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Abstract

In recent years, collaborations often between mathematical and computational biologists and scientists in the World Health Organization
(WHO) global influenza surveillance network, have resulted in a number of mathematical and computational advances including: increasing
the resolution at which antigenic surveillance data can be analyzed, providing methods for genetic analysis and prediction, and an increased
understanding of the determinants of repeated influenza vaccination. These advances increase the information extracted from influenza
surveillance and increase the quantitative data available for the vaccine strain selection process. This mathematical and computational work
is possible because of the wealth of information collected over many years by the WHO global influenza surveillance network, and further
advances will be greatly facilitated by implementation of the proposed strengthening of virological and epidemiological surveillance in
the WHO global agenda on influenza surveillance and control.
© 2003 Elsevier Science Ltd. All rights reserved.
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Key messages

Methods in the fields of bioinformatics and computa-
tional biology are finding new applications in the study
of influenza, providing:

• quantitative data on influenza surveillance; and
• insights into the process of vaccine strain selection.

1. Introduction

New high-throughput methods in biology are producing
data at an unprecedented rate. In many areas of biology,
traditionally experimental scientists are collaborating with
computational scientists from many disciplines to create
new methods in bioinformatics and computational biology
to analyze these data. New patterns are being discovered
which would not be detectable without systematic and au-
tomated approaches because of the volume and often noisy
nature of the data. Although many of these methods are in
their infancy, there is no doubt that major advances in our
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basic understanding of biology, and practical applications in
medicine and public health will ensue.

The influenza surveillance and vaccine strain selection
processes are in a good position to take advantage of these
new methods. The long-standing WHO global influenza
surveillance network has accumulated a great deal of insti-
tutional knowledge and has collected an extensive dataset
of the antigenic and genetic evolution and epidemiology of
influenza[1], a subset of this dataset exists in centralized
databases[2–5], and the WHO global agenda on influenza
surveillance and control proposes further critical strength-
ening virological and epidemiological surveillance[6,7].

Application and development of these new methods to
influenza surveillance and vaccine strain selection is already
ongoing. In recent years, collaborations often between
scientists in the WHO global influenza surveillance pro-
gram and mathematical, evolutionary, and computational
biologists have resulted in a number of mathematical and
computational advances in understanding the antigenic and
genetic evolution of influenza and an increased understand-
ing of the determinants of the efficacy of repeated influenza
vaccination. Here we give a brief overview of the data used
in the vaccine strain selection process, and then review how
mathematical and computational methods are being applied
to these data, and what might be possible in the future.

0264-410X/03/$ – see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0264-410X(03)00068-9



D.J. Smith / Vaccine 21 (2003) 1758–1761 1759

2. The necessity to update the influenza vaccine, and
the data used to do so

Human influenza is a complex pathogen, mostly because
of its capacity to vary its surface proteins to escape immune
surveillance. There are two main patterns of change[8].
The first,antigenic shift, is the result of a new influenza A
subtype entering the human population, either directly or
indirectly from birds. There is generally little pre-existing
immunity to the new subtype and antigenic shifts can cause
worldwide influenza pandemics. The second,antigenic drift,
is the result of changes in existing human influenza viruses,
to escape immune surveillance. If the influenza vaccine
were not updated to track the antigenic changes in the virus,
the vaccine would cease to be effective; hence, twice-yearly
vaccine strain selection meetings recommend any necessary
updates to the influenza strains used in the vaccine.

The vaccine strain selection decision is primarily based
on three criteria: (1) antigenic, is there a significant anti-
genic difference between emerging strains and the existing
vaccine strain; (2) genetic, is there supporting evidence
of change in the genetic data; and (3) epidemic, are the
emerging strains likely to cause widespread epidemics in
the coming season. The data to assess these criteria are
generated by the WHO global influenza surveillance net-
work of sentinel physicians, National Influenza Centers, and
collaborating centers for reference and research. There is
mathematical and computational work ongoing to increase
the information available to the vaccine strain selection
process for all three of these criteria.

3. Increasing the resolution and visualization of
antigenic data

Antigenic changes in the influenza virus are measured us-
ing the hemagglutination inhibition (HI) assay. The HI assay
has been a tool for vaccine strain selection and research for
many years[9,10]. The assay works well for distinguishing
major drift variants, but finer-grain differences are difficult
to judge reliably. New mathematical methods have been ap-
plied to the analysis of HI data which increase the resolution
at which antigenic differences can be reliably measured, and
also produce a visualization of the antigenic relationships
among many strains[11] (Smith et al., manuscript in prepa-
ration) (see[12–14]for related work). Theseantigenic maps
reveal details of both the short- and long-term patterns of
antigenic evolution, increase the granularity at which anti-
genic surveillance data can be examined, and thus increase
the information available to the vaccine strain selection pro-
cess. Antigenic maps can ameliorate some of the difficulties
in comparing HI data from different laboratories and thus
open the way for curation of antigenic data in a centralized
database. Also, the finer-grain quantification of antigenic
data opens up basic research in, among other areas, antigenic
evolution, and the relationship between genetic mutations
and their antigenic effects.

4. Predicting genetic evolution from the genetic data

Genetic data is more precise than antigenic data and
there is a long history of detailed quantitative work on the
genetic evolution of influenza. Most of this work is focuses
on the hemagglutinin gene because of its primary role in
antigenic drift[15,16]. Advances in the methods of evolu-
tionary biology[17] and careful analyses of the intricacies
of influenza data[18], have resulted in the identification
of 18 positively selected codons in the hemagglutinin gene
[19]. In a retrospective analysis, these codons predicted,
from among circulating strains, the genetic variants that
were the progenitors of future lineages in 9 of 11 seasons
[20]. Monitoring changes in these 18 codons might help to
predict the future evolution of the virus.

Mathematical techniques have been used to identify clus-
ters in genetic data. In a retrospective analysis, a strain
chosen from the most dominant genetic cluster of one sea-
son matched the WHO vaccine choice for the following
season in 9 of 16 seasons[21] (see[40] for commentary).
These clusters also enabled new analyses and quantification
of the antigenic sites on the hemagglutin gene. Genetic
clusters can also be visualized ingenetic maps constructed
using similar techniques to those used to construct antigenic
maps. High-throughput sequencing of many strains will
further enable genetic analyses, by providing not only more
data, but also by reducing the sampling bias in the current
data.

5. Modeling influenza epidemiology

The third consideration in vaccine strain selection
is whether newly emerging strains are likely to cause
widespread epidemics in the coming season. Current epi-
demiological models are not yet at the point of being able
to help answer this question. However, influenza epidemics
in closed settings, such as single outbreaks in nursing
homes, can be accurately modeled[22] using modifications
of classicsusceptible-infectious-recovered techniques[23],
and these models might provide guidance for the most
effective use of antivirals in a pandemic situation[24].
However, to model interpandemic epidemiological patterns,
models may will have to take into account antigenic drift
of the virus, immunity after infection or vaccination with
multiple related but different strains[25], vaccine coverage
[41–43], seasonal variation[44], and spatio-temporal ef-
fects[45] (see[26] for a review). Adding antigenic dirft and
cross-immunity into classical models greatly complicates
the mathematics and although advances have been made,
much work remains[27–29]. Advances in incorporating
spatio-temporal information into epidemiological models
has been successful in models of other pathogens includ-
ing measles, whooping cough, and foot and mouth disease
[30–34], and some progress has been made for influenza
though much work remains[35,46–48].
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A major reason for successes in epidemiological mod-
eling of other pathogens is the availability of detailed
spatio-temporal data. For influenza one needs not only
spatio-temporal data but also virological data; thus, the
proposed improvements coverage and harmonization of
epidemiological surveillance, the linking of epidemiologi-
cal and virological data, and the entering of these data in
the influenza databases as proposed by the global agenda
on influenza surveillance and control, will be of significant
benefit to future epidemiological modeling work.

6. Optimizing vaccine strain selection for increased
efficacy in repeat vaccinees

Vaccine strain selection is currently optimized to give
a good match between the vaccine strains and the strains
expected to circulate in the coming influenza season. This
is the optimal strategy for first-time vaccines, but there is
some evidence to suggest that modifications to this strategy
might improve efficacy in repeat vaccinees. The efficacy
of repeated vaccination has been difficult to determine
definitively as different studies have come to different con-
clusions[36,37]. A meta-analysis of repeated vaccination
studies showed that, on average, repeat vaccinees are as
well protected as first-time vaccinees, but that vaccine ef-
ficacy in repeat vaccinees is more variable than efficacy in
first-time vaccinees[38]. Theantigenic distance hypothesis
has been proposed to explain this variability, and a corol-
lary of the hypothesis is that there is a trade-off in vaccine
strain selection: while selecting a vaccine strain close to
the expected epidemic strains increases vaccine efficacy, a
vaccine strain too close to previous vaccine strains will, in
some circumstances, be less effective in repeat vaccinees
than in first-time vaccinees[25]. This reduced efficacy is
likely due to elimination of vaccine antigen by pre-existing
cross-reactive antibodies raised by prior influenza vaccina-
tion or infection. Influenza vaccination guidelines recom-
mend annual revaccination for at-risk individuals; thus, a
case can be made for optimizing vaccine strain selection for
repeat vaccinees. Mathematical modeling of vaccine strain
selection strategies, that take into account the antigenic dis-
tance hypothesis, suggests strategies that have the potential
to increase vaccine efficacy in repeat vaccinees[39] (Smith
et al., manuscript in preparation). These strategies are based
on modifications of the current strategy and all give higher
efficacy when there is a good estimate of the next drift vari-
ants; thus, the potential to optimize the vaccine choice for
repeat vaccinees is dependent on the current methodology
and any improvements that can be made to it, such as those
described above and those proposed by the global agenda,
will also increase the potential of these alternate strategies.

7. Summary

The wealth of data collected by the WHO global in-
fluenza surveillance network, and the subset of it stored

in the influenza sequence database and influenza epidemi-
ological databases, have enabled recent mathematical and
computational advances in our basic understanding of the
genetic and antigenic evolution of influenza. Coupled with
an increased understanding of the determinants of the effi-
cacy of repeated vaccination, these new methods increase
the quantitative information available to the influenza
surveillance and vaccine strain selection processes. Further
advances in mathematical and computational biology, and
its application to influenza, will be greatly facilitated by
implementation of the proposed strengthening of virolog-
ical and epidemiological surveillance by the WHO global
agenda on influenza surveillance and control.
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