to support cooperative solution concepts in Sec. IVC7.
A feature of the pitchfork-bifurcation model that makes
the notion of “emergent” coalitions natural is the fact
that β̄ scales as

√
γ̄ near the bifurcation point. That is,
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the mean-regression leading to exponential suppression
of deviations from the instantaneous L- or R-dominated
population state, may be made arbitrarily stronger than
the fitness difference ∝ γ̄ that distinguishes the actors
within the L + R coalition from the M types that make
up a distinct (single-member) coalition.

Appendix C: Frenet coordinates on the limit cycle
in the Rock-Paper-Scissors game

A Frenet coordinate system on a limit cycle is one
whose principle axes are instantaneously tangent and
normal to the cycle [107, 108]. These principle axes
provide a convenient separation between mean-regressing
noise normal to the cycle and Brownian motion tan-
gent to it. For weakly broken RPS, the limit cycle is
nearly circular and the Frenet coordinates approximate
polar coordinates. A Floquet analysis integrates prop-
erties around cycles, to arrive at the long-time repeated
dynamical states or convergence toward them.
In this appendix we compute the leading dependence

of the radial coordinate on angle around the cycle, and
verify that the transformation from polar to Frenet coor-
dinates approaches the identity.73 By showing that the
deviations from circularity are harmonic at leading or-
der, we justify the omission of oscillatory terms in the
mean-field radius estimates in the main text.
Define polar coordinates (r, θ) on the unit simplex, so

that θ = 0 corresponds to the axis nR = nP. The ref-
erence scale for radius, r̄, will be the value suggested by
Eq. (43) of the text,

r̄2 ≡ 1

D
− 2D

N (a− b)
. (C1)

The mean rate of advance of the phase θ is

ω =
a+ b

2
√
3

(C2)

A normalized radius coordinate will be denoted

ρ ≡ r

r̄
(C3)

Three further combinations of the game parameters ap-
pear in the exact stationary point equations:

A1 ≡ r̄2
a− b

2ω

2A2
2 ≡ r̄2 +A2

1

tanα ≡ 1

3

a− b

2ω
(C4)

73 A more explicit computation of the orthogonal transformation
to Frenet coordinates is provided in the companion paper, where
fluctuation variances are computed.

The small expansion parameter will be r̄, in terms of
which A2 ∼ O(r̄), A1 ∼ O

(

r̄2
)

.
Then the stationary point condition from the mean-

field equation of motion (15), in (ρ, θ) coordinates, be-
comes

dρ

ω dτ
= ρ

[

A2ρ sin (3θ + α) +A1

(

1− ρ2
)]

ρ dθ

ω dτ
= −ρ [1− η2ρ cos (3θ + α)] . (C5)

The limit-cycle trajectories are not perfect circles, as
shown in Fig. 14, and the angle of inclination to a pure
radial vector due to the variation of ρ is

ρ̇

ρθ̇
= −A2ρ sin (3θ + α) +A1

(

1− ρ2
)

1− η2ρ cos (3θ + α)

≡ tan ξ

≡ d log ρ

dθ
. (C6)

These polar coordinates lead to a simple small-
parameter expansion if we solve Eq. (C6) for the limit-
cycle trajectory, to give

ρ̄
(

θ̄
)

= 1 +
A2

3
cos
(

3θ̄ + α
)

+O
(

r̄2
)

. (C7)

At leading order r = r̄ around the cycle, and the devia-
tion at O

(

r̄2
)

is oscillatory with period three. This term
cancels around one cycle, giving the approximate radial
convergence equation (42) in the main text.



44

Appendix D: Recurrent finite-state automata for
eight strategies in trembling-hand repeated

Prisoners’ Dilemma

ALLC TFT WSLS REP ALT AWSLS ATFT ALLD

ALLC
C

C

C

C

C

C

C

D

C

C

C

D
CC

CD

CC

CD

C

D

C

D

TFT
C

C

D

D

CD

DC

C

C

CDD

DDC

C

C

D

D
CD

DC

D

D

DCC

CCD
CCDD

CDDC

D

D

WSLS
C

C

C

C

D

C

CD

DD

CCDD

CDCD

D

C

D

C

CCD

CDD
CD

DD

REP

C

C

C

D

D

C

D

D

CC

CD

DD

CD

D

D

D

C

CC

DC

C

D

D

C

C

D

D

D

ALT
CD

CD

DC

DC
CDCD

CDDC

CD

CD

CD

DD

AWSLS
D

D

C

D

DDC

DCC

C

D

D

D

ATFT
C

D

D

C

CC

DD

C

D

ALLD
D

D

TABLE II. Recurrent finite-state automata visited by the
eight strategies in trembling-hand Prisoners’ Dilemma. Each
node indicates a recurrent state, and the sequence of row- and
column-player moves in that state is indicated. Arcs between
the nodes are created by trembles with rare frequency per
move. Transients and opening-move effects are not shown. In
cases where nodes have cycles of different lengths, the proba-
bilities on arcs are equal per term in the cycle. The practical
consequence is that all cycles containing all four move profiles
lead to equal visits when averaged over the late-time distri-
bution over the recurrent states. Entries in the lower triangle
(omitted for clarity) are the mirror images of those in the
upper triangle.

Appendix E: Interaction terms between first-move
and recurrent move in Prisoners’ Dilemma

In this appendix we compute the mean-field dynamics
of first-move and recurrent move alleles for the repeated
Prisoners’ Dilemma, supposing that these may vary in-
dependently by mutation or crossover. To simplify the
analysis, we will not compute or present the full mean-
field dynamics in six-dimensional type space, but rather
will consider the direction of departure from an initial
state with arbitrary allele frequencies in linkage equilib-
rium. Our interest will be the fitness differences between
canonical and mutant TFT that result in a a dynamically
maintained linkage of opening C with the recurrent TFT
move. We will then consider the extent to which this is
approximated by additive models with different levels of
interaction terms.

1. Dependence of fitness on opening and recurrent
moves

The canonical RPD strategies ALLC, ALLD, and TFT
are defined by particular pairings of first moves with re-
current moves. Let primes ′ indicate strategies with the
same recurrent move but the opposite pairing. We will
use superscript 0 to indicate quantities associated with
opening moves, and ∞ to indicate quantities associated
with recurrent moves.74

74 Changing first moves in ALLC and ALLD has no effect in the
limit of large games. Substituting TFT′ for TFT, however, has
the effect of producing a “dual” game. Duality here means that
the roles of C and D are exchanged, and the sign of the payoffs
is then reversed. Thus, as C is a repelling point in the game
with TFT, D is the corresponding attracting point in the game
with TFT′, which is thus eliminated apart from mutation and
crossover effects.
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We denote the opening moves by C and D, and re-
current moves by C, D, and T . As in the examples
of the figures, we will suppose that the payoffs satisfy
R+P −S−T = 0. We will not write expressions for mu-
tation and crossover explicitly, but we suppose that such
terms are kept nonzero as regulators, and specifically that
they are large enough that we may ignore terms of order
1/Nrounds. Approximation ≈ instead of equality = will
indicate corrections of order 1/Nrounds.

The population numbers for each of the recurrent
moves are then the sums

n∞C ≡ nC + nC′

n∞D ≡ nD + nD′

n∞T ≡ nT + nT ′ . (E1)

The corresponding population numbers for each of the
first moves are given by

n0C ≡ nC + nD′ + nT

n0D ≡ nC′ + nD + nT ′ . (E2)

The fitness coefficients associated with the recurrent-
move alleles in Eq. (E1) are readily obtained by taking
the appropriate sums of the replicator equation on fully-
specified types, and are given by







f∞
C

f∞
D

f∞
T






≈







R S R

T P P

R P X













n∞C
n∞D
n∞T






. (E3)

The regression coefficients R, S, T , and P , are constants
as in the main text, but X depends on population com-
position. With the assumption R + P − S − T = 0, it is
given by

Xn∞T ≈ RnT + PnT ′ . (E4)

The fitnesses of types incorporating recurrent C and
D are approximately independent of the opening move,

[

fC − f∞
C

fC′ − f∞
C

]

≈
[

fD − f∞
D

fD′ − f∞
D

]

≈
[

0

0

]

, (E5)

while those incorporating recurrent T depend on the first
move as

[

fT − f∞
T

fT ′ − f∞
T

]

≈ R− P

2

[

nT ′

−nT

]

. (E6)

Because R − P > 0, mutant/recombinant TFT′ will be
suppressed by selection relative to standard TFT, justi-
fying our omission of the former in the examples of the
main text.
If we denote by f0

C and f0
D the first-move fitnesses, and

note that the mean fitness for alleles is the same as that
for the population under any decomposition, which we
have denoted φ, then the fitness differences for opening-
move alleles are

[

f0
C − φ

f0
D − φ

]

≈ 1

N

[

n0D
−n0C

]







(

nT
n0C

− nT ′

n0D

)

[

R P R+P
2

]







n∞C
n∞D
n∞T






+

R− P

2

(

(nT )
2

n0C
+

(nT ′)
2

n0D

)







→
(

n∞T
N

)2
[

n0D
−n0C

]

R− P

2
(E7)

The first line is the general form, and the second line
indicates the form if the population is found in a linkage
equilibrium where nT /n

0
C = nT ′/n0D = n∞T /N .

The first term on the first line of Eq. (E7) is a constant
background part of the fitness of recurrent T , which sim-
ply carries along whichever first move is linked to it in ex-
cess, while the second term is a linkage-dependent, but al-
ways positive, preference for TFT over TFT′. If nT ′ → 0,
the correlation with n0

C is total, and the fitness in the first

line is governed by the regression coefficients
[

R P R
]

,

with positive sign. If nT → 0, the correlation with n0D is
total, and the fitness is governed by regression coefficients
[

R P P
]

, with negative sign. Unless the population is

sufficiently far from a linkage equilibrium in favor of nT ′ ,
we will have f0

C ≥ φ0/N ≥ f0
D, and n0D will be suppressed

in proportion to its correlation with recurrent T .75

In the linkage-equilibrium case, we have
[

fT − f∞
T

fT ′ − f∞
T

]

→ N

n∞T

[

f0
C − φ

f0
D − φ

]

. (E8)

Therefore, in mean-field approximation, the direction of
change from an initial state in linkage equilibrium is given
by

d

dt





log
(

n̄TN
n̄0
C
n̄∞

T

)

log
(

n̄T ′N
n̄0
D
n̄∞

T

)



 ≡
[

fT − f∞
T −

(

f0
C − φ

)

fT ′ − f∞
T −

(

f0
D − φ

)

]

75 Note that opening D may still be maintained by mutation in
types where it is paired with recurrent C orD, where it is neutral,
and then re-mixed through either recombination or mutations of
the recurrent move.
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→
(

N

n∞T
− 1

)

[

f0
C − φ

f0
D − φ

]

→ n∞T
N

(

1− n∞T
N

)

[

n0D
−n0C

]

R− P

2
. (E9)

At general interior points n∞T 6= 0, N , starting from any
linkage equilibrium, selection favors linkage of first-move
C with recurrent T and suppresses linkage of first-move
D with recurrent T .

2. Indicator functions and regressions of fitness

We now illustrate the genetic decomposition of fitness,
first assuming additivity and noting its limitations, and
then showing how interaction terms may be successively
introduced until a stable and fully informative regression
results. In order to study multilevel selection, we demon-
strate cases where higher order interactions than those of
the conventional normal-form game are required.
Let i ∈ {C,C ′, D,D′, T, T ′, } indicate a fully specified

agent type. Introduce superscript notation
{

C0, D0
}

for opening moves, and {C∞, D∞, T∞} for recurrent
moves. Use lowercase Greek indices for opening moves
α, β ∈

{

C0, D0
}

, and capital Roman indices for recur-
rent moves I, J ∈ {C∞, D∞, T∞}. A fully specified agent
type index corresponds to a concatenated pair of indices
for opening and recurrent moves, as i ↔ αI. With these
notations we may introduce indicator functions for the
sets corresponding to alleles, defined in the preceding
subsection.
The Kronecker delta on fully-specified types is denoted

δαI,i. In terms of these elementary indicator functions,
the indicator function for an opening move may be writ-
ten

σ0
αi ≡ 1−

∏

I

(1− δαI,i) . (E10)

The corresponding indicator for a recurrent move is

σ∞
Ii ≡ 1−

∏

α

(1− δαI,i) . (E11)

It is straightforward to check that the counting rules for
set unions are satisfied,

∑

i

σ0
αi = n0α

∑

i

σ∞
Ii = n∞I

∑

i

σ0
αiσ

∞
Ii = nαI . (E12)

Because the recurrent move dominates for most types,
the simplest regression is on the recurrent-move “gene”

in Eq. (19),

f
(0)
i ≈

∑

j

∑

IJ

σ∞
Ii σ

∞
JjaIJ

=
∑

IJ

σ∞
Ii aIJn

∞
J (E13)

For this approximation the regression coefficients on
recurrent moves are the same as those in the CDT game
of the text – abusing notation, aIJ = aij , except for
the recurrent-T regression. The least-squares regression
coefficient may readily be computed to be

aT∞T∞ =

〈

RnT + PnT ′

n∞
T

〉

=
R+ P

2
+

R− P

2

〈

nT − nT ′

n∞
T

〉

, (E14)

where we use 〈 〉 as a reminder that these regression co-
efficients are now functions of the (hidden) dynamical
population variables nT , nT ′ . The regression (E13) re-
covers the forms for all f∞

I of the preceding subsection,
which were computed from the replicator dynamic act-
ing on set unions. It both conflates types T and T ′, and
produces a regression coefficient which may depend sen-
sitively on the samples from the population process used
to compute it.
We could try to improve the approximation (E13) with

a regression that assumes additive genetic variance, by
including an indicator function for the first move (out
of many such possibilities, an interaction with opponent
first moves is shown here),

f lin
i ≈

∑

j





∑

IJ

σ∞
Ii σ

∞
Jja

lin
IJ +

∑

αβ

σ0
αiσ

0
βjb

lin
αβ





=
∑

IJ

σ∞
Ii a

lin
IJn

∞
J +

∑

αβ

σ0
αib

lin
αβn

0
β (E15)

No regression of this form can generate coefficients
bαβ large enough to be useful in the general case, be-
cause all but the fT and fT ′ fitness functions are well-
approximated by their f∞ estimators. Thus even in this
simple game additivity is violated at the single-gene level.

Therefore we consider interactions. The simplest in-
teraction is between an agent’s first move and recurrent
move, still depending on the environment only through
the opponent’s recurrent move. We write this regression

f
(1)
i ≈

∑

j

∑

IJ

σ∞
Ii σ

∞
Jj

(

a′IJ +
∑

α

σ0
αia

(1,0)
αIJ

)

=
∑

IJ

σ∞
Ii

(

a′IJ +
∑

α

σ0
αia

(1,0)
αIJ

)

n∞J . (E16)

Again the recurrent-move regression coefficients almost
always equal those in the text – a′IJ = aij – but now the
constant part of the T -T interaction has changed from
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the value in Eq. (E14) because an interaction term pre-
dicts a separate component of the variance. The constant
coefficient

a′T∞T∞ = aT∞T∞ −
(

R− P

4

)〈

nT − nT ′

n∞
T

〉

=
R+ P

2
+

R− P

4

〈

nT − nT ′

n∞
T

〉

, (E17)

and the first-order interaction term is now stable,

a
(1,0)
C0T∞T∞ = −a

(1,0)
D0T∞T∞ =

R− P

4
. (E18)

Eq. (E16) now produces the correct averaged forms for
fT and fT ′ , and half of the correct (constant) difference
from Eq. (E6).
To obtain stable regression coefficients, we must intro-

duce a second-order interaction. The relevant regression
is written

f
(2)
i ≈

∑

j

∑

IJ

σ∞
Ii σ

∞
Jj



a′′IJ +
∑

αβ

σ0
αia

(1,1)
αIβJσ

0
βj





=
∑

IJ

σ∞
Ii



a′′IJn
∞
J +

∑

αβ

σ0
αia

(1,1)
αIβJnβJ



 . (E19)

Now the constant coefficient is stable at value

a′′T∞T∞ =

(

R+ P

2

)

. (E20)

For the simple example we have used to illustrate, with
R + P − S − T = 0, only an antisymmetric interaction
between self- and opponent-first-moves is required,

a
(1,1)
C0T∞C0T∞ = −a

(1,1)
D0T∞D0T∞ =

R− P

2
. (E21)

The regression coefficients in Eq. (E19) with second-order
interactions in both opening and recurrent moves are thus
needed to reconstruct the extensive-form game in a “ge-
netic” description.
There were two subsubs here; come back and

decide whether to keep them.

Appendix F: The replicator Prisoners’ Dilemma in
the predictive variables of the canonical Folk

Theorems

In this appendix we map the move profiles generated
by the evolutionary repeated Prisoners’ Dilemma (RPD)
to their counterparts in a strategic repeated game. The
mapping will require a modification of the usual asso-
ciation between evolutionary and strategic games: that
homogeneous populations map to pure strategies (for a
population of cognitively identical strategic agents) while
heterogeneous populations map to mixed strategies. In

order to produce a faithful mapping between the evolu-
tionary and strategic formulations of repeated play, it will
be necessary to map a heterogeneous evolving popula-
tion to two different concepts: first, a continuous-valued
public signal outside the players’ control, and second, a
pair of mixed strategies that players may use, conditional
on the presence or absence of the public signal. The
fact that evolutionary RPD maps to this two-dimensional
space could have been anticipated, on the grounds that
the simplex in a three-type space (ALLC, ALLD, TFT)
with fixed player numberN is two-dimensional, while any
mixed strategy between instantaneous moves C and D is
only one-dimensional. The partition between the com-
ponents of population composition that represent pub-
lic signals versus mixed strategies will be related to the
partition between memory-zero and memory-one strat-
egy types.
We then show how the choice of the type space, to-

gether with the payoff coefficients (R,S, T, P ), constructs
a particular solution as the “target solution” which is
supposed to result from prior agreement in the strategic-
game Folk Theorems. The evolutionary dynamic will
map – as it is expected to – onto the optimizing behavior
of agents, while the dynamic within the repeated game
will map onto the “punishment” strategies assumed in
the strategic-game Folk Theorems.

1. Strict individual rationality maps without
difficulty

As in the text, we consider the model with types
ALLC, ALLD, and TFT, and deterministic moves. The
move profiles produced by any interactions among these
map directly to either persistent cooperation or the
“trigger” strategies used to prove the Folk Theorem for
Nash equilibria of the normal form for the repeated
game [56, 57]. These Folk Theorems are therefore the
appropriate versions for comparison.
The neutrality structure of RPD ensures that strict in-

dividual rationality poses no difficulty in the map from
evolutionary to strategic solution concepts. ALLC and
TFT are neutral with each other in any combination of
play between the two, while ALLD and TFT are neutral
when played against ALLD. Thus “punishment” is sim-
ply denying ALLD the gains of exploitation, and is an
instantaneous best response even in the stage game. It
is therefore not necessary to invoke more complex finite-
term punishment strategies or indefinite play as are re-
quired by subgame-perfect Folk Theorems.

2. The map from heterogeneous populations to
mixed strategies with either cost-free signaling or

public signaling

We may convert the probabilities of the four recurrent-
stage outcomes, given in terms of population numbers
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in the replicator dynamic, in two forms which separate purely mixed from coordinated strategies:
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(F1)

The parameters in the second line of Eq. (F1) are defined
as

ϕ ≡ nT
N

p̃ ≡ nC
nC + nD

, (F2)

while those in the third line are defined as

Φ ≡ nT
nC + nT

p ≡ nC + nT
N

. (F3)

We may re-formulate the interpretation of mixed play
from a population-dynamic model into an equivalent
model of a single type of optimizing player, able to use
mixed strategies, and also endowed with knowledge of
either the opponent’s state or of a global signal.
The interpretation of the second line in Eq. (F1) is a

literal translation of the effect that memory-one strate-
gies have on the long-term payoff of the repeated game.
ϕ = nT /N is a probability that a player has “sight”, and
1 − ϕ is the probability that he is “blind”. Sight par-
titions types in the original population between nT and
anything else, and the residual {nC , nD} identify a single
type of blind player who plays a mixed strategy C/D with
weights (p̃, 1− p̃). Sight is local in that it may be treated
as a binary variable sampled with probabilities (ϕ, 1− ϕ)
for each player at the time of play. Thus the idea that an
individual may freely vary ϕ in the same way as p̃ maps
the mutation-selection dynamic in a natural way onto the
strategic concept of individual optimization. Mechanisti-
cally, Eq. (F1) says that blind players, when paired, mix
independently over C/D; a sighted player paired with a
blind player coordinates on the blind player’s strategy;
two sighted players paired with each other not only coor-
dinate but optimize on the Pareto-superior coordinated
strategy.

This partition of the population gives the opening
move in the three composite strategies the interpretation
of a cost-free signal, which may be used to coordinate the
subsequent recurrent behavior that determines fitness. It
cannot be included in a single-round 2 × 2 stage game,
and indeed requires repetition over a sufficient number of
rounds that the cost ∝ 1/Nply may be made as small as
necessary to be regarded as cost-free. These conditions
could also be interpreted as measures of the “cognitive
complexity” of signaling strategies, which, if it is ruled
out, requires the non-cooperative solution concept for the
stage-game normal form.

The interpretation of the third line in Eq. (F1) replaces
local sight with sight of a global signal, provided exoge-
nously. Φ is the probability that the signal is provided in
any single instantiation of the stage game, and 1 − Φ is
the probability that it is absent. All players simultane-
ously know whether the global signal exists or not, and if
not, they independently mix over C/D with probabilities
(p, 1− p), corresponding to the frequencies of the opening
move in the population. In order to produce outcomes
with the probabilities of the population model, we must
suppose that if the signal exists, it takes some form such
as a random variable uniformly distributed in the unit
interval. Players coordinate on move C if the variable is
above p2, and move D otherwise. This “threshold” use
of the global signal remains defined in terms of the same
parameter as the independent mixed strategies, so that
players have a single parameter to optimize. The dynam-
ics of the probability Φ must be translated from the pop-
ulation model in some other terms, as a property of the
game rather than an individual optimization parameter.
While this interpretation requires greater complexity of
the stage game, and assumes a rather arbitrary use of the
mixing probabilities, it has the feature of expanding the
feasible set to include coordinated strategies with one-
stage non-cooperative solution concepts, and is therefore
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within the class conventionally used to define the feasible
set in strategic game theory.
The feasible set defined by the range of values Φ ∈ [0, 1]

is shown in Fig. 26. Optimizers responsible only for p
would move along the boundary Φ = 0 away from C/C
and toward D/D, as all mixed strategies are dominated
by the pure-strategy Nash equilibrium of the stage game.
Along the fully-coordinated boundary Φ = 1 motion is
away from D/D and toward C/C, because these are ef-
fectively coalitional strategies ordered by Pareto domi-
nance. The payoff parameters (R,S, T, P ), in a popula-
tion with these three strategies, define a limit point of
zero mutation rate along the C-T axis, which we asso-
ciate with a value Φpop-dyn. The map to the strategic-
game formulation requires us to regard Φ as an exter-
nally controlled signal frequency, and p as a variable op-
timized by the players. Along each interior contour of
fixed Φ ∈ (0,Φpop-dyn), one or more stable interior op-
tima exist for p in the repeated game.76 This optimum
converges to p → 1 for all Φ ≥ Φpop-dyn.

D/D

C/C
C/D, D/C

Φ = 0

Φ = 1

D/D

C/C
C/D

D/C

FIG. 26. The four possible recurrent move profiles in RPD
are C/C, D/D, C/D, D/C. All possible matchings of types
produce frequencies for these move profiles shown in the
3-dimensional probability simplex, inset. The set of role-
symmetric feasible strategies is contained within the vertical
plane through this simplex at PC/D = PD/C, shaded in the
inset, and plotted by projecting the full simplex onto this
plane in the main panel. Without a public signal to enable
coordination, the feasible set is the one-dimensional set of
products of mixed strategies, indicated by the heavy curve
Φ = 0. When players can use a public signal, the feasible set
expands to the shaded lens between Φ = 0 (no signal) and
Φ = 1 (signal present in every round). The contour Φ = 0
maps in Fig. 19 onto population configurations on the lower
axis between ALLD and ALLC, while the contour Φ = 1 maps
onto the upper-left axis between ALLD and TFT.

76 Usually this stable optimum is unique. The reader may check
from the graphs that along a narrow range of Φ, for the param-
eters used in the examples, this solution splits into an unstable
rest point and two stable rest points at high and low p.

Appendix G: Variation in the linked-heterosis
model, and the heritable component of fitness

In this appendix we present a stochastic differential
equation for the linked-heterosis model of Sec. IVH, and
derive the effective fitness that results from the positive
selection for population covariance.
Consider the role of fluctuations due to random pair-

ing, about a background in which
〈

σk
〉

n
= 0, ∀k, so that

the population is evenly mixed on average for L and R al-
leles at each locus, and the only remaining characteristic
to be selected is correlation between loci. Then fi = 0, ∀i
and φ = 0 as well. We will make the further simplifying
assumption that ni = n−i, for all pairs (i,−i) which dif-
fer by sign change of each σm

i , because such symmetrized
pairs share all fluctuation properties, and our goal is to
understand how fluctuations affect such pairs as a result
of their correlation structures.

1. Langevin equation to capture the fitness
consequences of random pairing of players

Let the consequences of random pairing be represented
by a Langevin field, so that in the notation of the Price
equation, the number of descendents from individuals of
type i is a random variable written

n′i = (1 + ξi) ni. (G1)

By Eq. (63), the expectation 〈ξi〉t = ∆t (fi − φ) = 0,
where 〈 〉t denotes the average over pairings in some in-
terval ∆t starting from time t. Then, by Eq. (64) at
fi = 0, the variance in ξi is given by

〈

ξ2i
〉

t
=

(∆t)
2

ni

∑

j

a2ij
nj
N

(G2)

To conserve total number, it is necessary that
∑

j njξj ≡
0 in each realization of the variables ξ, leading to the
requirement that in correlations

∑

j

nj〈ξiξj〉t ≡ 0, ∀i. (G3)

Now we consider the fluctuations in a succeeding in-
terval ∆t, starting at a time t′ ≡ t + ∆t. Putting aside
mutation or crossover effects, which we will assume occur
at a low rate, the number of second-generation descen-
dants is

n′′i = (1 + ξ′i) (1 + ξi) ni. (G4)

In the context of the fluctuation at t, the Langevin field ξ′i
now has a nonzero expectation at t′ due to fitness change
in the population,

〈ξ′i〉t′ = ∆t (f ′
i − φ′) , (G5)
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in which

f ′
i = fi +

∑

j

aij
nj
N

ξj , (G6)

and φ′ =
∑

i nif
′
i/N as usual. We assume that apart

from the mean value (G5), fluctuations ξ′i are uncorre-
lated with fluctuations ξi.

2. Relaxation response to fluctuations, and
effective fitness

The apparent fitness of any individual in a type i over
two time lags, taking into account the relaxation of the
population in response to previous fluctuations, is

〈〈n′′i − ni〉〉t′,t
ni

= 〈〈ξi〉t′ξi〉t
= ∆t〈(f ′

i − φ′) ξi〉t

≡ 2∆t
(

f eff
i − φeff

)

. (G7)

If we choose ∆t to represent approximately the time over
which fluctuation correlations have delayed, the effective

fitness f eff
i will correspond to the coefficient obtained by

regression of the mean population change among types
that differ by their correlations. The quantity determin-
ing the effective fitness in Eq. (G7) is the correlation

〈f ′
iξi〉t =

∑

j

aij
nj
N

〈ξjξi〉t

=
∑

j 6=i

(aij + 1)
nj
N

〈ξjξi〉t. (G8)

In the second line we have used the cancellation of the
covariance terms in Eq. (G3), together with the identity
aii ≡ −1, ∀i.
In order to evaluate Eq. (G8), it is necessary to obtain

an estimate for the off-diagonal covariance terms 〈ξjξi〉t.
To obtain this, we consider the off-diagonal counterpart
to Eq. (G7)

〈〈ξ′i〉t′ξk〉t = ∆t〈(f ′
i − φ′) ξk〉t

=
∆t

N







aiknk
〈

ξ2k
〉

t
− ni〈ξiξk〉t +

∑

j 6=i,k

njaij〈ξjξk〉t +O
(

1

N

)







, (G9)

in which O(1/N) stands for terms from 〈φ′ξk〉t which we
do not write down.
We now make the self-consistency ansatz that for a

suitable choice of ∆t, the two terms

〈〈ξ′i〉t′ξk〉t + 〈〈ξ′k〉t′ξi〉t ≈ 〈ξiξk〉t (G10)

in steady state. These two terms are the relaxation re-

sponses to primary fluctuations caused by random pair-
ing, during the time interval before the primary correla-
tions have regressed to the mean.

From the self-consistency condition (G10) we obtain a
Dyson equation for the off-diagonal correlation terms,

(

1 + ∆t
ni + nk

N

)

〈ξiξk〉t −
∆t

N

∑

j 6=i,k

nj
(

aij〈ξjξk〉t + 〈ξiξj〉tajk
)

=
∆t

N
aik
(

ni
〈

ξ2i
〉

t
+ nk

〈

ξ2k
〉

t

)

(G11)

We now make use of the assumption that sufficiently
many types are populated, that number conservation
does not enforce stronger correlations between types than
those induced by fluctuating fitness. Under this assump-
tion ni/N ≪ 1, ∀i. Then the leading term in the solution
to the Dyson equation (G11) is

〈ξiξk〉t ≈
∆t

N
aik
(

ni
〈

ξ2i
〉

t
+ nk

〈

ξ2k
〉

t

)

=
(∆t)

3

N
aik
∑

j

(

a2ij + a2kj
) nj
N

(G12)

where the second line makes use of Eq. (G2). The impor-
tant conclusion of Eq. (G12) is that among non-identical
types, the equal-time covariance of fluctuations 〈ξiξk〉t
has the sign of the pair-fitness function aik, weighted
by the rate of primary fluctuation generated for the two
types.

Plugging Eq. (G12) back into the expressions (G7,G8)
for the two-timelag effective fitness yields

f eff
i =

1

2
〈f ′

iξi〉t
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≈ (∆t)
3

2N

∑

k 6=i

(

a2ik + aik
) nk
N

∑

j

(

a2ij + a2kj
) nj
N

≈ (∆t)
3

2N

∑

k 6=i

a2ik
nk
N

∑

j

(

a2ij + a2kj
) nj
N

(G13)

The approximation in the second line of Eq. (G13) is
that terms at O(1/N) as well as higher-order terms in
the Dyson equation (G12) have been dropped from the
expression for 〈ξiξk〉t. A further approximation at the
same order is made in the third line, in which the linear
term in aik sums to O(1/N). The reason is that, for any
two indices k and −k, defined so that σm

k = −σm
−k, ∀m,

aki = −a−ki, ∀i. Meanwhile, a2kj = a2−kj , so the argu-
ment in the sum on k is antisymmetric under k → −k.
If the sum were complete, and the approximation (G12)
were applicable to k = i, then in any background n sym-
metric under i ↔ −i, the antisymmetric term would
vanish entirely. The residual from complete vanishing
is −2ni

∑

j a
2
ijnj/N

2, which is O(ni/N) relative to the

sum on symmetric terms in a2ik.

3. The heritable component of fitness

We may estimate the result of running a regression
on the complicated sum (G13), to obtain the heritable

component of the effective fitness. Such estimates are
qualitatively coarser than the O(1/N) approximations
that have been made up to now, in that dependencies
on the fine structure of the population will be absorbed
into overall prefactors.

The overlap function a2ik ∼ 1 for k ∼ i and k ∼ −i, and
zero for types with small correlation with i. Meanwhile,
a2kj ∼ a2ij , ∀j, for all such k with large overlap. Therefore,
an estimate for the effective fitness becomes

f eff
i ∼ (∆t)

3

N

∑

j

ni
N

nj
N

a2ij

=
(∆t)

3
ni

N2

1

4N2
ply

∑

k,k′

σk
i σ

k′

i Cov
(

σk, σk′

)

.(G14)

In the second line we have re-introduced appropriate fac-
tors fi, which were set to zero for the balanced-allelic
populations assumed in this analysis, and made use of
Eq. (62) in the text to re-express the dependence on
population composition {nj} in terms of the allele co-
variance. We see that the heritable component of fitness
is expected to be ∼ (∆t) ni/N2 times the variance in in-
dividual reproductive success over pair assignments as
given in Eq. (62).

[1] John Maynard Smith. Evolution and the theory of
games. Cambridge, London, 1982.

[2] Dean Foster and Peyton Young. Stochastic evolutionary
game dynamics. Theor. Pop. Biol., 38:219–232, 1990.

[3] Jörgen W. Weibull. Evolutionary game theory. MIT
Press, Cambridge, MA, 1997.

[4] Josef Hofbauer and Karl Sigmund. Evolutionary Games
and Population Dynamics. Cambridge U. Press, New
York, 1998.

[5] Larry Samuelson. Evolutionary games and equilibrium
selection. MIT Press, Cambridge, MA, 1998.

[6] Michel Benaim and Jorgen W. Weibull. Deterministic
approximation of stochastic evolution in games. Econo-
metrica, 71:873–903, 2003.

[7] Josef Hofbauer and Karl Sigmund. Evolutionary game
dynamics. Bull. Am. Math. Soc., 40:479–519, 2003.

[8] Martin A. Nowak. Evolutionary Dynamics: exploring
the equations of life. Belknap Press, New York, 2006.

[9] T. Reichenbach, M. Mobilia, and E. Frey. Coexistence
versus extinction in the stochastic cyclic lotka-volterra
model. Phys. Rev. E, 74:051907, 2006.

[10] Tobias Reichenbach, Mauro Mobilia, and Erwin Frey.
Mobility promotes and jeobardizes biodiversity in rock-
paper-scissors games. Nature, 448:1046–1049, 2007.

[11] Herbert Gintis. Game theory evolving: a problem-
centered introduction to modeling strategic interaction.
Princeton U. Press, Princeton, NJ, second edition, 2009.

[12] Erwin Frey. Evolutionary game theory: non-
equilibrium and non-linear dynamics of interact-

ing particle systems. Boulder lecture notes, pages
1–39, 2009. http://boulder.research.yale.edu/Boulder-
2009/ReadingMaterial-2009/Frey/frey lecture notes games.pdf.

[13] N. H. Barton and M. Turelli. Natural and sexual selec-
tion on many loci. Genetics, 127:229–255, 1991.

[14] Mark Kirkpatrick, Toby Johnson, and Nick Barton.
General models of multilocus evolution. Genetics,
161:1727–1750, 2002.

[15] John H. Gillespie. Population genetics: a concise in-
troduction. Johns Hopkins U. Press, Baltimore, MD,
2004.

[16] L. Lehmann and L. Keller. The evolution of cooperation
and altruism – a general framework and a classification
of models. J. Evol. Biol., 19:1365–1376, 2006.

[17] Laurent Lehmann, Laurent Keller, Stuart West, and
Denis Roze. Group selection and kin selection: two
concepts but one process. Proc. Nat. Acad. Sci. USA,
104:6736–6739, 2007.

[18] Denis Roze and Francois Rousset. Multilocus mod-
els in the infinite island model of population structure.
Theor. Pop. Biol., 73:529–542, 2008.

[19] Laurent Lehmann and Francois Rousset. Perturba-
tion expansions of multilocus fixation probabilities for
frequency-dependent selection with applications to the
hill-robertson effect and to the joint evolution of helping
and punishment. Theor. Pop. Biol., 76:35–51, 2009.

[20] John C. Harsanyi and Reinhard Selten. A general the-
ory of equilibrium selection in games. MIT press, Cam-
bridge, Mass, 1988.



52

[21] Drew Fudenberg and David K. Levine. The theory of
learning in games. MIT Press, Cambridge, MA, 1998.

[22] Drew Fudenberg and Jean Tirole. Game Theory. MIT
press, Cambridge, Mass, 1991.

[23] Ross Cressman. Evolutionary dynamics and extensive
form games. MIT Press, Cambridge, MA, 2003.

[24] Martin Shubik. Game Theory in the Social Sciences:
Concepts and Solutions. MIT Press, Cambridge, Mass.,
1984.

[25] Jin Feng and Thomas G. Kurtz. Large Deviations for
Stochastic Processes. Providence, Rhode Island, 2006.

[26] Nicolas Champagnat. Large deviations for singular
and degenerate diffusion models in adaptive evolution.
arXiv:0903.2345v1.

[27] K. G. Wilson and J. Kogut. The renormalization group
and the ε expansion. Phys. Rep., Phys. Lett., 12C:75–
200, 1974.

[28] Joseph G. Polchinski. Renormalization group and effec-
tive lagrangians. Nuclear Physics B, 231:269–295, 1984.

[29] Nigel Goldenfeld. Lectures on Phase Transitions and
the Renormalization Group. Westview Press, Boulder,
CO, 1992.

[30] Nigel Goldenfeld and Carl Woese. Life is physics: evo-
lution as a collective phenomenon far from equilibrium.
Ann. Rev. Cond. Matt. Phys., 2010.

[31] William A. Brock and Cars H. Hommes. A ratio-
nal route to randomness. Econometrica, 65:1059–1095,
1997.

[32] R. A. Fisher. The genetical theory of natural selection.
Oxford U. Press, London, 2000.

[33] G. R. Price. Fisher’s ‘fundamental theorem’ made clear.
Ann. Hum. Genet., 36:129–140, 1972.

[34] Steven A. Frank. George Price’s contributions to evo-
lutionary genetics. J. Theor. Biol., 175:373–388, 1995.

[35] Steven A. Frank. The price equation, Fisher’s funda-
mental theorem, kin selection, and causal analysis. Evo-
lution, 51:1712–1729, 1997.

[36] Douglas S. Falconer and Trudy F. C. Mackay. Introduc-
tion to quantitative genetics. Benamin Cummings, New
York, fourth edition, 1996.

[37] Richard C. Lewontin. The Genetic Basis of Evolution-
ary Change. Columbia U. Press, New York, 1974.

[38] Simon deDeo, David C. Krakauer, and Jessica Flack.
Inductive game theory and the dynamics of animal con-
flict. PLoS Comp. Biol., 6: e1000782:e1000782, 2010.
doi:10.1371/journal.pcbi.1000782.

[39] Simon Dedeo, David C. Krakauer, and Jessica C.
Flack. Evidence of strategic periodicity in collective
conflict dynamics. Proc. Roy. Soc. Interface, 16:doi:
10.1098/rsif.2010.0687, 2011.

[40] David C. Krakauer, James P. Collins, Douglas Er-
win, Jessica C. Flack, Walter Fontana, Manfred D.
Laubichler, Sonja J. Prohaska, Geoffrey B., and Peter F.
Stadler. The challenges and scope of theoretical biology.
J. Theor. Biol., 276:269–276, 2011.

[41] Steven A. Frank. Foundations of social evolution.
Princeton U. Press, Princeton, NJ, 1998.

[42] Richard R. Nelson and Sidney G. Winter. An evolution-
ary theory of economic change. Balknap Press, Cam-
bridge, MA, 1985.

[43] Peyton H. Young. Individual strategy and social struc-
ture: an evolutionary theory of institutions. Princeton
U. Press, Princeton, NJ, 1998.

[44] William B. Provine. The origins of theoretical popula-

tion genetics. U. Chicago Press, Chicago, 2001.
[45] John von Neumann and Oskar Morgenstern. Theory of

Games and Economic Behavior. Princeton Univ. Press,
Princeton, NJ, 1944.

[46] William D. Hamilton. The genetical evolution of social
behavior. i. J. Theor. Biol., 7:1–16, 1964.

[47] William D. Hamilton. The genetical evolution of social
behavior. ii. J. Theor. Biol., 7:17–52, 1964.

[48] William D. Hamilton. Selfish and spiteful behavior in
an evolutionary model. Nature, 228:1218–1220, 1970.

[49] P. F. Stadler, S. J. Prohaska, C. V. Forst, and D. C.
Krakauer. Defining genes: a computational framework.
Theory in the Biosciences, 128:1431–, 2009.

[50] Eric H. Davidson and Douglas H. Erwin. Gene regula-
tory networks and the evolution of animal body plans.
Science, 311:796–800, 2006.

[51] Douglas H. Erwin and Eric H. Davidson. The evolu-
tion of hierarchical gene regulatory networks. Nature
Rev. Genetics, 10:141–148, 2009.

[52] H. Peyton Young. The evolution of conventions. Econo-
metrica, 61:57–84, 1993.

[53] H. Peyton Young. The economics of conventions.
J. Econ. Perspectives, 10:105–122, 1996.

[54] Conventional contracts. Young, h. peyton.
Rev. Econ. Studies, 65:776–792, 1998.

[55] Robert J. Aumann and Lloyd S. Shapley. Long-term
competition – a game-theoretic analysis. Cowles Foun-
dation Working Papers, pages wp–676, 1992.

[56] A Rubinstein and A. Wolinsky. Remarks on infinitely
repeated extensive-form games. Games Econ. Behavior,
9:110–115, 1995.

[57] Drew Fudenberg and Eric Maskin. The folk theorem
in repeated games with discounting or with incomplete
information. Econometrica, 54:533–554, 1991.

[58] Sidney Coleman. Aspects of symmetry. Cambridge, New
York, 1985.

[59] Michihiro Kandori, George J. Mailath, and Rafael Rob.
Learning, mutation, and long run equilibria in games.
Econometrica, 61:29–56, 1993.

[60] Nowak Martin A. A strategy of win-stay, lose-shift that
outperforms tit-for-tat in prisoner’s dilemma. Nature,
364:56–58, 1993.

[61] David Kraines and Vivian Kraines. Evolution of learn-
ing among Pavlov strategies in a competitive environ-
ment with noise. J. Conflict Resolution, 39:439–466,
1995.

[62] Robert Axelrod. The evolution of cooperation. Perseus
Books, New York, revised edition, 2006.

[63] Lorens A. Imhof, Drew Fudenberg, and Mar-
tin A. Nowak. Tit-for-tat or win-stay, lose-shift.
J. Theor. Biol., 247:574–580, 2007.

[64] Jim Ratliff. A folk theorem sampler. pages 1–34, 2010.
http://www.virtualperfection.com/gametheory/Section5.3.html.

[65] M. I. Freidlin and A. D. Wentzell. Random perturbations
in dynamical systems. Springer, New York, second edi-
tion, 1998.

[66] M. Doi. Second quantization representation for classical
many-particle system. J. Phys. A, 9:1465–1478, 1976.

[67] M. Doi. Stochastic theory of diffusion-controlled reac-
tion. J. Phys. A, 9:1479–, 1976.

[68] L. Peliti. Path-integral approach to birth-death pro-
cesses on a lattice. J. Physique, 46:1469, 1985.

[69] L. Peliti. Renormalization of fluctuation effects in a +
a → a reaction. J. Phys. A, 19:L365, 1986.



53

[70] Daniel C. Mattis and M. Lawrence Glasser. The uses
of quantum field theory in diffusion-limited reactions.
Rev. Mod. Phys, 70:979–1001, 1998.

[71] J. Cardy. Field theory and non-equilibrium
statistical mechanics. 1999. http://www-
thphys.physics.ox.ac.uk/users/JohnCardy/home.html.

[72] Richard S. Ellis. Entropy, Large Deviations, and Statis-
tical Mechanics. Springer-Verlag, New York, 1985.

[73] Hugo Touchette. The large deviation approach to
statistical mechanics. Phys. Rep., 478:1–69, 2009.
arxiv:0804.0327.

[74] Eric Smith. Large-deviation principles, stochas-
tic effective actions, path entropies, and the
structure and meaning of thermodynamic de-
scriptions. Rep. Prog. Phys., 74:046601, 2011.
http://arxiv.org/submit/199903.

[75] David Canning. Average behavior in learning models.
J. Econ. Theory, 57:442–472, 1992.

[76] Cosma Rohilla Shalizi. Bayesian learning, evolutionary
search, and information theory. 2008.

[77] Shang-Keng Ma. Modern theory of critical phenomena.
Perseus, New York, 1976.

[78] E. M. Lifshitz and L. P. Pitaevskii. Statistical Physics,
Part II. Pergamon, New York, 1980.

[79] Claude Elwood Shannon and Warren Weaver. The
Mathematical Theory of Communication. U. Illinois
Press, Urbana, Ill., 1949.

[80] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. Wiley, New York, 1991.
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ney I. Resnick, editors, Lévy processes: theory and ap-
plications, pages 3–37, Boston, 2001. Birk”auser.

[98] Herbert A. Simon. The architecture of complexity.
Proc. Am. Phil. Soc., 106:467–482, 1962.

[99] Herbert A. Simon. The organization of complex sys-
tems. In Howard H. Pattee, editor, Hierarchy theory:
The challenge of complex systems, pages 3–27, New
York, 1973. George Braziller.

[100] John Gerhard and Marc Kirschner. The theory of facil-
itated variation. Proc. Nat. Acad. Sci. USA, 104:8582–
8589, 2007.

[101] Howard Georgi. Lie algebras in particle physics.
Perseus, New York, second edition, 1999.

[102] John E. Hopcroft and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Mass., 1979.

[103] James P. Crutchfield and Karl Young. Inferring statis-
tical complexity. Phys. Rev. Lett., 63:105–108, 1989.

[104] Marc Mezard, Giorgio Parisi, and Miguel Angel Vira-
soro. Spin glass theory and beyond. World Scientific,
Singapore, 1987.

[105] K. H. Fischer and J. A. Hertz. Spin glasses. Cambridge
U. Press, New York, 1991.

[106] F. Krzakala and L. Zdeborová. Phase transitions and
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