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We study a model in which cooperation and defection coexist in a dynamical steady state. In
our model, subpopulations of cooperators and defectors inhabit sites on a lattice. The
interactions among the individuals at a site, in the form of a prisoner's dilemma (PD) game,
determine their "tnesses. The chosen PD payo! allows cooperators, but not defectors,
to maintain a homogeneous population. Individuals mutate between types and migrate to
neighboring sites with low probabilities. We consider both density-dependent and density-
independent versions of the model. The persistence of cooperation in this model can be
explained in terms of the life cycle of a population at a site. This life cycle starts when one
cooperator establishes a population. Then defectors invade and eventually take over, resulting
"nally in the death of the population. During this life cycle, single cooperators migrate to
empty neighboring sites to found new cooperator populations. The system can reach a steady
state where cooperation prevails if the global &&birth'' rate of populations is equal to their global
&&death'' rate. The dynamic persistence of cooperation ranges over a large section of the model's
parameter space. We compare these dynamics to those from other models for the persistence of
altruism and to predator}prey models.
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1. Introduction

Explaining the evolution and persistence of co-
operation is a central problem in evolutionary
biology and the social sciences (Axelrod, 1984).
A cooperating individual has higher "tness with-
in a group of cooperators than it has in isolation.
Nevertheless, cooperative behavior often entails
a "tness cost. Consequently, a defecting indi-
vidual*one that enjoys the cooperation of
others but abstains from cooperative behav-
ior*will have an immediate selective advantage
over cooperators. This advantage renders a popu-
lation of cooperators susceptible to invasion and
?Author to whom correspondence should be addressed.
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take-over by defecting individuals. Therefore, the
persistence and evolution of cooperation seems
to face an intrinsic instability.

The interaction between cooperators and de-
fectors is often formalized in terms of the game
known as the prisoners' dilemma (PD) (Weibull,
1995). The PD payo! matrix appears in Table 1.
This is a symmetric game between two players,
where each player has two possible strategies:
defect or cooperate. The game is set up such that,
for any strategy of the opponent, a defector has
a greater payo! than a cooperator, but if both
players cooperate they have a greater payo!
than if both defect. In the framework of evolu-
tionary game theory (Weibull, 1995) this game
can be used in order to study the evolution and
( 2000 Academic Press



TABLE 1
¹he prisoner1s dilemma payo+ matrix: Each box
describes the payo+ for a possible two-player inter-
action. ¹he left entry refers to the player employ-
ing the strategy above, while the second refers to
the player employing the strategy listed on the side.
¹he payo+s are set such that d'a'b'c. ;n-
der this condition, the best strategy is to defect
independent of the other player1s strategy. If both
players defect, however, they both receive lower

payo+s than if they both cooperate

c d

c (a, a) (d, c)
d (c, d) (b, b)
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persistence of cooperation. One can assume that
individuals in a population of cooperators and
defectors interact randomly in pairs, and that the
"tness of an individual is determined by the
payo!s it receives in its interactions. The popula-
tion dynamics under these assumptions have two
principal characteristics:

1. A population consisting only of cooperators
grows faster than a population consisting
only of defectors (this follows from the rela-
tion a'b in the payo! matrix).

2. In any population with both types, a defec-
tor has a higher "tness than a cooperator
(this follows from the relations d'a and
b'c).

How can cooperation evolve and persist if de-
fection is always the locally favored strategy? We
mention three main categories of answers to this
question, though the distinction between them is
not always sharp. The "rst category is the indi-
vidual centered approach, where cooperation
persists because it eventually confers a "tness
advantage at the level of the individual. Models
incorporating reciprocity (Axelrod, 1984), part-
nership (Cooper & Wallace, 1998), or the handi-
cap principle (Roberts, 1998) fall into this class.
The second category is kin selection (Hamilton,
1964). This includes models of kin recognition
(Axelrod, 1984), models where kin interaction
results from individual behavior in a spatial con-
text, and more generally models of statistical
kinship (Eshel & Cavalli-Sforza, 1982). The third
category consists of structured population
dynamic models. It includes among others, the
hay stack model (Maynard-Smith, 1964; Wilson,
1987), models of the founder e!ect (Cohen & Eshel,
1976), and models of the neighbor e!ect (Eshel,
1971). Nowak & May (1992) introduced a family
of models which combines aspects of all three
categories mentioned above, and was studied
intensively during the last decade. In these
models (Nakamaru & Iwasa, 1997, 1998; Ferriere
& Michod, 1995; Oliphant, 1999), individuals
occupy lattice sites and play the iterated or
non-iterated PD game with their neighbors on
the lattice. The model we present here falls into
the third category. The dynamics which maintain
cooperation in our model, which we describe
below, distinguish it from earlier models in this
category.

In a review about group selection (Maynard-
Smith, 1976), Maynard Smith mentions a
predator}prey model (Maynard-Smith, 1974)
and claims that it is analogous to a model for the
persistence of altruism (or cooperation in our
terminology). In that model, isolated patches
may be in one of the following three states:
E*empty, containing neither prey nor predator,
H*containing prey only, and M*containing
both prey and predator. An empty patch may be
colonized by prey that migrate from a di!erent
patch, thus changing its state from E to H.
A patch in state H may be colonized by migrating
predators, changing its state from H to M. In
a patch in state M, the predators eventually ex-
haust the prey and die, thus changing the state of
the system from M to E. Having studied such
systems with computer simulations, Maynard
Smith concludes that: &&2 such models can
rather easily give persistent coexistence of pred-
ator and prey; that is, persistence does not
require a particularly careful choice of para-
meters''. In such a state of persistence, each patch
goes through a series of transitions EPHP

MPEP2 inde"nitely. In this paper, we show
that the underlying dynamics of interaction be-
tween cooperators and defectors can lead to the
persistence of cooperation in a dynamic mode
similar to that described by Maynard Smith.

In the model presented in Section 2, sub-
populations of cooperators and defectors cohabit
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sites on a lattice. The random interaction among
the individuals at a site determine their "tness,
based on PD payo!s. The standard PD condition
that 2a'c#d, meaning that a group of cooper-
ators has a higher average "tness than any other
group, does not a!ect the dynamics, and there-
fore we do not impose it. Individuals mutate
between types and migrate to a neighboring
site with low probabilities. The "tness function
at a site may also depend on the population
density at the site. It is important to stress that
in this model the population size at a site is
"nite and varies over time. The population at
a given site may die out, thereby leaving the site
empty until it is occupied again by a migrating
individual.

We seek the conditions for the persistence
of cooperation when subpopulations consisting
solely of defectors are doomed to face extinction,
while subpopulations consisting solely of cooper-
ators are capable of persisting. In terms of the PD
payo!s, this qualitative asymmetry occurs when
a'1'b. We show that under this assumption,
the population dynamics at a site takes the form
of a life cycle. The life cycle begins when a cooper-
ator migrates into an empty site and founds
a cooperator population. This population is later
invaded by a defector, which is either a mutant or
a migrant. Defectors then take over, after which
the population dies and the life cycle ends. In
Section 3, we study the life cycles that emerge
in both the density-dependent and density-
independent models. The life cycles are analysed
in terms of two variables that are later used to
characterize the conditions for the dynamic per-
sistence of cooperation in the system: R2the
ratio of the total number of cooperators to the
total number of defectors over the duration of
a life cycle; and M2the total number of indi-
viduals that migrate out of a site over the dura-
tion of a life cycle.

Over a large range of the parameter values,
cooperation persists in a steady state where on
average one cooperator migrates to an empty
neighboring site during a single life cycle, thus
initiating a new cycle before the original cycle
ends. In such a steady state the global &&birth''
rate of cooperating populations balances their
&&death'' rate due to defector take-over. In Sec-
tion 4, we use computer simulations to study the
regions of dynamical persistence in terms of the
life cycle variables R and M. We also construct
a simpli"ed model for the density-dependent
model which is similar to the predator}prey
model described above. Using this simpli"ed
model, we construct a mean-"eld approximation
in which we analytically derive the conditions
for dynamical persistence, and a higher-order
approximation incorporating spatial correla-
tions. These approximations explain the shape of
the boundary that separates the regions in which
cooperation persists from the regions in which it
does not in the R and M space. For the density-
independent model, we show that increasing the
payo! for the interaction between cooperators,
a, can increase the number of cooperators in the
system, the number of sites they occupy, and their
number relative to defectors. Moreover, increas-
ing this payo! beyond a critical value
results in the extinction of cooperation. These
results are explained both intuitively and on
the basis of analytical derivations.

2. The Model

We introduce an evolutionary model of "nite
subpopulations inhabiting sites on an in"nite
two-dimensional rectangular lattice. Each indi-
vidual in a subpopulation is either a cooperator
or a defector, where these behaviors are geneti-
cally determined (variables referring to these will
be marked with subscript c for cooperators and
d for defectors). The dynamics proceed from
selection with absolute "tnesses, mutation and
di!usion.

The "tness of an individual stems from its
interactions with other individuals at the same
site on the lattice, according to the PD payo!
matrix in Table 1. We assume a PD-type interac-
tion, with the asymmetry described in the intro-
duction. The payo!s must therefore satisfy the
following conditions:

d
(dc)

'a
(cc)

'1'b
(dd)

'c
(cd)

*0 (1)

(henceforth we omit the subscripts on these para-
meters). Consider a site with n

c
cooperators and

n
d
defectors interacting at random. The absolute

"tness functions of cooperators and defectors at
time t, which measure the average growth in
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-Note that the "tness functions include the interaction of
an individual with itself. Not including an individual in the
calculation of its "tness requires a separate de"nition of
the "tness of an individual in isolation, but does not change
qualitatively any of the results in this paper.

a time step D, are-
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where n"n
c
#n

d
is the total population at the

site, and g(n) is a function re#ecting the density
dependence. We will assume that g (n))1, but
that ag(n

c
)'1 for a population size smaller than

the carrying capacity n*'0 (the density-
independent model corresponds to g (n)"1).

These "tness functions are characterized by
two principal features:

1. A homogeneous cooperator population
grows faster than a homogeneous defector
population. Moreover, a homogeneous
cooperator population is capable of main-
taining itself while a homogeneous defector
population is not. These properties follow
from the relations f

d
(0, n
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)"bg(n

d
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any n
d
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below the carrying capacity n*.

2. A defector has a higher "tness than a coop-
erator in any population structure, since
d'a and b'c imply f

d
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c
, n

d
)'f

c
(n

c
, n

d
)

for all n
c
and n

d
.

The population growth at a site is described by
a stochastic process, resulting in the absolute
"tness functions of eqns (2 and 3). The following
analytic results depend only on the average
growth rates, and not on the speci"c stochastic
process that realizes them. In our simulation, we
assume that an individual with "tness f"n#x,
where n is a nonnegative integer and 0(x(1, is
represented in the next time step by n#1 indi-
viduals with probability x, and by n individuals
with probability 1!x.
Mutation and migration are incorporated in
each time step as follows:

1. The subpopulations at all sites grow
stochastically according to the "tness func-
tions.

2. Each individual may mutate to become the
other type with probability k;1.

3. Each individual may migrate to one of its
neighboring sites with probability D;1.
We assume the von-Neumann neighbor-
hood of four neighbors on a rectangular
lattice.

The expected values for n
c
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d
(t) are then
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where superscript n.n. denotes the values at near-
est-neighboring sites. We take D;1 where 1 de-
notes the duration of an average generation. This
implies that the "tness coe$cients a, b, c, d and
the corresponding "tness functions are close to 1.
Furthermore, it means that the stochastic process
approaches a process continuous in time. When
D;1, k;1 and D;1, however, our scheme is
equivalent to any other reasonable scheme that
incorporates selection, mutation and di!usion,
and to other reasonable schemes for the stochas-
tic selection.
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3. Local Behavior=The Life Cycle

We begin the analysis by considering the local
behavior at one site. This behavior can be de-
scribed in terms of a typical life cycle. A life cycle
for the density-independent model (d.i.) is de-
scribed in Fig. 1. It begins when one cooperator
migrates to an empty site. The population of
cooperators then begins to grow. The growth rate
depends on f

c
(n

c
, 0)"ag (n

c
). At some time de-

noted by t
f
, the "rst defector appears from muta-

tion or migration and defectors begin to take
over. At some stage when defectors dominate the
population, the "tness of cooperators drops
below 1 and their number starts decreasing.
Some time afterwards, as the frequency of coop-
erators decreases the "tness of defectors ap-
proaches b and in the process becomes less than
1. The life cycle ends at time t

e
when the last

defector dies, some time after the last cooperator
disappeared.

Every life cycle ends with the death of the
whole population at a site after a "nite time.
Therefore, for cooperation to persist, new life
cycles have to be founded at a rate that balances
their termination. The conditions for the
existence of such a steady state are studied in
Section 4. These conditions will be stated in terms
of parameters characterizing the life cycle.
A natural choice of parameters relevant for the
global dynamics is the number of cooperators
and defectors that migrate out of a site during
FIG. 1. A schematic representation of a life cycle: popula-
tion size vs. time. Changing mutation rate scales the whole
cycle, leaving the relations between the number of cooper-
ators and defectors the same: (} } }) cooperators; ( )
defectors.
a life cycle; we denote them as M
c

and M
d
. In

order to derive these parameters from a descrip-
tion of the life cycle, we de"ne

S
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Two equivalent parameters which turn out to be
useful are
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Here M corresponds to the total number of units
migrating from a site during a life cycle and
R corresponds to the ratio of cooperators to
defectors in the life cycle. The dependence of the
global dynamics and in particular of the persist-
ence of cooperation on R and M, will be studied
in Section 4. In this section, we study the popula-
tion dynamics at a site, focusing on the factors
determining R and M. We "nd that in the
d.i. model R depends on a, b, c and d, and S

d
depends mainly on k and D; while in the density-
dependent (d.d.) models R depends on k and D,
and S

d
is essentially constant.

3.1. THE DENSITY-INDEPENDENT MODEL

In the d.i. model the dynamics [eqn (4)] are
homogeneous to the "rst order in n

c
and n

d
. Thus,

scaling n
c
and n

d
by a factor K at some time will

just scale S
c

and S
d

by the same factor, leaving
R unchanged. It is not hard to show, that taking
two life cycles that vary only in the time in which
the "rst defector invades, i.e. taking q

f
't

f
, is



FIG. 2. The density-dependent life cycle at a site for the
model in the example. The graph shows population size vs.
time, for two di!erent mutation rates k"0.00001 and
0.000002: (**) defectors; (} } }) cooperators.
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- In this argument we are ignoring the tails ¹
c

and
¹
d

shown in Fig. 1. These tails represent the parts of an
extrapolated life cycle in which n

c
and n

d
drop below one.

Changing t
f

moves parts of these tails into S
c

and S
d
.

However, this e!ect can be shown to change R only by
O[k, D].

equivalent to scaling S
c
and S

d
by the factor-

K"a[1#(log a/log (a/d))](q
f
!t

f
). (11)

The only signi"cant e!ect (i.e. not O[k, D]) that
mutation and migration have on the life cycle is
in determining t

f
. Therefore, we conclude that

R"R(a, b, c, d)#O[k, D]. Result 1 provides an
explicit expression for R(a, b, c, d).

Result 1. In the density-independent model the
ratio R of the average number of migrating cooper-
ators to the average number of migrating defectors
in a life cycle is

R(a, b, c, d, k, D)"
E(M

c
)

E(M
d
)
"

DE(S
c
)

DE(S
d
)

"
1!b
a!1

a!c
d!b

#O[k, D]. (12)

We prove this in Appendix A.
A careful look at eqn (12) reveals that reducing

a (but maintaining the condition a'1) while
leaving every other parameter "xed can yield
a larger ratio of cooperators to defectors, since

LR
La Kb,c,d(0 for d'a'1'b'c. (13)

It seems reasonable and it will be shown later,
that the larger R is, the more likely it is that
cooperation could persist in the system. This
hints at the possibility that in certain parameter
regions of the d.i. model, decreasing a while leav-
ing all the other parameters "xed will transform
the global behavior from a state where coopera-
tion cannot persist to a state where it can. Such
behavior is seen in simulation results in Figs 3, 4,
5, 9, in Section 4. Thus, in this model lower coop-
erator "tness may induce higher survivability!

This e!ect would not have been anticipated
from an individual centered perspective. On the
other hand, when the life cycle is considered,
there is a simple explanation for this e!ect: The
integral number of defectors during the life cycle
S
D

strongly depends on the number of cooper-
ators at the time the "rst defector invades n

c
(t
f
).

Therefore, cooperators can increase their fraction
by maximizing their integral S

c
while keeping

n
c
(t
f
) "xed. This explains why R increases when

a is smaller. Roughly speaking, the moral is that
when surrounded by defectors, keeping a low
pro"le might be a good idea.

3.2. THE DENSITY-DEPENDENT MODEL

We consider an example of a d.d. model with

g(n)"G
1,

n
max
dn

,

n(
n
max
d

,

n*
n
max
d

.

In this model, the population size is bounded
by n

max
.

The life cycle for this model is described in
Fig. 2. Unlike the d.i. life cycle, in this case
the number of cooperators stabilizes after a "nite
time t (a) on c (a)n

max
, where c (a),a/d. The shape



FIG. 3. Simulation of the density-independent model on a 32]32 lattice with periodic boundary conditions. The
parameters for this simulation were: a"1.01, b"0.95, c"0.8, d"1.2, k"0.0001 and D"0.0003. The state of the sites of
the lattice are given according to the color key on the right, which corresponds to the di!erent stages in the life cycle for these
parameter values. The simulation begins with single cooperators inhabiting a few sites. The system reaches a non-trivial
steady state, where cooperation persists dynamically.

FIG. 4. In this simulation we took: a"1.06, where all the other parameters are identical to those in the simulation in Fig. 3.
In this case, the system reaches the trivial*all empty steady state. This is a case where taking higher cooperator "tness results
in the extinction of cooperation. This e!ect is discussed further in Section 4.3.



FIG. 5. The population at a speci"c site as a function of
time, for the same simulation presented in Fig. 3. The life
cycles vary in size due to the stochasticity in the t

f
's. This

stochasticity is caused by variations in the environment and
in mutation. However, the shape of the di!erent life cycles is
similar, in correspondence with the scaling properties dis-
cussed in Section 3.1: (**) defector population; ( )
cooperator population.
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of this life cycle implies that as long as t
f
't (a),

changing parameters so that t
f

increases, will
increase S

c
, leaving S

d
constant. This means that

one could make R bigger than any R*'0 by
picking a large enough t

f
. Taking a large t

f
sim-

ply means taking a small enough k and D. Hence,
for this example we conclude, that R can assume
any large value and S

d
remains essentially con-

stant if k and D are taken to be small enough.
This behavior is generic, it characterizes a class

of d.d. models we de"ne in Appendix B as models
of type 1. In Appendix B, we apply the same
reasoning used in the example to prove the
following result:

Result 2. Given a density-dependent model of type
1 and R**0, taking k and D such that

D#k)
c (a)

c(a)n
max

t(a)#SI
d
R*

ensures that R is bounded from below by R*, where
SI
d
is E(S

d
) for the density-independent model with

the same parameters a, b, c, d, and initial condi-
tions nJ

c
(0)"n

max
, nJ

d
(0)"1.

This means that for any such model and para-
meters a, b, c, and d, any desired ratio R may be
attained by taking small enough k and D.

4. Global Behavior

In the systems we studied, there are two types
of steady states for the global behavior: the trivial
steady state where all sites are empty, and non-
trivial steady states in which cooperation persists
globally. The behavior of two simulations of sys-
tems with d.i. dynamics is presented in Figs 3 and
4. In the "rst simulation, we start with a few sites
inhabited by one cooperator each, and coopera-
tion spreads to establish a non-trivial steady
state. This steady state is dynamic in nature;
cooperation persists even though each cooper-
ator population eventually dies out. This can
be seen in Fig. 5, where the population size at one
site is described as a function of time. In the
system described in Fig. 4, the population also
starts with a few sites inhabited by one cooper-
ator, but in this case, populations do not seed
new ones at a rate that balances their rate
of destruction by defectors from within and
without. All the subpopulations in this system
eventually die out, leaving it in the steady state
where all the sites are empty.

A well-de"ned non-trivial steady state requires
an in"nite lattice. Yet our simulations occur on
a "nite lattice. We argue that when it exists, the
non-trivial steady state is the only steady state,
and thus it will be attained in any reasonable
choice of initial conditions. We do not prove this
claim on our system. We show, however, that the
"xed point analog to the non-trivial steady state
in the mean-"eld approximation to the d.d. dy-
namics is the only stable "xed point in the system
when it exists. Due to the stochasticity, any "nite
realization of the model on a "nite lattice will
always end up in the state where all the sites are
empty. Nevertheless, the non-trivial steady state
has a pronounced signature in the "nite realiz-
ations of the model. In the parameter ranges
corresponding to the non-trivial steady state, the
duration in which cooperation persists in
the "nite system grows very fast with the size of
the lattice. In Appendix D, we describe the cri-
teria we use to determine when the "nite simula-
tions reach a state corresponding to the steady
state. In the parameter ranges where these cri-
teria hold, the system never reaches the empty
state, in thousands of simulations lasting hun-
dreds of thousands of generations each. Conse-
quently, we can study the regions in which
cooperation persists using simulations on "nite



FIG. 6. A life cycle in the simpli"ed model: population
as a function time. Notice the similarity to the density-
dependent life cycle (Fig. 2).
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systems, and assume that large systems have
dynamical behavior that is independent of initial
conditions.

In these models, the global dynamics derive
from an interplay between the local dynamics at
a site and the interaction of the subpopulations in
this site with its environment. The local dynamics
at a site were described in the previous section.
They are a!ected by its environment through the
in#ow of cooperators and defectors. When a site
is empty, this in#ow determines when it will be-
come inhabited by a cooperator; and when a site
is inhabited by cooperators with no defectors,
this in#ow will determine how long it will take for
it to be invaded by a defector*t

f
. The environ-

ment, on the other hand, is generated by the local
dynamics at sites. Essentially, the more intricate
are the population dynamics at a site, the more
complex is the analysis of the global dynamics. In
the d.d. models, the rough temporal structure of
the life cycle is rather simple, and it is possible to
approximate its global behavior by dividing the
life cycle into three main stages: empty, coopera-
tion and defection, where in each the population
could be considered as being in one state. In each
of these states, the internal dynamics at each site
and its interactions with its environment can
be described as a Markov process switching
between states. Note that this simpli"ed model is
very similar to Maynard Smith's (Maynard-
Smith, 1974) predator}prey model described in
the introduction. For a simpli"ed model of this
nature we can obtain an analytical approxi-
mation of the conditions for the existence
of a non-trivial steady state. We brie#y outline
a simpli"ed model and its analysis in Sections
4.1, 4.2 and in Appendix C. The life cycle for
the d.i. model described in Figs 1 and 5 con-
sists of many di!erent states, since each popula-
tion structure*n

c
, n

d
, a!ects the evolution at

the site and the sites e!ect on its environment
di!erently. Each of these states is characterized
by a di!erent out#ow of cooperators and defec-
tors. This makes the global analysis of these mod-
els much more complicated. For this reason, we
restrict the study of their global behavior to
simulations. The results from the analysis and
simulations of the simpli"ed d.d. model and from
the simulations of the d.i. model are presented in
Section 4.3.
4.1. A SIMPLIFIED DENSITY-DEPENDENT MODEL

The life cycle at a site for the simpli"ed d.d.
model is described in Fig. 6. In this model, for
which the life cycle is a simpli"cation of the d.d.
life cycle shown in Fig. 2, when a cooperator
enters an empty site it immediately establishes
a population of n

c
cooperators. After some time,

the population is invaded by a defector that is
either a mutant from within or a migrant from
without. Once a defector invades, it instan-
taneously takes over and establishes a constant
population of n

d
defectors. This population has

a probability P
d
per unit time to die and leave the

site empty. Di!usion and mutation are stochastic
as in the non-simpli"ed models.

The simpli"ed model can be seen as an inter-
acting particle system, where a site (i, j ) (which
corresponds to the particle) can be in one of the
three states: empty (S

ij
"e), cooperation (S

ij
"c)

and defection (S
ij
"d). The dynamics of this sys-

tem can be described as a Markov process, writ-
ten here in terms of the transition probabilities
for a site (i, j ) during a time step D:

Aij
e?c

(t),P(S
ij
(t#D)"c DS

ij
(t)"e)"

D
4

n
c
Iij
c
(t),

(14)

Aij
c?d

(t),P (S
ij
(t#D)"d DS

ij
(t)"c)

"

D
4

n
d
Iij
d
(t)#kn

c
, (15)

Aij
d?e

(t),P(S
ij
(t#D)"e DS

ij
(t)"d)"P

d
(16)

Aij
e?e

(t)"1!Aij
e?c

(t), (17)
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Aij
c?c

(t)"1!Aij
c?d

(t),

Aij
d?d

(t)"1!Aij
d?e

(t). (18)

Here, the number of (i, j )'s nearest neighbors in
state c is denoted as Iij

c
, and the number of nearest

neighbors in state d is denoted as Iij
d
. In writing

these dynamics it was assumed that the time step
D;1, so that e!ects that are second order in
k and D can be ignored. Equation (14) describes
how a site changes its state from e to c, by way of
a nearest-neighbor interaction corresponding to
di!usion. Equation (15) describes how a site
changes its state from c to d, either by nearest-
neighbor interaction corresponding to di!usion,
or spontaneously in a way which corresponds to
mutation. Finally, eqn (16) describes how a site
changes its state from d to e, spontaneously, in
a way that corresponds to the death of the defec-
tor population.

Equations (14)}(18) have four parameters: Dn
c
,

Dn
d
, kn

c
and P

d
. As D, k, and P

d
are all homo-

geneous to the "rst order in the time-scale D, so
are the right-hand sides (r.h.s.) in eqns (14)}(18).
This means that one of the four parameters, such
as P

d
, could be taken to determine the time-scale.

The other three could be taken to be independent
of the time-scale, for example, Dn

d
/P

d
, D/k and

n
c
/n

d
(which are independent and homogeneous

with degree 0 in D).
This model captures the qualitative features of

the local behavior of the explicit d.d. models of
Section 2. The establishment of cooperation, the
defector take-over and the populations' extinc-
tion which derive from the population dynamics
at a site in the explicit d.d. models are assumed in
the simpli"ed model. The interactions between
a site and its environment, however, are of the
same form in both simpli"ed and general d.d.
models. The environment a!ects when the empty
site becomes inhabited and when the defector
take-over occurs. On the other hand, a site a!ects
its environment by di!using out cooperators and
defectors.

4.2. A MEAN-FIELD APPROXIMATION TO THE

SIMPLIFIED DENSITY-DEPENDENT MODEL

We would like to "nd the region in the model's
parameter space in which a non-trivial steady
?Note, that both this and the &&second-order'' mean-"eld
approximations, can be treated as models for the persistence
of cooperation by their own right.

state exists. One way to do this, is to solve the
model analytically. A solution is a stationary
probability distribution on the space of all pos-
sible lattice con"gurations P(MS

ij
N
i,j|Z

) as a
function of the model's parameters. Using a
mean-"eld approximation one can "nd the best
solution within a restricted class of distributions.
Roughly speaking, as the class of distributions
becomes larger the approximations become
better. In this paper, we will not evaluate the
accuracy of the approximations other than by
comparing their predictions with simulations.
A systematic evaluation of these approximations,
as well as a more accurate analysis using Renor-
malization Groups, has been done for other par-
ticle systems (Goldenfeld, 1992; Baxter, 1982).

The "rst-order mean-"eld approximation is
restricted to probability distributions of the form

P(MS
i,j

(t)N
i,j|Z

)" <
i,j|Z

P (S
i,j

(t)). (19)

This means that the probability of "nding the
system in a certain con"guration can be decom-
posed into a product of the probabilities of "nd-
ing each site in its state. One further assumes that
the probabilities of "nding a site in state c, d or
e are uniform across the lattice. Under these
assumptions the system's description reduces to
the probabilities of "nding any site in each one of
the possible states.? Denoting these probabilities
which are independent of the site by p

e
, p

c
, and p

d
,

the system's dynamics reduces to

p
e
(t#D)"p

e
(t)(1!A

e?c
(t))#p

d
(t)A

d?e
(t),

p
c
(t#D)"p

c
(t) (1!A

c?d
(t))#p

e
(t)A

e?c
(t),

p
d
(t#D)"p

d
(t) (1!A

d?e
(t))#p

c
(t)A

c?d
(t),

(20)

where A
e?c

, A
c?d

and A
d?e

denote the transition
probabilities, which can be derived from eqns (14):

A
e?c

(t)"
D
4

n
c
4p

c
(t) ,
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A
c?d

(t)"
D
4

n
d
4p

d
(t)#kn

c
,

A
d?e

(t)"P
d
. (21)

Here we set I
d
"4p

d
(t) and I

c
"4p

c
(t).

The "xed point and stability analysis for this
system is straightforward. A non-trivial "xed
point (one where p

e
O1) exists if

D
k
'1. (22)

When this condition holds, the system has two
meaningful "xed points, with one being trivial
(p

e
"1) and the other not. In this case, only the

non-trivial "xed point is stable, and thus the
persistence of cooperation is obtained for any
initial condition in which p

c
(0)O0. For this non-

trivial "xed point, expressions for R, M or any
other dynamic parameter of the system, as func-
tions of Dn

d
/P

d
, D/k, n

c
/n

d
and P

d
can be derived.

Deriving condition 22 from general consider-
ations will help in understanding the scope of
the "rst-order approximation. For a non-trivial
steady state to be maintained, every life cycle has
on average to establish exactly one new life cycle.
This requirement takes the form:

DS
c
oc
e
"

M
1#1/R

oc
e
"1, (23)

where oc
e
denotes the density of empty sites near

a site in state c. This density equals the probabil-
ity that a cooperator leaving a site will establish
a new life cycle. Condition (22) could be derived
from eqn (23) by putting trivial bounds on oc

e
and S

c
:

oc
e
)1, (24)

S
c
"n

c
t
f
)n

c

1
k

. (25)

The bound on oc
e

is realized only when all the
neighboring sites are empty. The bound on t

f
is

also realized when all the neighboring sites are
empty, i.e. when the "rst defector is always a mu-
tant. These two bounds imply that condition (22)
is equivalent to the requirement that at least one
cooperator di!uses out in a life cycle at a site
surrounded by empty neighbors. As the number
of cooperators in a life cycle at an isolated site
depends only on k, the number of cooperators
di!using from it depends only on k and D.

Condition (22) indicates that the "rst-order
mean-"eld approximation cannot incorporate
the harmful e!ects of migration, an important
feature of the model. In the "rst-order mean-"eld
approximation, the density oc

e
can approach 1

enabling cooperators to survive as long as on
average one cooperator migrates during a life
cycle. This means that in this approximation
defector migration does not really determine
whether cooperation prevails or not, because the
density of inhabited sites can always be so low
that no defector ever invades it. In the spatial
model the density oc

e
can never reach 1, because

near a population of cooperators there is always
a "nite probability of having the population from
which the founding cooperator migrated. The
neighboring population, in this case, will be in
either state c or d during some part of the life
cycle of its daughter subpopulation. This discrep-
ancy between the spatial model and the "rst-
order mean-"eld approximation, is demonstrated
in Figs 3 and 4. The second picture in Fig. 4 (25
generations) indicates that a life cycle at a site
surrounded by empty sites produced more than
one di!using cooperator. Yet cooperation does
not prevail due to the e!ects of extensive defector
migration into sites inhabited by cooperators. An
approximation incorporating such e!ects would
have to describe the correlations between the
states of nearest neighbors. Such an approxima-
tion is outlined in Appendix C. Results presented
in the next section will hint at the possibility that
as the phase transition between persistence and
non-persistence of cooperation is approached the
correlation length in the system goes to in"nity.
This would imply that near the parameters at
which the transition happens, the reliability of
such mean-"eld approximations is questionable.

4.3. RESULTS I: REGIONS CHARACTERIZED BY THE

DYNAMICAL PERSISTENCE OF COOPERATION

The d.i. model has six parameters: a, b, c, d,
k and D, while the simpli"ed d.d. model has
four: D/k, Dn

d
/P

d
, n

c
/n

d
and P

d
. A point at which



FIG. 8. The R}M phase space for the d.i. model: The
graph presents regions of cooperation persistence according
to simulations of the d.i. model. The phase boundaries
according to the mean-"eld approximations to the simpli"-
ed d.d. model are also presented, as reference. For details on
how the phase boundaries were derived from simulations,
see Appendix D: (**) second order; ( ) "rst order;
( ) d.i. model.
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a non-trivial steady state is maintained, is charac-
terized by a stationary probability distribution
on all possible lattice con"gurations. We would
like to present these (6/4)-dimensional phase
spaces in a comprehensible way, that permits
comparison with the global behavior of models
which derive from di!erent local parameters. In
doing so, we will necessarily lose some informa-
tion, information that can be further explored
using di!erent representations. To the extent that
the "ne temporal and spatial structure of a steady
state in these models can be ignored, the basic
variables characterizing the global dynamics
would be M2the average number of migrants
during a life cycle, and R2the cooperator to
defector ratio among these migrants.

Phase spaces in the R}M coordinates, which
were derived from analytical approximations to
the simpli"ed d.d. model, from simulations of the
simpli"ed d.d. model and from simulations of the
d.i. model are presented in Figs 7 and 8. The solid
lines in Figs 7 and 8 correspond to the bound-
aries in R}M space below which a non-trivial
steady state does not exist according to the "rst
and second-order approximations. We will refer to
such a boundary as a phase boundary. The thick
lines in Figs 7 and 8 represent the phase bound-
aries derived from simulations. They were
FIG. 7. The R}M phase space for the simpli"ed d.d.
model: The graph presents regions of cooperation persist-
ence according to the "rst and second-order mean-"eld
approximations (above the phase boundaries pictured); and
according to simulations. For details on how the phase
boundaries were derived from simulations, see Appendix D:
(**) second order; ( ) "rst order; ( ) simpli"ed
model.
derived as described in Appendix D. In the simpli-
"ed d.d. model, DS

d
"Dn

d
/P

d
is one of the basic

parameters of the model, while DS
c
derives from

the dynamics (see Sections 3.2 and 4.1). As
M"DS

d
#DS

c
and R"DS

c
/DS

d
, one compon-

ent of R and M is a parameter whereas the other
is an outcome of the dynamics depending on the
other parameters. In the d.i. model the situation
is similar (3.1), R is a function of a, b, c and d, and
thus can be considered to be a parameter, where-
as M derives from the dynamics which depends
on the other parameters.

The shape of the phase boundaries from the
analysis and simulations can be roughly under-
stood from the heuristic derivation in the
previous section, eqn (23), which predicts that the
phase boundary takes the form:

M"CA1#
1
RB, (26)

where C is some constant. The di!erences in the
shape and position of the phase boundaries
re#ect the e!ects of the "ne spatio-temporal
dynamic structure. As we discussed at the end of
the previous section, one can state roughly that
the e!ect of spatial correlations, i.e. spatio-
temporal structure, is to increase the damage that



FIG. 9. Dynamic behavior in the d.i. model as a function
of a: Figs (a)}(c) describe di!erent dynamic variables of the
system as they result from simulations of the d.i. model with
b"0.95, c"0.8, d"1.2, k"0.0001 and D"0.0003 where
a varies between 1.001 and 1.035. (a) The average number of
migrating cooperators (DS

c
), defectors (DS

d
) and their sum

(M) in a life cycle given as a function of a. (b) the average
ratio of cooperators to defectors migrating during a life cycle
(R) is given as a function of a; and (c) the density of occupied
sites is given as a function of a. ( ) M; (} } }) DS

c
;

(- - -) DS
d
.
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defectors in#ict*thus imposing stronger restric-
tions on the region in the R}M space where
a non-trivial steady state can be maintained. This
causes the phase boundaries resulting from the
simulations to be above those resulting from the
second-order approximation; as well as for sec-
ond-order phase boundary to be above the "rst
order. A systematic study of the factors e!ecting
the phase boundaries requires the study of
higher-order correlations.

4.4. RESULTS II: HOW LOWER INDIVIDUAL

FITNESS INDUCES HIGHER SURVIVABILITY

The drawback of using R}M phase spaces to
study a speci"c model is a loss of informa-
tion about the relation between the system's
behavior and its basic parameters. In the d.i.
model the persistence of cooperation depends
on the parameter a*the "tness associated with
interactions between cooperators. In Section 3.1
we explain why a reduction in a leads to a larger
cooperator to defector ratio R, and derive the
functional dependence of R on a. As a increases
and R decreases, we expect that the disturbance
from defectors will grow to a point where
cooperation cannot be maintained. This e!ect
is illustrated in Figs 3 and 4. Across two sys-
tems we took all the parameters other than
a to be equal. The system with the smaller
a reached a non-trivial steady state in which
cooperation persisted, whereas the system with
the larger a reached the trivial steady state
without cooperation.

Figs 9(a)}(c) illustrate the behavior of several
dynamic variables as a function of a, while all the
other parameters are "xed. When a increases, the
number of migrating defectors also increases
while the number of migrating cooperators re-
mains approximately constant [Fig. 9(a)]. Thus,
both R [Fig. 9(b)], and the density of occupied
sites [Fig. 9(c)] decrease. Hence, a decrease in
the individual "tness of cooperators leads to in-
creases in: the total number of cooperators in the
system, the density of sites they occupy, and their
numbers relative to defectors. Note that the
measured R [Fig. 9(b)] is very close to the ana-
lytically derived value. This supports the scaling
argument described in Section 3.1 and demon-
strated in Fig. 5.
Around a"1.0175, the rate of destruction by
migrating defectors reaches a level that precludes
the maintenance of a non-trivial steady state, like
the example described in Fig. 4. Increasing the
individual "tness of cooperators therefore leads
to a condition in which cooperation can no lon-
ger persist. Note that near the phase boundary
the density of occupied sites drops [Fig. 9(c)].
This suggests that the correlation distance in the
system grows at this vicinity. As mentioned in the
previous section, this casts doubts on the reliabil-
ity of the mean-"eld approximations near the
phase boundary.

5. Discussion

We have demonstrated that cooperation may
persist in a dynamic mode where populations of
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cooperators and defectors constantly appear and
disappear. We explain the persistence of coopera-
tion by considering the life cycle of a population
at a site. The life cycle starts when one cooperator
establishes a population; this population grows;
defectors invade and take over; and ultimately
the population goes extinct. During this life cycle,
new populations of cooperators are founded by
single cooperators that migrate to empty neigh-
boring sites. The system reaches a steady state
where cooperation persists, if the global &&birth''
rate of populations is equal to their &&death'' rate,
or equivalently, if on average every population
gives rise to one other population during its life
cycle. This steady state arises from a repeated
turnover of populations*cooperation persists
although every single population of cooperators
eventually dies out. In Section 4, we demonstrate
that these dynamics enable the persistence of
cooperation in a large section of the model's
parameter space. Furthermore, we demonstrate
and explain that lowering the local "tness of
cooperators in the d.i. model can enable the
persistence of cooperation. Within the region of
persistence, lowering the local "tness of cooper-
ators can increase the number of cooperators, the
density of sites inhabited by them, and their num-
bers relative to the defectors.

The dynamic mode we have described may
appear in a variety of biological systems. In addi-
tion to Maynard-Smith's predator}prey model
reviewed in the introduction, we consider one
model for the persistence of altruism and one
model for the persistence of &&prudent'' predation
in a predator}prey system. Epstein (1998) ob-
serves oscillatory behavior in a spatial PD model
which is analogous to the dynamic mode that we
describe. In this model, individuals which are
either cooperators or defectors occupy sites on
a two-dimensional lattice. Each individual plays
the PD game with its neighbors, where the
payo!s it accumulates determine its probability
to produce an identical o!spring or to die and
leave its site empty. In one version, he sets the
payo!s for cooperator}cooperator interac-
tions to be positive and the payo!s for defector}
defector interaction to be negative. This results
in oscillation of the total number of cooperators
and defectors over time, where the peaks in
defectors appear to closely follow the peaks in
ANote that we have used M for a di!erent meaning.
EMaynard-Smith considers systems where defectors can

either persist in coexistence with cooperators or go extinct.
In our system these options apply to cooperators rather
than to defectors. Defectors and cooperators are not equiva-
lent in our system because we have incorporated mutation
and defectors may depend on repeated appearance via
mutation in order to persist. We note, however, that even in
the absence of mutation there are parameter regions in our
system where cooperators and defectors coexist in a steady
state. In these cases, M can be de"ned for either cooperators
or defectors.

cooperators. Epstein also notes that in this
dynamical regime, decreasing the payo!s for co-
operator}cooperator interactions may improve
the cooperators to defectors ratio. This is similar
to the mode that we describe, where the localized
subpopulations in our model are analogous
to the spatially extended neighborhoods in
Epstein's model.

Gilpin (1975) studies a model for the persist-
ence of altruistic behavior in the context of
predator}prey systems. Through computer simu-
lations of structured populations, in which
subpopulations of predators and prey inhabit
isolated patches, he studies the persistence of
predator &&prudence'' restraint to not over-exploit
their food supply. In his model, &&sel"sh''
predators in a patch drive the prey to extinction,
which in turn drives the predator population in
the patch to extinction. Gilpin allows for migra-
tion between patches and genetic drift within
them. Although he does not "nd parameter
values where the &&sel"sh'' and &&prudent'' pred-
ators can coexist, we believe that introducing
mutations that cause the &&sel"sh'' predators to
reappear, or increasing the number and perhaps
introducing spatial organization of patches
would result in the mode of dynamic coexistence
we have described.

Maynard-Smith (1976) considers the implica-
tions of migration in a patchy environment on
the persistence of altruism. He suggests a cri-
terion based on the average number of new defec-
tor populations founded by migration from
a patch with defectors before that patch goes
extinct, which he denotes as M.A In the following
summary of his reasoning, note that in our sys-
tem, M should be de"ned in terms of cooperator
populations rather than defector populations.E
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He claims that if M'1, then defectors would
take-over the population, while if M(1, then
cooperators would prevail and defectors would
go extinct. If we de"ne M for cooperators rather
than defectors, then M"1 corresponds to our
steady state. From Maynard-Smith's formula-
tion, one may assume that the case M"1 is
a mathematical artifact requiring exact para-
meters and therefore it should not be considered
seriously. This is not true for our system, how-
ever, and it need not be true for other systems. In
our system, the value of this variable M, which is
de"ned for cooperators rather than defectors, is
produced by the dynamics of the system. Within
the parameter range where cooperation persists,
changes in the underlying parameters a!ect other
variables of the system, such as the density of sites
that are empty or inhabited by cooperators or the
average number of cooperators in the system (see
Fig. 9), but leave M"1. One mechanism under-
lying this stability, holds when the parameters of
the system are changed such that the extinction
of subpopulations becomes faster and the num-
ber of migrating cooperators becomes smaller.
Under these conditions the density of empty sites
may increase thus increasing the chance of a mi-
grating cooperator to colonize an empty site (see
Fig. 9). A similar process stabilizes the steady
state with "xed parameters: when the density of
sites occupied by cooperators drops below the
steady state level, a migrating cooperator has an
increased probability of "nding an empty site.
A more precise structural and dynamical stability
analysis would consider spatio-temporal patterns
such as the correlation between newly inhabited
sites with neighboring sites inhabited by defec-
tors. We note, however, that the mode of persist-
ence that we describe seems both structurally and
dynamically stable, and that this may result from
self-regulating processes of the type discussed
above. Maynard-Smith reaches a similar con-
clusion in the analysis of the predator}prey
model described in the introduction to this paper.
The extent to which the dynamic mode we have
described occurs in biological systems depends
on the parameter values in these systems. Yet the
fact that this mode is both structurally and
dynamically stable and holds for a large range of
parameters, makes it likely to occur in natural
systems.
We describe how cooperation persists, but not
how it originates in the "rst place, or continues to
evolve once it is established. Although a proper
treatment of these questions requires extensions
to our model, we o!er a few comments here.
When considering the origin and evolution of
cooperative behavior, one should remember that
cooperative and defective behaviors are often
relative terms. In a homogeneous population, the
appearance of an individual behaving more altru-
istically than its peers may elicit a dynamic where
the pre-existing type is rede"ned as a defector. If
cooperation is costly, the pre-existing type bene-
"ts from interacting with the new type without
having to pay the cost, and will have the charac-
teristics of defectors upon the appearance of
cooperators.

We suggest two scenarios for the origination of
the mode we have described. Consider a system
consisting of reproductively isolated subpopula-
tions, where new subpopulations are founded by
individuals that leave existing subpopulations.
Assume further that individuals with cooperative
behavior appear in the system, after which defec-
tors, which may have been the pre-existing type,
appear. The type of dynamic we describe requires
one additional condition: subpopulations of de-
fectors must not be self-maintaining. This condi-
tion seems unreasonable at "rst, if defectors were
the pre-existing type and therefore existed inde-
pendently of cooperators. We suggest two ways
to account for this seeming paradox. One is to
consider a system with an inhomogeneous
environment containing harsh areas where
subpopulations of the pre-existing type are
not able to survive. Since cooperator sub-
populations are more e$cient, they can inhabit
some of these niches. Once they do, the pre-
existing type may invade these areas, by taking
advantage of the cooperators, and thus the
conditions for the dynamic persistence of co-
operation may arise upon invasion by cooper-
ators. Another possibility is a system in which
reproductively isolated subpopulations share
common resources. Once cooperating sub-
populations appear, the conditions for a solitary
subpopulation change for the worse, again due
to the higher e$ciency of subpopulations con-
sisting of cooperators. Consequently, subpopu-
lations of defectors are not self-maintaining,
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and the stage is set for a steady state of the type
we describe.

Now consider the course of evolution after
a population reaches a steady state with coopera-
tion. Again we assume that subpopulations share
common resources. At some point &&improved''
cooperators appear, and consequently both the
old cooperators and defectors assume the role of
defectors. The long-term evolution (Eshel et al.,
1997, 1998) of the system then becomes relevant.
Speci"cally, one should consider the conditions
for invasion by the new cooperators. On the one
hand, &&improved'' cooperators may invade by
establishing the conditions, through the shared
resources, under which subpopulations of the
preceding cooperators cannot maintain them-
selves. If this is the case, then after the new co-
operators take-over, the population reaches
a new steady state in which the carrying capacity
of the environment has increased, and the "t-
nesses within subpopulations are renormalized.

Taking a higher cooperator "tness while leav-
ing everything else the same can lead, however, to
a breakdown in the persistence of cooperation,
as we describe in Section 4. If an improved co-
operator is characterized by a large a when it
appears in a given patch, then a large number of
defectors is generated during a life cycle, which
annihilates the population in its vicinity (see
Fig. 9). This leads to the extinction of the
&&improved'' cooperators and to the continuing
persistence of the pre-existing cooperators.
Therefore, invasibility conditions for &&improved''
cooperators in these systems can be subtle and
deserve a closer analysis. We conjecture that such
factors dictate the rate at which cooperation
evolves, and may prevent it from improving sig-
ni"cantly in a single transition. If this is true, it
will be re#ected in both the invasion criterion,
and in the renormalization of "tness after a take-
over event.
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APPENDIX A

Proof of Result 1

Result 1. In the density-independent model the
ratio R of the average number of migrating cooper-
ators to the average number of migrating defectors
in a life cycle is

R(a, b, c, d, k, D)"
E(M

c
)

E(M
d
)
"

DE(S
c
)

DE(S
d
)

"

1!b
a!1

a!c
d!b

#O[k, D].

(A.1)

Proof. The life cycle begins when the "rst coop-
erator enters an empty size. Denoting this time as
t"0, we have

n
c
(0)"1, (A.2)

n
d
(0)"0. (A.3)

The population at a site then begins evolving
according to eqns (4). These equations can be
written as follows, separating zero- and "rst-
order terms in k and D:
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(A.5)
The "rst-order terms in k and D a!ect the
dynamics in two ways: the "rst is by slightly
changing the population sizes due to migration
between sites and mutation between types. This
changes R to the "rst order in k and D. The
second is by a!ecting t

f
, the time when the "rst

defector appears in the life cycle. The appearance
of the "rst defector has a dramatic e!ect on the
life cycle, as it marks the beginning of defector
takeover. Consequently, we will ignore the e!ects
of mutation and migration at all times other than
when the defector population size is 0. This will
be done by incorporating a &&source'' to the zero-
order defector dynamics, which is &&on'' as long as
n
d
"0 and &&o! '' otherwise. This source term

adds one defector at time t#1 with the same
probability with which it would appear as a
result of cooperator mutation and defector
migration.

The zero order (in k and D) dynamics with the
source term are then described by
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where

I (n
d
(t))"G

1 n
d
(t)"0,

0 otherwise.

(A.8)

Denoting a,(a!c) and b,(d!b) these equa-
tions could be written as
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d
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c
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Taking a linear combination of eqns (A.9) to
eliminate the nonlinear term gives
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In order to turn the conditional averages and
free variables to averages, we multiply eqn (A.11)
by P(n

c
(t), n

d
(t)) and sum over all possible values

of n
c
(t) and n

d
(t), to get
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where we used
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Summing these equations from t"0 to R, we
get

b (E(S
c
)!1)#aE (S

d
)"baE(S

c
)#abE(S
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)#a,

(A.14)

because

=
+ P(n

d
(t#1)O0; n

d
(t)"0)"1. (A.15)
t/0
This sum is simply the probability that the "rst
defector will appear sometime (ignoring cases in
which defectors disappear and then appear again).
Reorganizing eqn (A.14) and re-substituting a
and b, we get
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It remains to be shown that 1/E (S
d
)+O[k, D].

We will not give a complete formal proof, instead
we provide the essence of the argument. We begin
by showing that 1/E(S

c
)+O[k, D]. Assuming

that the "rst defector appears as a result of
a mutation, it would appear when : t

f

0
n
c
(t)dt+1/k,

therefore S
c
*1/k. If on the other hand, it ap-

pears as a result of di!usion then t
f
+1/DSn

d
T

where Sn
d
T is the average number of defectors in

a site's neighborhood. In this case, : t
f

0
n
c
(t)

dt+at
f+a1/DSn

d
T; therefore, S

d
*O[1/D]. If

the probability of the "rst defector appearing
from the two processes is comparable, both
estimates are valid. Hence, we conclude that
E(S

c
)+O[1/k, 1/D], and since S

d
scales with

S
c
we get 1/E(S

d
)+O[k, D] which concludes the

proof that
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#O[k, D].

(A.17)

APPENDIX B

Proof of Result 2

In Section 3.2, we considered the life cycle in
a speci"c d.d. model. We found that for any a, b,
c, and d, R could be made larger than any R*
provided that k and D are taken to be small
enough. An expression relating R* to k and
D was given. In this appendix, that expression
will be derived for a class of d.d. referred to as d.d.
models of type 1:
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De5nition. A model with absolute "tness func-
tions of the form

f
c
(n

c
, n

d
)"g(n)Aa

n
c

n
#c

n
d

n B,

f
d
(n

c
, n

d
)"g(n) Ad

n
c

n
#b

n
d
nB ,

will be called a density-dependent model of
type 1, if

1. g(n))1 for all n.
2. The average population size at each time

step is bounded by some maximum popula-
tion size n

max
. This means that for all n

c
(t)

and n
d
(t):

E(n (t#1) Dn
c
(t), n

d
(t)))n

max
. (B.1)

3. For a'1 there exists a time t(a) and a
constant 0(c (a))1 such that E(n

c
(t))

*c(a)n
max

for t't(a) when there are no
defectors, taking n

c
(0)"1.

The "rst requirement means that the popula-
tion size in each time step is bounded from above
by the population resulting from the density-
independent dynamics. The second condition is
a requirement for limiting the population size.
It is surely satis"ed by requiring g (n))
minMn

max
/dn, 1N for all n, since then we have

E(n (t#1) Dn
c
(t), n

d
(t)))g (n) dn(t))n

max
.

Both conditions are trivially met by the function
g(n) described at the beginning of Section 3.2. The
third requirement captures the way that the
cooperator population assumes a certain size
after time t (a), and remains in this size until t

f
. In

the example, this condition is satis"ed by choos-
ing c(a)"a/d and t (a)"[loga nmax

/d]#1.
Under these conditions we prove:

Result 2. Given a density-dependent model of type
1 and R**0, taking k and D such that

D#k)
c(a)

c (a)n
max

t (a)#SI
d
R*

,

ensures that R is bounded from below by R*, where
SI
d
is E(S

d
) for the density-independent model with

the same parameters a, b, c, d, and initial condi-
tions nJ

c
(0)"n

max
, nJ

d
(0)"1.

Proof. The proof follows the same line of reason-
ing applied to the example in Section 3.2. By
increasing t

f
one can increase S

c
as much as

required, leaving S
d
bound. However, increasing

t
f

simply means taking smaller k and D.
In order to "nd the condition that t

f
must

satisfy, we begin by "nding a lower bound for R.
We do so by "nding a lower bound for E(S

c
) and

an upper bound for E(S
d
):
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where nJ
d
(t) is the defector population at time t for

the density-independent model with the same a,
b, c and d, and initial conditions: nJ

c
(0)"n

max
and

nJ
d
(0)"1. In bounding E(S

d
), we have used condi-

tion 1 (from the de"nition of type 1), which
implies that the d.i. population bounds the d.d.
population with the same parameters. From
eqn (B.3) we get

R*

c (a)n
m
ax

SI
d

(t
f
!t (a)). (B.4)

Next, we "nd a lower bound for t
f

depending
on k and D. The "rst defector in the life cycle can
appear either as a mutant or as a migrant from
a neighboring site. The probability for a defector
to appear as a mutant in one time step is bounded
by kn

max
, while the probability that a defector

would migrate from a neighboring site, could
be bounded by 4(1

4
Dn

max
)"Dn

max
. From these
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bounds we get a lower bound on t
f

in terms of
k and D:

t
f
*

1
(D#k)n

max

. (B.5)

From eqns (B.4, B.5), given some R* we can
ensure R'R* by taking

R*)
c (a)n
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ax

SI
d

A
1

(D#k)n
max

!t (a)B
)

c (a)n
m
ax

SI
d

(t
f
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which means choosing k and D such that

D#k)
c (a)

c(a)n
max

t (a)#SI
d
R*

. (B.7)

APPENDIX C

The Second-Order Approximation

The "rst-order mean-"eld approximation was
presented in Section 4.1. It was derived from the
assumption that the probability of "nding a site
(i, j) in state S

ij
is independent of the state of its

neighbors and is uniform across the lattice. This
assumption may be expressed by stating that the
probability for a lattice con"guration S

ij
(t) satis-

"es the relation:

P(MS
ij
(t)N

i,j|Z
)"<

i, j

P(S
i, j

(t)), (C.1)

where the P(S
ij
(t)) derive from a uniform

single-site state distribution on the lattice. In
Section 4.2, we also argued that the "rst-order
approximation falls short of providing conditions
for the persistence of cooperation in the system,
since it cannot capture the e!ects of nearest-
neighbors (n.n.) correlations in state.

The second-order mean-"eld approximation,
also referred to as the Bethe}Peierls approxima-
tion (Huang, 1987), considers the state of tuple
consisting of a site and its n.n. (a von Neumann
environment). Such a tuple will be denoted by:
E
i, j
,(S

i, j
, S

i`1,j
, S

i~1,j
, S

i,j~1
, S

i,j`1
). It is as-

sumed that the probability distribution of the
tuples is independent of their environment and
uniform across the lattice so that

P(MS
ij
(t)N

i, j|Z
)" <

i,j|z

P (E
i, j

(t)). (C.2)

This approximation facilitates studying n.n. cor-
relations but ignores higher-order correlations.
The class of probability distributions considered
in this approximation contains the probability
distributions considered in the "rst-order ap-
proximation as special cases, where P(E

i, j
)

depend only on S
i,j

. Higher-order mean-"eld
approximations consider larger tuples, thus
extending the class of probability distributions
further. If the system does not have long-range
correlations, then as the tuples in the approxi-
mation grow it becomes more accurate and
approaches the true solution of the system.

The peripheral sites within the tuple do not
a!ect each other, and they all a!ect the center site
in the same way. Thus, a state of a tuple can be
adequately described by the state of the center
site and by how many of the peripheral sites there
are in each state. Therefore, a tuple E could be in
one of: 3(6

2
)"45 states. The dynamics for the

probability of each state can be derived by "nd-
ing the transition probabilities between states, as
was done in eqns (14). A similar derivation has
been used for the "rst-order approximation in
Section 4.2. As this derivation is not very in-
formative but is, nevertheless, incredibly tedious,
we do not present it here. Results from the
second-order approximation are presented in
Section 4.3.

APPENDIX D

Deriving Phase Boundaries From Simulations

In this appendix, we describe how the simula-
ted phase boundaries, from Figs 7 and 8, were
derived. As noted in Section 4.1, the simpli"ed
d.d. model has three parameters that can be
taken to be n

c
/n

d
, D/k and S

d
"Dn

d
/P

d
. We ran

simulations on a 32]32 lattice, with n
c
/n

d
"2

and D/k varying from 1.1 to 5.0 (50 values) and
Dn

d
/P

d
varying from 0.1 to 6.8 (50 values).

The points on this parameter grid in which
a non-trivial steady state was established appear
in Fig. D1.



FIG. D1. Parameter values for which the simplified d.d.
model reached a non-trivial steady state. The parameters
taken were D/k varying from 1.1 to 5.0 (50 values) and
Dn

d
/P

d
varying from 0.1 to 6.8 (50 values), where for all

simulations n
c
/n

d
"2.

FIG. D2. The R}M phase space for the simplified d.d.
model: the graph presents regions of cooperation persistence
according to simulations. Simulations on a 32]32 lattice
were run with the following parameters: n

c
/n

d
"2, P

d
"0.01,

D/k"1.1!5.0 (50 values) and S
d
"Dn

d
/P

d
"0.1!6.8 (50

values). In each simulation in which a non-trivial steady
state was established, the densities: p

e
, p

c
, and p

d
were

measured, and from them R and M were computed.

FIG. D3. Parameter values for which the simpli"ed d.d.
model reached a non-trivial steady state. The parameters
taken were D/k varying from 1.1 to 5.0 (50 values) and
Dn

d
/P

d
varying from 0.1 to 6.8 (50 values), where for all

simulations n
c
/n

d
"2.

484 G. SELLA AND M. LACHMANN
For each of the simulations that established
a non-trivial steady state p

e
, p

c
and p

d
were mea-

sured. The measurement was averaged over
a long time compared to the dimension of the
lattice and the typical time of a life cycle, to
control the stochasticity of the simulation and
the "nite dimensions of the lattice. Even though
we tried to control the accuracy of the measure-
ments in individual simulations, it is not homo-
geneous across the parameter space. Generally, it
decreases when the parameters are closer to the
phase boundaries, as the time required to obtain
an accurate measurement diverges at the phase
boundary. From the measured p

e
, p

c
and p

d
,

we derived R"(n
c
/n

d
)(p

c
/p

d
) and M"(Dn

d
/P

d
)

(1#R). We then plotted the phase space in
Fig. D2, where every point in the R}M space
corresponds to a simulation that attains these
values. The fact that no points are found below
a certain contour, means that none of the simula-
tions attained a steady state where such R,
M values were measured. Thus, within the accu-
racy of the simulations, a steady state with these
R, M values cannot be maintained. Based on this
premise, we draw the phase boundaries in Fig. 7.

The way the phase boundaries were drawn for
the d.i. model is essentially similar. The d.i. model
has six parameters: a, b, c, d, k and D. We ran
simulations on a 32]32 lattice, with b"0.9,
c"0, d"1.6, D"0.01, varying R"( (1!b)/
(a!1)) ((a!c)/(d!b)) from 0.4 to 10 (50 values)
and (D/k) (1#1/R) from 2 to 10 (50 values),
where R and (D/k) (1#1/R) replace parameters
a and k. The points on this parameter grid in
which a non-trial steady state was established are
presented in Fig. D3.

For each simulation that attained a non-trivial
steady state M and R were measured (controlling
for stochasticity and "nite lattice size). Each
simulation in which a non-trivial steady state was
established appears in Fig. D4, according to the



FIG. D4. The R}M phase space for the d.i. model: The
graph presents regions of cooperation persistence according
to simulations of the d.i. model. The simulations were done
on a 32]32 lattice, using the following parameters: b"0.9,
c"0, d"1.6, D"0.01, R"((a!c)/(1!a))((1!b)/
(d!b))"0.4}10 (50 values) and (D/k) (1#1/R)"2}10 (50
values). Each simulation in which a non-trivial steady state
was established appears in the phase space according to the
R and M measured in the steady state.
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measured R and M. The phase boundary in
Fig. 8, was drawn using Fig. D4.

The fact that groups of points in both
phase spaces appear to be on a straight line has
a simple explanation. In the d.i. model, R is
a parameter, and was chosen over a grid of
values, whereas M is a variable deriving from the
dynamics, and can therefore appear anywhere on
the "xed R line. The explanation for the d.d.
model is similar, DS

d
"M/(1#1/R) is a para-

meter, which explains the straight lines, and
M and R are mutually dependent dynamical
variables.

Noting that the points in Figs D2 and D4
appear to be bounded from above, we performed
simulations for the d.i. model with other para-
meter values, to inquire whether this is in fact the
case. As in Fig. D4 b"0.9, c"0, d"1.6,
D"0.01 and R varies from 0.4 to 10 (50 values).
In one run, we took (D/k) (1#1/R) to vary from
10 to 18 (50 values), and in a second run it varied
between 18 and 26 (50 values). These values were
chosen in such a way that they should appear
above the points in Fig. D2. The points for the
two new simulation series appear in Fig. D5
along with the points from the previous run, and
indeed, all points established a non-trivial steady
state. There appears to be no sign of an upper
phase boundary.
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