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ABSTRACT 
A general solution is presented of the problem of specifylng  all  alternative,  generally  frequency- 

dependent, (absolute) fitness  sets which give rise  to the same  allele  frequency changes and population 
dynamics  as a given fitness  set. The one- and two-locus  cases are analyzed  in detail and the method is then 
extended to the n-locus  case. It is  shown that if biological constraints can  be  used  to  specify the mean  fitness 
of the population and the relative  fitnesses of the heterozygotes, then the allele  frequency  trajectories 
determine a unique fitness  set. 

S EWALL WRIGHT (WRIGHT and DOBZHANSKY 1946) was 
probably the first to notice that two different fitness 

sets could give  rise to essentially the same allele fre- 
quency trajectories in a one-locus-two-allele model. Such 
alternative fitness sets are  thus equivalent in this sense. 
They are  important because, when they exist, allele fre- 
quency trajectories do  not suffice to specify a particular 
(genotypic) fitness set uniquely. DENNISTON and CROW 
(1990) have since provided several procedures  for con- 
structing such alternative, but equivalent, fitness sets. 
For one-locus  models they have shown that  there exist 
multiplicative and additive  transformations,  linear 
combinations of these,  and miscellaneous other trans- 
formations  between  alternative  fitness sets which con- 
serve allele  frequency  trajectories  and,  sometimes, 
also the total  population dynamics. However, their 
treatment was episodic, rather  than systematic: they 
presented  no  general  procedure  that  could  generate 
all equivalent  alternatives  to  a given fitness  set. For 
two-locus models, they exhibited  examples of similar 
procedures.  Although they did not assume linkage 
equilibrium  in  finding  the  transformations, all their 
examples  did. 

This paper  reports  more  general and systematic so- 
lutions of the  problem of constructing alternative fitness 
sets from  a given one. First, the one-locus case is  fully 
solved for  an arbitrary number of  alleles. Second, the 
two-locus  case  is  also  fully  solved without assuming link- 
age equilibrium. Finally, the  general  method is illus- 
trated for the n-locus  case  with arbitrary numbers of  al- 
leles at  the  different loci. This  constitutes  a  full 
solution  to  the  problem. The most  interesting  result 
is that  the  mean fitness and  the relative fitnesses of the 
heterozygotes  can be arbitrarily  specified  in the new 
fitness  sets, but  once  the  functional  forms of these  are 
specified, the new equivalent  fitness sets are exactly 
fixed. 
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ONE LOCUS 

Basic notation: In all our models, like DENNISTON and 
CROW (1990), we assume random mating, discrete gen- 
erations, very large populations (no stochastic effects), 
and viability selection (or, equivalently, multiplicative 
fertilities). For one-locus models with n alleles Ai, i = 
1, . . . , n, let p i  (1 5 i 5 n) be the frequency of allele 
Ai, and p be  the vector of allele frequencies. Let the 
absolute fitness of the genotype A,Aj be w V ( p )  where 
i ,  j = 1, . . . , n. Then the marginal fitness of the A, allele 
is defined by w i ( p )  = pjwV(p) .  Let W ( p )  be  the 
mean absolute fitness of the population. Then W( p )  = xj,j p$jwli( p ) .  The set of absolute genotypic fitnesses 
(w, (p)  : i ,  j = 1,  . . . , n) is the fitness set of interest. Let 
{w;(p)  : i , j  = 1, . . . , n) be an alternative fitness set. Let 

xjp ,w,*(p) .  Throughout, we  will assume that w V ( p )  = 

w j j ( p )  and w$(p) = w$(p). All the w,(p),  w$(p),  w j ( p )  
and wxp)  are functions of the allele frequencies pi. Two 
alternative  fitness  sets will be called equiualent if they give 
rise  to the same  allele  frequency  trajectories.  They will be 
called strunglj equivalent if they also give  rise to the same 
dynamics for the entire population, that is, the changes  in 
population size or allele numbers are also  conserved. 

The problems investigated here  are those of con- 
structing the {w$} from {w,} and of determining  the con- 
ditions under which  they are equivalent or strongly 
equivalent. For expository convenience we  will fully ana- 
lyze a one-locus-two-allele model first. It will serve to il- 
lustrate our general  methods. 

Two alleles: Here n = 2. Let p be  the frequency of the 
allele A,, in some generation. Then 1 - p is the fre- 
quency of A, in that  generation. If p' is the frequency of 
A, in the  next  generation, 

w 5 p )  = xjp,w;(p).  Then W * ( P )  = s i , j p i p j q ( p )  = 
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where W ( P )  = p'w,,(p) + 2pu - P ) W , n ( p )  + (1 - 
p )  2w22 ( p )  . Then 1 - p' will be  the frequency of A, in that 
generation. Letf(p) = p ' .  If vTl(p), vT2(p), and v&(p) 
are relative fitnesses  of A,A,, A,A,, and A,A2 respec- 
tively,  which correspond to a new equivalent fitness set 
{w$( p )  : i, j = 1, 2), then  the v$ have to satisfy the fol- 
lowing equations: 

f c p )  = P2vT,(P) + p(1 - p ) ~ z ( p ) ;  ( 2 4  

1 -fW = $41 - p)vT2,(p) + (1 - p"p). (2b) 
Since there  are  three unknowns-vf,(p), vT2(p), and 
v$(p)-and  only two equations, one of the  three func- 
tions vT,(p), vT2(p), and ~ : ~ ( p )  can be chosen arbitrarily. 
It is convenient, as will be apparent  from  the examples 
below, to  let this be vT,(p). Then we can express the 
other two functions as: 

As should be expected  for relative  fitnesses, p2vTI(p) + 

In  general, G*(p)  = p2wT1(p) + 2p(l - p)wT2(p) + 
(1 - p)2w&,(p) can be arbitrary. This is incorporated  into 
the  equations for the transformed absolute fitnesses 
using wg(p)  = *(p)v$(p)  : i , j  = 1,2  (since the v:(p) are 
only  relative fitnesses) . The resulting equations are: 

2pu - p)vT*(p) + (1 - p)'v;,(p) = 1. 

Two functions, vT2 and W*( p )  can be chosen arbi- 
trarily. Now, since we were  solving for  three functions, 
wT,(p), wT,(p), and w h ( p ) ,  and were subject to exactly 
one constraint, viz. the functional form o f f (  p ) ,  there 
are at most two fimctions that could  be  arbitrarily  specified. 
Therefore Equations 4a-c capture all the alternative  fit- 
ness  sets that are equivalent to (wll(p) ,  w12(p) ,  q 2 ( p ) ) .  Of 
course, the form of these equations would  have been dif- 
ferent if we had chosen functions other than vT2(p) and 
ziP( p )  as the arbitrarily  specified ones. If strong equiva- 
lence is desired, then zlr* ( p )  must be equal to W( p )  . Then 
only one function, vT2(p), can be arbitrarily chosen. We 
thus see that the mean fitness zli" ( p )  and the relative  fitness 
of the heterozygote vT2(p) are exactly the two functions 
which are required to fix the new fitness  set.  This pattern 
will recur throughout the models considered in  this paper. 

However, the fact that (w;} has to be biologically in- 
terpreted as a set of absolute fitnesses imposes the fol- 
lowing constraints: (i) W * ( p )  2 0; and  (ii) w$(p)  2 0 : 
i, j = 1, 2. These  are  not  independent constraints since 
(ii) implies (i). From (ii), the following constraints re- 

sult from Equations 4a-c: 

These restrict the vT2(p) as  follows: 

i f f (  p )  is given. If the wq( p)  are given  this  can be written as: 

0 5 VT*(P) 

A sufficient  condition  for thii is  clearly 

However, note that this is not a necessary  condition. 
Ordinarily, biological assumptions about {w; : i, j = 

1, 2)  will determine  the forms of W* ( p )  and vT2( p) .  The 
importance of this method is that such biological as- 
sumptions can often simply be translated into con- 
straints on these  functions. We can  also turn the constraints 
in equations such as (5a-c) around and ask what are the 
constraints on the dynamics of the system that are imposed 
on a model with certain  biological  assumptions? The fol- 
lowing  examples  illustrate  this  process: 

1. Suppose that the heterozygote is to be lethal according 
to the new fitness  set. Then wT2( p)  = 0. Set vT2( p )  = 0. This 
gives: 

and GY ( p )  can  still  be  chosen  arbitrarily.  Since vT2( p )  = 0 5 
wI2( p ) / W (  p ) ,  Equation 8 is  automatically  satisfied. This 
also  means that any  dynamics  can be explained by a 
frequencydependent model in  which the heterozygote is 
lethal. 

2. Suppose we assume dominance of A, over 4 (with  re- 
spect  to fitness). Then, @,(p) = ~&(p) .  Then vT2(p) = 

f ( P ) / P  and 
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TABLE 1 

Function choices for alternative fitness sets presented by DFSNISTON and CROW (1990) 

Model A 
~~ 

Transformations Model B 

Set w11 w12 9 2  w v& w* wx w:s w:p 

a 1 1 1 - s  1 - s(1 - p ) 2  p' p ( l  - s ( l  - p?) 1 - p ( 1  - p) P2 P2 + P ( 1  - s) 
w* 

ba 1 - P  1 P 3p( l  - p) + P ( l  - p )  3p( l  - p) 
w* 
ab 2 

P ( 1  - P )  1 + P ( 1  - P )  P ( 1  - P )  

C a - ( 1  - p )  1 - b -  P ap + b(1 - p )  - [up + b( l  - p ) I 2  a ab b2 
P 1 - P  w* 

P 1 - P  w* 
dn 2a - ( a  - b + 1 ) ( 1  - p) 26 + (a - b - l ) p  2 [ a p  + b(1 - p ) ]  Cb 2 [ a p  + b(1 ~ p ) ]  2a a + b  26 

a 

a + bp ( a  + @)(a  - b(1 - p ) )  w* 
e a +  bp a -  b(1 - p) - (a - b) + 2bp a + b  a' a 

a - b(1 - p )  
a -  b 

The fitness models A and B in each row give  rise  to the same allele frequency dynamics,  that is, they  are equivalent. The transformations  in 
the middle column are from model A to model B. (Reverse  transformations would not have the same functional form.) The biological 
interpretation of these models is discussed in DENNISTON and CROW (1990). In model A, fitness sets (a) and (b) always  satisfy the biological 
constraint that the fitness functions be non-negative. For (c) the condition is a, b 2 1; for (d) a, b 2 0 and a + b 2 1; for (e) a 5 - I bl or a 
2 I 6 I , a and b are not both 0. In model B fitness set (b) always satisfies the non-negativity constraint. Set (a) has to satisfy s 5 1; (c) has  to  satisfy 
a b 2 0 ; ( d ) a , b ~ O ; a n d f o r ( e ) a ~  I b l .  

These equivalent models are also strongly equivalent. This is seen from the equality of W and W*. 

Obviously a similar set can be  obtained if wY2(p) is  as- 
sumed  to  be  equal to w&(p), that is & is dominant over 
A,. The constraint of Equation 6 is equivalent tof(p) 5 
1/ (2 - p) . If this constraint is not satisfied then  no 
model which exhibits dominance of A, over pi2 can ex- 
plain the dynamics.  Using Equation 1, this constraint 
can be written in the form: 

p2(w11(p) - Wl,(P))  5 (1 - p)wz,(p) (10c) 

which can be used to determine  the possibility  of the 
existence of alternative equivalent fitness sets  with the 
dominance of A, over A,. 

3. Suppose that A,  is lethal in the homozygous state. Set 
w$&~) = 0. This gives try2( p )  = (1 - f (  p ) ) / p (  1 - p )  . 
Thus: 

Once again, W* ( p )  can be chosen arbitrarily. Equation 
6 is  now equivalent to the  requirement  that f( p )  2 ?4 
Using Equation 1, this reduces  to  the  rather simple re- 
quirement that: 

The asymmetry between the alleles seen here reflects the 
asymmetry  of the  requirement  that  the A,  allele is lethal 
in (and only in) the homozygous state. 

4. Suppose the A ,  allele increases fitness (viability)  ad- 
ditively. Then wy2( p )  - w&(p) = wTl(p) - wY,(p), and 

Equation 6 now becomes equivalent to (p/2) 5 f( p )  5 
(1 + p)/2. In terms of the initial fitness set, this can 
be written asp/2 5 p2wl1(p)/W(p) + p(1 - p)w , , (p ) /  
W ( p )  5 ( p  + 1)/2. 

In all these examples W* ( p )  could be arbitrarily cho- 
sen. It  could,  therefore,  be set equal to W ( p ) .  The new 
fitness sets that would then result would  preserve the 
total population dynamics  besides the allelic trajecto- 
ries. These alternative fitness sets should thus be strongly 
equivalent. However, as DENNISTON and CROW (1990) 
have pointed  out,  there  are examples of alternative fit- 
ness  sets that  are equivalent but  not strongly equivalent. 
The choices of UT,( p )  and W* ( p )  for  their examples are 
presented in Table 1. Only the transformations (b) and 
(d) there maintain strong equivalence. (The effects of 
the non-negativity constraint  (Equation 6) are indicated 
in the caption to the table.) 

It is clear from Equations 4a-c that, given  any fitness 
set, an infinite number of equivalent or strongly equiva- 
lent  frequencydependent alternative fitness sets can be 
constructed. However, it is also clear that, in general, 
there  need  not always be  a  frequency-independent (or 
constant) fitness set equivalent, let alone strongly 
equivalent, to an arbitrarily given fitness set. Equa- 
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tions 4a-c require  the estimation of three quantities: 
wTl(p), wT2(p), ~ : ~ ( p ) ,  and  at most only two functions 
can be arbitrarily chosen. In  general, exactly two  of the 
new  fitnesses can be taken to be constant by setting any 
two of the Equations 4a,  4b and 4c equal to (different) 
constants. This is consistent with the fact that for some 
types  of allele frequency trajectories, such as  cycles, 
there can be no constant genotypic fitness set that can 
give rise to them:  for one locus models, if fitnesses are 
constant, the mean fitness of a population ( G )  is non- 
decreasing [see, e.g., EWENS (1979),  pp. 40-451.  How- 
ever, if the allele frequencies oscillate, so must the mean 
fitness. Thus  there can be no constant (i. e . ,  frequency- 
independent) fitness set that would  give  rise to such 
dynamics. Another  consequence of  having  exactly 
two functions that can be arbitrarily chosen is that 
DENNISTON and CROW'S (1990) linear combination trans- 
formation, which  allows two independent  parameters, A 
and B, to be arbitrary functions of p ,  constitutes a com- 
plete specification of  allowed transformations for the 
two-allele  case, though  not in general. 
n Alleles: The extension of these arguments to mod- 

els  with n alleles at  one locus is straightforward and 
amounts to little more  than  a  change of notation. As- 
suming, as usual, that wii( p )  = wji( p ) ,  there  are n( n + 
1)/2 different function w$(p)  to be determined. The 
equations  for allele frequency change impose ( n - 1) 
independent constraints on the system. There  are  thus 
n(n + 1)/2 - ( n  - 1) = n(n - 1)/2 + 1 functions that 
can be chosen arbitrarily. Let p ;  be  the frequency of the 
ith allele in the  next  generation. Then, for each i, 

In analogy to  the two-allele  case, define f , ( P )  = pi. 
Introducing new  relative  fitnesses v$(p) as before: 

n fl  

J =  1 j #  i 

It is  trivially true  that E.,pipjv$(p) = Et  J;(p)  = 1. 
Suppose that  the vf(p) : i, j = 1, . . . , n; i # j ,  are ar- 
bitrarily chosen. There  are n( n - 1)/2 such functions. 
Finally,  with wf(p) = zi.+(p)vf(p), we get W*(p) = 
x , p i p j w f ( p ) .  W*( p )  can also be chosen as an arbitrary 
function of the  frequencies (which provides a measure 
of the  population  growth).  There  are  thus exactly 
n( n - 1)/2 + 1 arbitrary functions, as required. 

From Equation 13, the  remaining functions, that is, 
the UT, : i = 1, . . . , n, are calculated: 

The final equations  for  generating  the equivalent fitness 

set {wf : i, j = 1, . . . , n} now become: 

wf(p) = zi.+(p)v$(p) : i , j  = 1, . . . , n, i # j ;  (164 

As before, fixing the  mean fitness and  the relative  fit- 
nesses  of the heterozygotes specifies this set  fully. 

Once again, the relevant biological constraints are: (i) 
W*( p )  5 0; and (ii) w$(p)  2 0: i, j = 1, . . . , n. The 
second constraint implies the first and requires: 

The argument  that led to Equation 8 now  shows that 
v$(p) 5 w , ( p ) / W ( p )  is  always a sufficient (but  not a 
necessary) criterion. 

As before, additional biological information can help 
to fix the vf(p). In particular, it is  easy to see that if, for 
every pair of alleles, one is dominant over the  other (with 
respect to  fitness),  the vf(p) are completely specified 
because such an assumption adds n( n - 1)/2 indepen- 
dent constraints of the form v$(p)  = v*,(p) (with 
v$(p) = v;{p) for i # j )  . This, together with an arbitrary 
W* ( p )  , fixes the w$( p ) .  If W* ( p )  is chosen equal to W( p )  , 
then  the original w , ( p )  are recovered. 

In this generalized scheme,  the multiplicative and ad- 
ditive transformations of DENNISTON and CROW (1990) 
are  obtained from: 

Additive : 

Multiplicative: 

In  either case W* ( p )  can be chosen arbitrarily. These 
transformations lead to strongly equivalent alternative 
fitness sets, if W* ( p )  is chosen to be  equal to W( p )  . To 
satisfy the non-negativity constraint,  note  that Equation 
17 is equivalent, for  the multiplicative  case, to W(p) - 
w i ( p ) p ,  5 1 ( i  = 1, . . . , n). This implies that W ( p )  5 
n/ (n - 1) for all p .  For the additive case, W( p )  5 2w,( p )  
( i  = 1, . . . , n) for all p is a necessary and sufficient 
condition for  the transformation to be  a valid one. This, 
in turn, is equivalent to  the  requirement  that pi/2 5 
f i ( p )  ( i  = 1, . . . , n) for all p .  

Two LOCI 

Two Alleles: In multiple locus models, allele frequen- 
cies do  not suMice to characterize the population dy- 
namics. The basic  variables are  the gametic or haplotype 
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frequencies. Once again we will first solve the two-allele 
case  fully  in order to illustrate our methods. Let A, and 4 
be  the two alleles at locus 1,131 and 4 be those at locus 2. 
Let h,: i = 1, . . . , 4  be the haplotypes A,&, All$, 44, and 
44, respectively.  Genotypes can be written  in the form 
hil h ,  (According to the usual notation, the 8th genotype 
would  consist  of both the hil hj and  the hjl hi genotypes in 
our notation. We  will  follow the same  convention for n 
loci.)  Let Hbe the set ofhaplotypes, that is, H= (A,&, A 1 4 ,  
44,44). Let p (  hi) be the frequency of the haplotype h,, 
and p(  hil hj) be the frequency of the genotype hil hj with 
z, j = 1, . . . ,4 .  During gamete formation, recombination 
of the alleles at the two loci either takes  place or does not. 
Let the probability of recombination taking  place be c Let 
p’ (h,) be the fi-equency of the Gth haplotype  in the next 
generation. Then, for example, 

P’(A14) = (m[C(p(A,B,I  A14)w(A,&I 4 4 )  

+ p(A14IA14)w(A14I 4 4 )  

+ ~ ( A I B , I ~ & ) ~ ( A I ~ I ~ & )  

+ p ( A 1 4 I 4 4 ) w ( A 1 4 I 4 4 ) )  (19) 

+ (1 - c)(P(AI4IA,B,)w(A,&IA1B,) 

+ P ( A 1 B , l 4 4 ) w ( A , B , l 4 4 )  

+p(A,B,IA14)w(A,B,IA14) 

+ P ( A 1 4 I A , 4 ) 4 A 1 4 I 4 4 ) ) 1  

where w( hi I hj) is the fitness of hi I hj and w is again the mean 
fitness. In  order to facilitate our discussion of the n loci 
case, we will now introduce some new notation in  this more 
familiarcontext.Letrl(hilhj) = h,lh,:i,j,k,Z= 1, . . . ,  4 
be the genotype that results  when recombination takes 
place  between hi and 4, and r2( hi I hi) = hi I hj be the re- 
sultant genotype  when no recombination takes  place. This 
&jm the recombination processes rl and r2. Thus, for 
example: 

rl(A1&144) = A14I$&; (204 

r ~ ( A 1 4 1 4 4 )  = A 1 & 1 4 4 ‘  (20b) 

Since  only two loci are involved, rl and r2 are the only  pos- 
sible recombination processes. The probability of these  re- 
combination processes will be indicated by c(rl) = c, 
c( r2) = 1 - c Using  this notation we can  rewrite  Equation 
19 as: 

p’(4 1 = (1mr&i)(p(q (4 I 4 (4 f 4)) 
+ p(r1(4 I 4 ) M r 1 ( 4  1 4)) 
+ P(r1(4 I 4))w(r1(4 I 4)) 

+ 4d(p(r2(4  I 4))w(r*(hl I 4))  
+ p(rl(h, I h4))w(r1(hl I h4))) (21) 

+ p(d4  1 4)) 4dhl I 4)) 
+ p(d4  I 4 ) ) 4 r z ( 4  I 4)) 
+ #(‘2(hl I h4))w(r2(hl I h,)))]. 

In general, the p( h,) are given by: 

1 2  4 

p’(h,) = 1 wk=l x ( d r k )  j=1 #(rk(hil hj))w(rk(hi’ (22) 

Note that  Equation 22 makes no assumptions about 
linkage  equilibrium. As before,  define fi( p )  p’ ( h i ) ,  
where pis now a vector of haplotype  frequencies. (Our 
notation  underscores  the  fact  that  the w( h,l h,) are 
frequency-dependent.)  Let +( hiI hj) be the relative 
fitness of hil h, corresponding  to a new fitness set 
{w* ( hi I hj)}. We  wish to solve for  all possible fitness sets 
( w * (  hiI h,) : i, j = 1, . . . , 4)  equivalent or strongly 
equivalent to { w (  hil h,)). Then 

4 \ 

A \ 

/ 

+ p(hil h,)V*(h,l hi). 

This gives: 

v*( hi I hi) (24) 

As in  the one-locus case, if fl( hil h,) = 9 (hi I h,) , as- 
suming w* ( hil h,) = w* ( hjl h i ) ,  there  are 4‘ - (4 X 
3)/2 = 10  such  functions  to  be  calculated.  Since  the 
equations  for thef,( p )  put  three constraints, seven of 
these  functions  can  be  arbitrarily specified. Now sup- 
pose the v* (hil h,) , : i # j are specified  arbitrarily.  This 
gives  six functions. If 7iF is also chosen  arbitrarily, fi- 
nally, the  transformations  are fully specified. The final 
equations  are: 

w”c(h,l h,) (25a 

w*(hil hi) = 7iFv*(hil h,): i + j .  (25bI 

Thus,  once  again, fixing the  mean  fitness  and  the 
relative fitnesses of the heterozygotes specifies the 
new fitness  set  uniquely and  strong equivalence is 
maintained if the new mean  fitness  equals the  old  one. 
DENNISTON and CROW (1990)  suggest the same  proce- 
dure  for this case (see  their  Table  2). As before, 
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the necessary and sufficient biological criterion is 
that  the fitnesses z3 and W* (h,l h,) be  non-negative. 
The latter  constraint  implies  the  former  and  can  be 
written as: 

Consider  a  model with complete  dominance with 
respect  to fitness. In this  case, the 10 different  geno- 
types split into  four sets, in each of which the fit- 
ness of each of the  members is the same.  These sets 
are: 

where A, and Bl are  dominant over A, and B2, respec- 
tively. A  set of k genotypes, which all have the same 
fitnesses, imposes k - 1  constraints  on  the trans- 
formed fitnesses. This gives 4 + 1 + 1 = 6  constraints. 
Assuming we want to have W = z?, we had  freedom  to 
choose six arbitrary  functions. The 6 new constraints 
exactly specify the six v* ( hi I h,) : i # j which were up 
for  arbitrary  choice. For instance,  from  the equality of 
all the fitnesses of the  members of set (i), we obtain 
with a being any member of set (i): 

where 

y a member of set (iii): 

f,, LJ P) 
v * ( P ) = p ( A , 4 ) - c ( P ( A l B , I % B , ) - P ( A ~ B , I $ 4 ) ) '  

(2%) 

+(Y) = 
fAEJ P) 

P(4B,) - c(P(A14I 44) - P(AlB, 144)). 
(274 

DENNISTON and CROW (1990) present partial solutions 
of this dominance-preserving model. However,  they as- 
sume linkage equilibrium which we do not. 

Arbitrary numbers of alleles: Let a be  the  number of 
alleles at the A locus and b be  the  number of alleles at 
the B locus. Then  the  number of haplotypes is m = ab. 
Let H be the set of haplotypes (which can be written as 
H = ( h ,  : i = 1,. . . , m]), Rbe {r , ,  r,], where r, and r, are 
the two recombination processes defined above. Then, 
following the same reasoning as  above, 

1 '  
P'(h,) = c ( r k ) P ( r k ( h j l  h , ) )w(rk(hz l  h j ) ) 2  (Z8) 

w k = I  ~ = 1  

where w (  hi I h,) is the fitness of the genotype h, I h,, and 
W = ~ C , p ( h i l h j ) w ( h i l h , ) . A s b e f o r e , l e t f i ( p ) ~ p ' ( h i ) :  
i = 1, . . . , m. Then: 

Now there  are m(m + 1)/2 different functions 
w* ( h, I hi) to  be solved for, and ( m - 1) constraints from 
the ( m  - 1) independent  equations  for  the f i( P). This 
leaves m( m - 1)/2 + 1 functions that can be arbitrarily 
chosen. Thus we can again solve for w*(  h,l hi), with 
v * (  h,l h,): i # j and W* as arbitrarily chosen functions. 
The equations  for w* ( hi I hi) then  are: 

f l(h,l  hi) (304 
2 

f ; ( P )  - C c 

W*(h,l h,) = z3v*(hjl,) : i # j .  (30b) 

Thus  once again  the  mean fitness and  the relative 
fitnesses of the heterozygotes fix the new alternative 
set.  Since z3 and fl( hjI hj) are fitnesses, these  func- 
tions  are constrained to  be  non-negative. The form of 
the constraint is the same as Equation 25c. That com- 
plete dominance fully  specifies the + ( hi I hj) can be shown 
by an easy extension of the argument given  above for two 
alleles. 

n LOCI 

Following the  notation of the two-locus, multiple al- 
lele  case, let H b e  the set of haplotypes, and R the set of 
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all recombination processes. If the i-th locus has a, 
alleles, then  there  are m = nrZl ai haplotypes. There 
are 2"" elements in R [ R has the  mathematical  struc- 
ture of a group  where  the  identity  element, I, is the 
process I( hi I h,) = ( hi I h,) , that is the case when during 
meiosis no recombination takes place, and  each ele- 
ment its own inverse: r( r( hiI hi)) = ( hiI h,), because 
imposing  the same  recombination  transformation 
twice  gives the  starting  genome back (that is, = I ) .  
Actually R is a  representation of Si - '.I Let p (  hiI h,) 
denote  the  frequency of genotype (h,l h,) in the  popu- 
lation.  Let p (  hi) denote  the  frequency of haplotype hi. 
Let c( r ) ,  for r E R, denote  the probability of the re- 
combination  event r to  occur.  Thus c( r) = 1. Let 
w( h,l hj) be the fitness of an organism with the  genome 
( hiI h,). For notational  convenience, as in the two- 
locus  case, we assume that fitnesses are generally 
frequency-dependent  without  indicating  that  fact ex- 
plicitly in our  notation.  The  equation  for  the  haplo- 
type frequency  change is: 

where 

As before,  let f,( p )  p' ( hi) :  i = 1,  . . . , m. Once 
again,  for  a given set of fitnesses w(hil h,)  we want 
to  find  an  alternative  set of fitnesses w * (  hil hi) 
which give the same  allele  frequency  trajectories 
and population dynamics. Since m is the total  num- 
ber of  possible  haplotypes, we have to solve for 
m( m + 1)/2 functions w * (  h,I h,), with the  equations 
for  the allele  trajectories  imposing m - 1 independent 
constraints, leaving m(m - 1) /2  + 1 functions  to 
be arbitrarily  chosen.  These  can  again  be the func- 
tions v* (h,l hi) with i # j ,  and W*, the  population 
fitness. As before, v* ( hiI hi) will be  calculated 
from: 

we can rewrite Equation 24 as: 

+ c(r)P(h,l h,)v*(h,l hi) 
rER 

+ h,)U*(hil hi). 

Thus 

where the  right  hand side includes only the v* ( hi I h,) 
where i # j .  Choosing a  function W*, we get  the  general 
equations for w* ( hi I hj)  : 

ww(hil h,) = zlrv*(h,I h,): (i # 1); (364 

Note, as before, the mean fitness and the relative  fitnesses 
of the heterozygotes fix the new  fitness  set. As before, the 
biological interpretation of zLr* and the w V (  h,l h,) as fit- 
nesses requires that they  all be non-negative. In general this 
will put significant  limits on the alternative  equivalent  fit- 
ness  sets. 

DISCUSSION 

Our analysis underscores the  point made by DENNIS- 
TON and CROW (1990) that allele (or haplotype) fre- 
quency trajectories alone do not suffice to specify the 
absolute or relative fitnesses of genotypes uniquely, pro- 
vided that  the  conditions of discrete generations, ran- 
dom mating, infinite populations, and viability selection 
(or multiplicative fertilities) are met. This does not 
mean  that these absolute fitnesses can never be esti- 
mated. However, more information than only the allele 
(or haplotype) frequency dynamics is necessary.  Biologi- 
cal assumptions about  the system can help this process. 
What our analysis  shows  is that one way in which  bio- 
logical assumptions could be used to obtain a  unique 
fitness set from allele (or haplotype) trajectories is to fix 
the  mean fitness of the population and the fitness of the 
heterozygotes. In principle, the  former can be directly 
measured. The latter can sometimes be specified from 
what is known about  the (developmental) genetics of an 
organism. For instance, if it is  known that  the fitness 
depends  on some phenotypic trait that exhibits domi- 
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nance,  the equality of some of the fitness functions 
w*( h, I h,) can potentially be used to compute  the 

Note, however, that we were not required to choose the 
W* and u* ( hi I h,) , i # j ,  as the arbitrary functions in our 
analysis. We chose them  for convenience in the  one- 
locus case and because these turned  out to constitute the 
exact number of functions that could be arbitrarily 
specified. In certain situations it could turn  out to be 
more convenient to work  with the u*( h,l h,). If, for ex- 
ample, u*( hi I hi) can be directly measured, then  our 
equations could be rewritten with u* ( hi I hi) as the “in- 
dependent” variables.  However, the  general  procedure 
will remain  the same. The constraint  that all  fitnesses 
(mean as  well  as individual) have to be non-negative puts 
a severe constraint on the possible transformations that 
give  rise to alternative equivalent fitness sets. It is rare 
that  a transformation will automatically satisfy  this con- 
straint for all parts of an allele (or haplotype) trajectory. 

Finally, it is far from clear what the relaxation of our 
conditions would do to this analysis. In  general over- 
lapping  generations would introduce entirely different 
types  of dynamical equations. So would fertility selection 
with non-multiplicative fertilities. Assortative mating is 
usually modelled using genotypic frequencies. There is 

u*(h,l h,). 

no prima  facie reason to suppose that our manipula- 
tions, involving allele and haplotype frequencies, will be 
generally conserved when assortative mating is intro- 
duced. Finally, DENNISTON and CROW (1990) have ob- 
served that some of these transformations do not pre- 
serve the allele frequency dynamics  in some stochastic 
one-locus models such as the Ethier-Nagylaki model 
(NAGYLAKI 1990). Whether any fitness set transformation 
preserves allele frequency dynamics in general stochas- 
tic models is an open question. 

This work  was  partly supported by a grant to S.S. from the Sidney 
M. Edelstein Centre, Hebrew University, Jerusalem. We would like to 
thankJAhlEs F. CROW, WARREN J. EWENS and THOMAS NAGW for helpful 
comments on earlier versions of this  analysis. 

LITERATURE  CITED 

DENNISTON, C., and J. F. CROW, 1990 Alternative fitness models with 
the same allele frequency dynamics. Genetics 125: 201-205. 

EWENS W. J., 1979 Mathematical  Populalion  Genetics. Springer- 
Verlag, Berlin. 

NAG- T., 1990 Models and approximations for random genetic 
drift. Theor. Popul. Biol. 37:  192-212. 

WRIGHT, S., and TH. DOBZHANSKY, 1946 Genetics of natural popula- 
tions. XII. Experimental reproduction of the changes caused by 
natural selection in certain populations of Drosophila  pseudoob- 
scura. Genetics 31:  125-156. 

Communicating editor: W. J. EWENS 


