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LIFE’S INFORMATION HIERARCHY
Chapter 20: Life’s Information Hierarchy

Jessica C. Flack, University of Wisconsin–Madison 
SFI Bulletin, April 2014

Jessica C. Flack

Biological systems—from cells to tissues to individuals to soci-
eties—are hierarchically organized (e.g., Feldman and Eschel 1982; 
Buss 1987; Smith and Szathmáry 1998; Valentine and May 1996; 
Michod 2000; Frank 2003). To many, hierarchical organization sug-
gests the nesting of components or individuals into groups, with 
these groups aggregating into yet larger groups. But this view—
at least superficially—privileges space and matter over time and 
information. Many types of neural coding, for example, require 
averaging or summing over neural firing rates. The neurons’ spa-
tial location—that they are in proximity—is, of course, important, 
but at least as important to the encoding is their behavior in time. 
Likewise, in some monkey societies, as I will discuss in detail later in 
this review, individuals estimate the future cost of social interaction 
by encoding the average outcome of past interactions in special sig-
nals and then summing over these signals.

In both examples, information from events distributed in time 
as well as space (fig. 1) is captured with encodings that are used to con-
trol some behavioral output. My collaborators and I in the Center 
for Complexity & Collective Computation (C4) are exploring the 
idea that hierarchical organization at its core is a nesting of these 
kinds of functional encodings. As I will explain, we think these 
functional encodings result from biological systems manipulating 
space and time (fig. 2) to facilitate information extraction, which in 
turn facilitates more efficient extraction of energy.

This information hierarchy appears to be a universal property 
of biological systems and may be the key to one of life’s greatest 
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mysteries—the origins of biological complexity. In this essay, I review 
a body of work by David Krakauer, myself, and our research group 
that has been inspired by many years of work at the Santa Fe Institute 
(e.g., Crutchfield 1994; Gell-Mann 1996; Gell-Mann and Lloyd 1996; 
Fontana and Buss 1996; West, Brown, and Enquist 1997; Fontana and 
Schuster 1998; Ancel and Fontana 2000; Stadler, Stadler, Wagner, and 
Fontana 2001; Smith 2003; Crutchfield and Görnerup 2006; Smith 
2008). Our work suggests that complexity and the multiscale struc-
ture of biological systems are the predictable outcome of evolutionary 
dynamics driven by uncertainty minimization (Krakauer 2011; Flack 
2012; Flack, Erwin, Elliot, and Krakauer 2013).

This recasting of the evolutionary process as an inferential 
one1 (Bergstrom and Rosvall 2009; Krakauer 2011) is based on the 
premise that organisms and other biological systems can be viewed 
as hypotheses about the present and future environments they or 
their offspring will encounter, induced from the history of past 
environmental states they or their ancestors have experienced. This 
premise, of course, only holds if the past is prologue—that is, has 
regularities, and the regularities can be estimated and even manipu-
lated (as in niche construction) by biological systems or their com-
ponents to produce adaptive behavior.

If these premises are correct, life at its core is computational, 
and a central question becomes: How do systems and their compo-
nents estimate and control the regularity in their environments and 
use these estimates to tune their strategies? I suggest that the answer 
to this question, and the explanation for complexity, is that biolog-
ical systems manipulate spatial and temporal structure to produce 
order—low variance—at local scales.

1 This idea is related to work on Maxwell’s demon (e.g., Krakauer 2011; Mandal, 
Quan, and Jarzynski 2013) and the Carnot cycle (e.g., Smith 2003), but we do not 
yet understand the mapping.



FIGURE 1. The dimensionality of the time–space continuum, with properties 
postulated when x does not equal 3 and y is larger than 1. Life on earth exists in 
three spatial dimensions and one temporal dimension. Biological systems effectively 

“discretize” time and space to reduce environmental uncertainty by coarse-graining 
and compressing environmental time series to find regularities. Components use 
the coarse-grained descriptions to predict the future, tuning their behavior to 
their predictions.  [MODIFIED BY JAN UNDERWOOD FOR SFI FROM ORIGINAL BY MAX 

TEGMARK, WIKIMEDIA COMMONS]

FIGURE 2. Biological systems—from (left to right) Volvox colonies, to slime molds, 
to animal societies, to large-scale ecosystems such as reefs, to human cities—are 
hierarchically organized, with multiple functionally important time and space scales. 
All feature: components with only partially aligned interests exhibiting coherent 
behavior at the aggregate level; components that turn over and that co-exist in 
the system at varying stages of development; social structure that persists but 
component behavior that fluctuates; and macroscopic variation in temporal and 
spatial structure and coupling with microscopic behavior, which has functional 
implications when the components can perceive—in evolutionary, developmental, 
or ecological time—regularities at the macroscopic scale.
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Uncertainty Reduction
The story I want to tell starts with the observation that with each new 
level of organization typically comes new functionality—a new feature 
with positive payoff consequences for the system as a whole, or for its 
components (Flack, Erwin, Elliot, and Krakauer 2013). Policing in a 
pigtailed macaque group is an example. Once a heavy tailed distribu-
tion of power—defined as the degree of consensus in the group that 
an individual can win fights (see Flack and Krakauer 2006; Boehm and 
Flack 2010; Brush, Krakauer, and Flack 2013)—becomes effectively 
institutionalized (meaning hard to change) policing (an intrinsically 
costly strategy) becomes affordable, at least to those animals that sit in 
the tail of the power distribution: those superpowerful monkeys who 
are rarely or never challenged when they break up fights (Flack, de Waal, 
and Krakauer 2005; Flack, Girvan, de Waal, and Krakauer 2006).

My collaborators and I propose that a primary driver of the 
emergence of new functionality such as policing is the reduction 
of environmental uncertainty through the construction of nested 
dynamical processes with a range of characteristic time constants 
(Flack, Erwin, Elliot, and Krakauer 2013). These nested dynamical 
processes arise as components extract regularities from fast, micro-
scopic behavior by coarse-graining (or compressing) the history of 
events to which they have been exposed.

Proteins, for example, can have a long half-life relative to 
RNA transcripts and can be thought of as the summed output of 
translation. Cells have a long half-life relative to proteins, and are 
a function of the summed output of arrays of spatially structured 
proteins. Both proteins and cells represent some average measure 
of the noisier activity of their constituents. Similarly, a pigtailed 
macaque’s estimate of its power is a kind of average measure of the 
collective perception in the group that the macaque is capable of 
winning fights, and this is a better predictor of the cost the macaque 
will pay during fights than the outcome of any single melee, as 
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these outcomes can fluctuate for contextual reasons. These coarse- 
grainings, or averages, are encoded as slow variables (Flack and de 
Waal 2007; Flack 2012; Flack, Erwin, Elliot, and Krakauer 2013; see 
also Feret, Danos, Krivine, Harner, and Fontana 2009, for a similar 
idea). Slow variables may have a spatial component as well as a tem-
poral component, as in the protein and cell examples (fig. 6), or, 
minimally, only a temporal component, as in the monkey example.

As a consequence of integrating overabundant microscopic 
processes, slow variables provide better predictors of the local future 
configuration of a system than the states of the fluctuating micro-
scopic components. In doing so, they promote accelerated rates of 
microscopic adaptation. Slow variables facilitate adaptation in two 
ways: they allow components to fine-tune their behavior, and they 
free components to search, at low cost, a larger space of strategies 
for extracting resources from the environment (Flack 2012; Flack, 
Erwin, Elliot, and Krakauer 2013). This phenomenon is illustrated 
by the power-in-support-of-policing example and also by work on 
the role of neutral networks in RNA folding. In the RNA case, many 
different sequences can fold into the same secondary structure. This 
implies that over evolutionary time, structure changes more slowly 
than sequence, thereby permitting sequences to explore many con-
figurations under normalizing selection.

New Levels of Organization
As an interaction history builds up at the microscopic level, the 
coarse-grained representations of the microscopic behavior consol-
idate, becoming for the components increasingly robust predictors 
of the system’s future state.

We speak of a new organizational level when the system’s 
components rely to a greater extent on these coarse-grained or 
compressed descriptions of the system’s dynamics for adaptive deci-
sion-making than on local fluctuations in the microscopic behavior 



FIGURE 3. A sea urchin gene regulatory circuit. The empirically derived circuit describes 
the Boolean rules for coordinating genes and proteins to produce aspects of the sea urchin’s 
phenotype—in this case, the position of cells in the endomesoderm at 30 hours since fertilization. 
Edges indicate whether a node induces a state change in another node, here genes and proteins. 
The circuit is a rigorous starting point for addressing questions about the logic of development 
and its evolution. In computational terms, the input is the set of relevant genes and proteins and 
the output is the target phenotypic feature.

ENDOMESODERM SPECIFICATION UP TO 30 HOURS



Ubiq = ubiquitous; Mat = maternal; activ = activator; rep = repressor; unkn = unknown; 
Nucl. = nuclearization; X = ß-catenin source; 

nß-TCF = nuclearized b-ß-catenin-Tcf1; ES = early signal; ECNS = early cytoplasmic 
nuclearization system; Zyg. N. = zygotic Notch

Additional data sources for selected notes: 1: McClay lab; 2: Angerer lab; 3, 4: McClay lab; 
5: Rogers and Calestani, 2010; 6: Croce and McClay

This model is frequently revised. It is based on the latest laboratory data [as of 
April 2014], some of which was not then published.
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FIGURE 4. Cognitive effective theories for one macroscopic property of a macaque 
society: the distribution of fight sizes (a). To reduce circuit complexity we return 
to the raw time series data and remove as much noise as possible by compressing 
the data. In the case of our macaque dataset, this reveals which individuals and 
subgroups are regular and predictable conflict participants. We then search for 
possible strategies in response to these regular and predictable individuals and 
groups. This approach returns a family of circuits (b is an example), each of which 
has fewer nodes and edges than the full circuit (c). These circuits are simpler and 
more cognitively parsimonious. We then test the reduced circuits against each other 
in simulation to determine how well they recover the target macroscopic properties.
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and when the coarse-grained estimates made by components are 
largely in agreement. The idea is that convergence on these “good 
enough” estimates underlies nonspurious correlated behavior 
among the components. This in turn leads to an increase in local 
predictability (e.g., Flack and de Waal 2007; Brush, Krakauer, 
and Flack 2013) and drives the construction of the information  
hierarchy. (Note that increased predictability can seem the product 
of downward causation in the absence of careful analysis of the  
bottom-up mechanisms that actually produced it.)

The Statistical Mechanics & Thermodynamics of Biology 
Another way of thinking about slow variables is as a functionally 
important subset of the system’s potentially many macroscopic 
properties. An advantage of this recasting is that it builds a bridge to 
physics, which over the course of its maturation as a field grappled 
with precisely the challenge now before biology: understanding the 
relationship between behavior at the individual or component level 
and behavior at the aggregate level.

In physics
As discussed in Krakauer and Flack (2010), the debate in physics 
began with thermodynamics—an equilibrium theory treating aggre-
gate variables—and came to a close with the maturation of statistical 
mechanics—a dynamical theory treating microscopic variables.

Thermodynamics is the study of the macroscopic behavior of 
systems exchanging work and heat with connected systems or their 
environment. The four laws of thermodynamics all operate on average 
quantities defined at equilibrium—temperature, pressure, entropy, 
volume, and energy. These macroscopic variables exist in fundamental 
relationships with each other, as expressed, for example, in the ideal 
gas law. Thermodynamics is an extremely powerful framework as it 
provides experimentalists with explicit, principled recommendations 
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FIGURE 6. The cell can be thought of as a slow variable to the extent it is a 
function of the summed output of arrays of spatially structured proteins and has a 
long half-life compared to its proteins. Features that serve as slow variables provide 
better predictors of the local future configuration of a system than the states of 
the fluctuating microscopic components. We propose that when detectable by the 
system or its components, slow variables can reduce environmental uncertainty and, 
by increasing predictability, promote accelerated rates of microscopic adaptation.

FIGURE 5. A comparison of Markov organisms in two environments: a Markov 
environment (left) and a non-Markov environment (right). In the top two plots, 
organismal complexity is plotted against time for each organism (organisms are 
represented by varying colors) and for many different sequences of 500 environmental 
observations; the bold red line shows the average organismal complexity, which in 
the Markov environment tends toward the environmental complexity and in the 
non-Markov environment exceeds it. In the bottom plots, the probability that a 
random organism has order k is plotted against time.
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about what variables should be measured and how they are expected to 
change relative to each other, but it is not a dynamical theory and offers 
no explanation for the mechanistic origins of the macroscopic variables 
it privileges. This is the job of statistical mechanics. By providing the 
microscopic basis for the macroscopic variables in thermodynamics, 
statistical mechanics establishes the conditions under which the equi-
librium relations are no longer valid or expected to apply. The essential 
intellectual technologies behind much of statistical mechanics are pow-
erful tools for counting possible microscopic configurations of a system 
and connecting these to macroscopic averages.

In biology
This brief summary of the relation between thermodynamics and sta-
tistical mechanics in physics is illuminating for two reasons. On the 
one hand it raises the possibility of a potentially deep division between 
physical and biological systems: so far—and admittedly biology is 
young—biology has had only limited success in empirically identifying 
important macroscopic properties and deriving these from first princi-
ples rooted in physical laws or deep evolved constraints.2 This may be 
the case because many of the more interesting macroscopic properties 
are slow variables that result from the collective behavior of adaptive 
components, and their functional value comes from how components 
use them, making them fundamentally subjective (see Gell-Mann and 
Lloyd 1996 for more on subjectivity) and perhaps even nonstationary.3

On the other hand, the role of statistical mechanics in physics 

2 The work on scaling in biological systems shows a fundamental relationship between 
mass and metabolic rate, and this relationship can be derived from the biophysics 
(e.g., West, Brown, and Enquist 1997). Bettencourt and West are now investigating 
whether similar fundamental relationships can be established for macroscopic proper-
ties of human social systems, like cities (e.g., Bettencourt, Lobo, Helbing, Kuhnert, 
and West 2007; Bettencourt 2013).
3 With the important caveat that in biology the utility of a macroscopic property as a 
predictor will likely increase as consensus among the components about the estimate 
increases, effectively reducing the subjectivity and increasing stationarity (see also 
Gell-Mann and Lloyd 1996).
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suggests a way forward. If we have intuition about which macro-
scopic properties are important—that is, which macroscopic prop-
erties are slow variables—and we can get good data on the relevant 
microscopic behavior, we can proceed by working upward from 
dynamical many-body formalisms to equilibrium descriptions with 
a few favored macroscopic degrees of freedom (Levin, Grenfell, 
Hastings, and Perelson 1997; Krakauer and Flack 2010; Krakauer et 
al. 2011; Gintis, Doebeli, and Flack 2012).

A Statistical Mechanics–Computer Science–
Information Theoretic Hybrid Approach
The most common approach to studying the relationship between 
micro and macro in biological systems is perhaps dynamical systems 
and, more specifically, pattern formation (for examples, see Sumpter 
2006; Ball 2009; Couzin 2009; Payne et al. 2013). However, if, as 
we believe, the information hierarchy results from biological com-
ponents collectively estimating regularities in their environments 
by coarse-graining or compressing time series data, a natural (and 
complementary) approach is to treat the micro and macro mapping 
explicitly as a computation.

 If we have intuition about which 
macroscopic properties are important—

that is, which macroscopic properties are 
slow variables—and we can get good 

data on the relevant microscopic behavior, 
we can proceed by working upward 

from dynamical many-body formalisms 
to equilibrium descriptions with a few 

favored macroscopic degrees of freedom.
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Elements of computation in biological systems
Describing a biological process as a computation minimally requires 
that we are able to specify the output, the input, and the algorithm 
or circuit connecting the input to the output (Flack and Krakauer 
2011; see also Mitchell 2010; Valiant 2013). A secondary concern is 
how to determine when the desired output has been generated. In 
computer science this is called the termination criterion or halting 
problem. In biology it potentially can be achieved by constructing 
nested dynamical processes with a range of timescales, with the 
slower timescale processes providing the “background” against 
which a strategy is evaluated (Flack and Krakauer 2011), as discussed 
later in this paper in the section “Couplings.”

A macroscopic property can be said to be an output of a 
computation if it can take on values that have functional conse-
quences at the group or component level, if it is the result of a 
distributed and coordinated sequence of component interactions 
under the operation of a strategy set, and if it is a stable output 
of input values that converges (terminates) in biologically rele-
vant time (Flack and Krakauer 2011). Examples studied in biology 
include aspects of vision such as edge detection (e.g., Olshausen and 
Field 2004), phenotypic traits such as the average position of cells in the 
developing endomesoderm of the sea urchin (e.g., Davidson 2010; Peter 
and Davidson 2011), switching in biomolecular signal-transduction  
cascades (e.g., Smith, Krishnamurthy, Fontana, and Krakauer 2011), 
chromatin regulation (e.g., Prohaska, Stadler, and Krakauer 2010), 
and social structures such as the distribution of fight sizes and the 
distribution of power in monkey societies (e.g., Flack 2012; Flack, 
Erwin, Elliot, and Krakauer 2013).

The input to the computation is the set of elements imple-
menting the rules or strategies. As with the output, we do not typ-
ically know a priori which of many possible inputs is relevant, and 
so we must make an informed guess based on the properties of the 
output. In the case of the sea urchin’s endomesoderm, we might 
start with a list of genes that have been implicated in the regulation 
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of cell position. In the case of the distribution of fight sizes in a 
monkey group, we might start with a list of individuals partici-
pating in fights.

Reconstructing the microscopic behavior
In biological systems the input plus the strategies constitute the sys-
tem’s microscopic behavior. There are many approaches to recon-
structing the system’s microscopic behavior. The most powerful is 
an experiment in which upstream inputs to a target component are 
clamped off and the output of the target component is held con-
stant. This allows the experimentalist to measure the target com-
ponent’s specific contribution to the behavior of a downstream 
component (Pearl 2010). This type of approach is used to construct 
gene regulatory circuits mapping gene–gene and gene–protein 
interactions to phenotypic traits (fig. 3).

When such experiments are not possible, causal relationships 
can be established using time series analysis in which clamping 
is approximated statistically (Ay 2009; Pearl 2010). My collabo-
rators and I have developed a novel computational technique, 
called Inductive Game Theory, that uses a variant of this statistical 
clamping principle to extract strategic decision-making rules, game 
structure, and (potentially) strategy cost from correlations observed 
in the time series data.

Collective computation through stochastic circuits
In all biological systems, of course, there are multiple components 
interacting and simultaneously coarse-graining to make predictions 
about the future. Hence the computation is inherently collective. 
A consequence of this is that it is not sufficient to simply extract 
from the time series the list of the strategies in play. We must also 
examine how different configurations of strategies affect the mac-
roscopic output. One way these configurations can be captured is 
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by constructing Boolean circuits describing activation rules as illus-
trated by the gene regulatory circuit shown in figure 3, which con-
trols cell position (the output) at thirty hours from fertilization in 
the sea urchin (Peter and Davidson 2011). In the case of our work on 
micro to macro mappings in animal societies, we describe the space of 
microscopic configurations using stochastic “social” circuits (fig. 4).

Nodes in these circuits are the input to the computation. As 
discussed above, the input can be individuals or subgroups, or 
they can be defined in terms of component properties like age or  
neurophysiological state. A directed edge between two nodes 
indicates that the “receiving node” has a strategy for the “sending 
node”—and the edge weight can be interpreted as the above-null 
probability that the sending node plays the strategy in response to 
some behavior by the receiving node in a previous time step. Hence, 
an edge in these circuits quantifies the strength of a causal relation-
ship between the behaviors of a sending and receiving node.

Sometimes components have multiple strategies in their rep-
ertoires. Which strategy is being played at time t may vary with 
context. These metastrategies can be captured in the circuit using 
different types of gates specifying how a component’s myriad strat-
egies combine (see also Feret, Davis, Krivine, Harmer, and Fontana 
2009). By varying the types of gates and/or the strength of causal 
relationships, we end up with multiple alternative circuits—a 
family of circuits—all of which are consistent with the microscopic 
behavior, albeit with different degrees of precision. Each circuit in 
the family is essentially a model of the micro–macro relationship 
and so serves as a hypothesis for how strategies combine over nodes 
(inputs) to produce to the target output. We test the circuits against 
each other in simulation to determine which can best recover the 
actual measured macroscopic behavior of our system.
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Cognitive effective theories for collective computation 
The circuits describing the microscopic behavior can be complicated, 
with many “small” causes detailed, as illustrated by the gene regula-
tory circuit shown in figure 3. The challenge—once we have rigorous 
circuits—is to figure out the circuit logic (Flack and Krakauer 2011; 
see also Feret, Davis, Krivine, Harmer, and Fontana 2009).

There are many ways to approach this problem. Our approach 
is to build what’s called in physics an effective theory: a compact 
description of the causes of a macroscopic property. Effective theo-
ries for adaptive systems composed of adaptive components require 
an additional criterion beyond compactness. As discussed earlier in 
this essay, components in these systems are tuning their behaviors 
based on their own effective theories—coarse-grained rules (see also 
Feret, Davis, Krivine, Harmer, and Fontana 2009)—that capture the 
regularities (Daniels, Krakauer, and Flack 2012). If we are to build 
an effective theory that explains the origins of functional space and 
timescales—new levels of organization—and ultimately the infor-
mation hierarchy, the effective theory must be consistent with com-
ponent models of macroscopic behavior, as these models, through 
their effects on strategy choice, drive that process. In other words, our 
effective theory should explain how the system itself is computing.

We begin the search for cognitively principled effective the-
ories using what we know about component cognition to inform 
how we coarse-grain and compress the circuits. This means taking 
into account, given the available data, the kinds of computations 
components can perform and the error associated with these com-
putations at the individual and collective levels, given component 
memory capacity and the quality of the “data sets” components 
use to estimate regularities (Krakauer, Flack, DeDeo, and Farmer 
2010; Flack and Krakauer 2011; Daniels, Krakauer, and Flack 2012; 
all building on Gell-Mann 1996).

As we refine our understanding of the micro–macro mapping 
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through construction of cognitive effective theories, we also refine 
our understanding of what time series data constitute the “right” 
input—and hence the building blocks of our system. And, by 
investigating whether our best-performing empirically justified cir-
cuits can also account for other potentially important macroscopic 
properties, we can begin to establish which macroscopic properties 
might be fundamental and what their relation is to one another—
the thermodynamics of biological collectives.

Couplings, information flow, and macroscopic tuning 
Throughout this essay I have stressed the importance of slow-
ness (effective stationarity) for prediction. Slowness also has costs, 
however. Consider our power example. The power structure must 
change slowly if individuals are to make worthwhile investments in 
strategies that work well given the structure, but it cannot change 
too slowly or it may cease to reflect the underlying distribution 
of fighting abilities on which it is based and, hence, cease to be a 
good predictor of interaction cost (Flack 2012; Flack, Erwin, Elliot, 
and Krakauer 2013). The question we must answer is, What is the 
optimal coupling between macroscopic and microscopic change, 
and can systems, by manipulating how components are organized 
in space and time, get close to this optimal coupling?

The question we must answer is,  
What is the optimal coupling between 
macroscopic and microscopic change, 

and can systems, by manipulating how 
components are organized in space and 
time, get close to this optimal coupling?
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One approach to this problem is to quantify the degeneracy of 
the target macroscopic property and then perturb the circuits by 
either removing nodes, up- or down-regulating node behavior, or 
restructuring higher-order relationships (subcircuits) to determine 
how many changes at the microscopic level need to occur to induce 
a state change at the macroscopic level.

Another approach is to ask how close the system is to a critical 
point—that is, how sensitive the target macroscopic property is to 
small changes in parameters describing the microscopic behavior. 
Many studies suggest that biological systems of all types sit near the 
critical point (Mora and Bialek 2011). A hypothesis we are exploring 
is that sitting near the critical point means that important changes 
at the microscopic scale will be visible at the macroscopic scale. Of 
course this also has disadvantages as it means small changes can poten-
tially cause big institutional shifts, undermining the utility of coarse-
graining and slow variables for prediction (Flack, Erwin, Elliot, and 
Krakauer 2013).

If balancing trade-offs between robustness and prediction on the 
one hand, and adaptability to changing environments on the other, 
can be achieved by modulating the coupling between scales (Flack, 
Hammerstein, and Krakauer 2012; Flack, Erwin, Elliot, and Krakauer 
2013), we should be able to make predictions about whether a system 
is far from, near, or at the critical point based on whether the data 
suggest that robustness or adaptability is more important given the 
environment and its characteristic timescale. This presupposes that 
the system can optimize where it sits with respect to the critical point, 
implying active mechanisms for modulating the coupling. We are 
working to identify plausible mechanisms using a series of toy models 
to study how the type of feedback from the macroscopic or institu-
tional level to the microscopic behavior influences the possibility of 
rapid institutional switches.
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Complexity
This essay covers a lot of work, so allow me to summarize. I suggested 
that the origins of the information hierarchy lie in the manipulation 
of space and time to reduce environmental uncertainty. I further 
suggested that uncertainty reduction is maximized if the coarse-
grained representations of the data the components compute are 
in agreement (because this increases the probability that everyone 
is making the same predictions and so tuning the same way). As 
this happens, the coarse-grained representations consolidate into 
robust, slow variables at the aggregate level, creating new levels of 
organization and giving the appearance of downward causation.

I proposed that a central challenge lies in understanding what 
the mapping is between the microscopic behavior and these new 
levels of organization. (How exactly do everyone’s coarse-grainings 
converge?) I argued that, in biology, a hybrid statistical mechanics–
computer science–information theoretic approach (see also 
Krakauer et al. 2011) is required to establish such mappings. Once 
we have cognitively principled effective theories for mappings, we 
will have an understanding of how biological systems, by discret-
izing space and time, produce information hierarchies.

Where are we, though, with respect to explaining the origins of 
biological complexity?

The answer we are moving toward lies at the intersection of the 
central concepts in this essay. If evolution is an inferential process 
with complex life being the result of biological systems extracting 
regularities from their environments to reduce uncertainty, a nat-
ural recasting of evolutionary dynamics is in Bayesian terms. Under 
this view, organism and environment can be interpreted as k-order 
Markov processes and modeled using finite-state hidden Markov 
models (fig. 5). Organisms update prior models of the environment 
with posterior models of observed regularities. We are exploring 
how the Markov order (a proxy for memory) of organisms changes 
as organisms evolve to match their environment, quantifying fit 
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to the environment with model selection. We use information- 
theoretic measures to quantify structure. Our approach allows us 
to evaluate the memory requirements of adapting to the environ-
ment given its Markov order, quantify the complexity of the models 
organisms build to represent their environments, and quantitatively 
compare organismal and environmental complexity as our Markov 
organisms evolve. We hypothesize that high degrees of complexity 
result when there is regularity in the environment, but it takes a 
long history to perceive it and an elaborate model to encode it. E
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