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Abstract — When studying information, biolo-
gists and behavioral scientists often eschew Shannon
entropy. Instead, they commonly use a decision-
theoretic measure of the value of information, on the
grounds that Shannon’s measure draws no distinction
between useful and useless information. Here we show
that these two measures are intimately related in the
context of biological evolution. We present a sim-
ple model of evolution in an uncertain environment,
and calculate the increase in Darwinian fitness that is
made possible by information about the environmen-
tal state. This fitness increase — the fitness value of
information — is a composite of both the Shannon
entropy and the decision-theoretic measure of infor-
mation value. Furthermore, the Shannon entropy of
the environment, which seemingly fails to take any-
thing about Darwinian fitness into account, nonethe-
less imposes an upper bound on the fitness value of
information.

I. Introduction

Information appears in almost every area of biology — from
the mating signals transmitted between the sexes, to environ-
mental cues used by plants to adapt to their environment, to
digital storage of information in the DNA. Nonetheless, infor-
mation theoretic measures such as Shannon entropy or mutual
information are seldom used in many of the areas of biology
that aim to understand how organisms have evolved to deal
with information, including behavioral biology and evolution-
ary ecology.

The problem is that Shannon entropy and mutual infor-
mation do not directly address information quality; they do
not distinguish between relevant and irrelevant information.
Thus decision theorists, economists, and behavioral biologists
typically measure the value of information by its effect on ex-
pected payoff or expected fitness [1, 2, 3, 4, 5].

Definition: The value of information associated
with a cue or signal X is defined as the difference
between the maximum expected payoff or fitness
that a decision-maker can obtain by condition-
ing on X and the maximum expected payoff that
could be obtained without conditioning on X.

The dissonance between Shannon entropy and the value
of information has long puzzled biologists in general and the
authors of this paper in particular. Shannon entropy (and
mutual information) appear to measure information quantity
while reflecting nothing about fitness consequences; the value
of information measures fitness consequences but has noth-
ing to do with the actual length or information quantity of
a message. What, if any, are the relations between them?
Information theorists since Kelly [7] have observed that in

special circumstances, information value and Shannon’s mea-
sures may be related. Here we argue that these “special cir-
cumstances” are exactly those about which biologists should
be most concerned: the context of evolution by natural se-
lection. We address the question “how much is information
worth to living organisms?” and show that the answer com-
bines both Shannon entropy and the decision-theoretic value
of information.

II. A basic model

How should a biologist measure the cost of uncertainty1

or the value of information? In biology, Darwinian fitness is
paramount: as a first approximation, we expect the evolved
traits of organisms to increase the fitness of those who exhibit
them. Thus when we look at biological adaptations for ac-
quiring or processing information, the relevant value of this
information is measured in the currency of Darwinian fitness.
Put simply, we want to know how the information effects fit-
ness. The natural measure the “worth” of information to a
biological organism is the following: the fitness value of in-
formation is the greatest fitness decrement or cost that would
be favored by natural selection in exchange for the ability to
attain the information.

We and others have previously demonstrated that like stock
brokers or habitual gamblers, biological organisms faced with
uncertain conditions are selected to behave as if they are con-
cerned with long-term growth rates. Thus the fitness value
of information to biological organisms is best measured in
terms of the consequences of this information on the long-term
growth rates of organismal lineages. These long-term growth
rates can be measured as the expected value of the logarithm
of the growth rate in a single generation [9] (as opposed to the
expected value of the growth rate itself).

To illustrate these results and to develop an intuition about
the value of information in biological systems, consider the fol-
lowing simple model of organisms living in a variable environ-
ment2. The environment has two possible states, state 1 and

1Numerous studies in population ecology and genetics have
shown that fitness and population growth in uncertain environ-
ments depend on the exact nature of the uncertainty; they depend
both on the distribution of individual reproductive successes, and on
the correlations in individual successes (reviewed in ref. [8]). One
can capture this complexity by distinguishing between two types
of uncertainty or risk [9]. Idiosyncratic risk is independent of that
faced by other individuals, whereas aggregate risk is perfectly cor-
related among individuals. For example, predation imposes largely
idiosyncratic risk on a herd of herbivores, whereas drought imposes
largely aggregate risk. In this paper, we focus exclusively on aggre-
gate risk. We will address mixed aggregate and idiosyncratic risk
in a subsequent report.

2While this model or variants thereof appear commonly in the
biology literature, the inspiration for this paper came largely from
J. L. Kelly’s application of information theory to gambling problems



state 2, that occur with probability p1, and p2 = 1−p1 respec-
tively. All individuals encounter exactly the same environment
in a given period. At the beginning of its development, each
organism makes an important developmental decision to adopt
one of two alternative physiologies or phenotypes: one suited
to environment 1, or one suited to 2. The organism survives
to reproduce only if its physiology properly matches the de-
mands of the current environment. The organism’s fitness is
given by the following matrix:

Phenotype 1 Phenotype 2
Environment 1 w1 0
Environment 2 0 w2

What should these individuals do in the absence of informa-
tion about the condition of the environment? In the short run,
individuals maximize expected fitness by playing the highest-
payoff strategy only. This yields an expected single-generation
fitness of max[p1 w1, p2 w2].

But in the long run, playing only one strategy will in-
evitably lead to a year with zero fitness and subsequent ex-
tinction. Thus natural selection will favor not the short run
maximization above, but rather a maximization of long-term
fitness. These organisms will be selected to hedge their bets
[9, 10], developing into phenotype 1 with some probability
and phenotype 2 otherwise. As the number of generations N
grows large, natural selection is overwhelmingly likely [9] to
favor the strategy that maximizes the growth rate for typical
sequences [6], in which environment 1 occurs N p1 times, and
environment 2 occurs N p2 times. For a genotype that devel-
ops with probability x into phenotype 1, the growth rate for
such a sequence of events will be (w1 x)Np1(w2(1 − x))Np2

and the log of this growth rate will be maximized when
N(p1 log(w1x) + p2 log(w2(1 − x))) is maximized. This oc-
curs when p1/x = p2/(1 − x) or when x = p1. Thus for
almost all sequences of environments, the strategy that de-
velops with probability p1 into phenotype 1 will maximize
expected log growth rate and thus take over the popula-
tion. For this strategy, the expected log growth rate will be
p1 log(w1p1) + p2 log(w2p2).

We have set up a simple biological model where uncertainty
critically effects Darwinian fitness. What is the fitness value
of information here? Suppose that individuals are able to de-
tect a cue that they can use to forecast (100% accurately) the
state of the environment. In this case the organism will use
phenotype 1 in environment 1, and phenotype 2 in environ-
ment 2. What is the fitness value of [being able to obtain] this
cue?

First, we can look at how the cue improves the short-
run expected fitness. With the cue, individuals can al-
ways develop the appropriate phenotype for the environ-
ment, and obtain short-run expected fitness p1w1 + p2w2.
Thus in the short run, the expected value of information is
p1w1 + p2w2 −max[p1 w1, p2 w2] = min[p1 w1, p2 w2]. This is
exactly the decision-theoretic value of information.

[7]. In this section, we follow Cover and Thomas’s (1991) presen-
tation; these authors offer a parable about a sempiternal gambler
who perpetually reinvests his entire winnings at the horse track.
Their gambling story can be recast quite naturally as a model of
organisms evolving by natural selection to match their physiolo-
gies to uncertain environmental conditions. In subsequent sections,
we extend these results to further explore our model of biological
evolution.

But natural selection will not maximize this quantity;
instead as discussed above it maximizes the expected log
growth rate. Without the cue, expected log growth rate is
p1 log(p1w1) + p2 log(p2w2). With the cue it is p1 log w1 +
p2 log w2. The biological fitness value of information —
namely, the difference between log growth with and without
the cue — is exactly the Shannon entropy of the environment
H = p1 log p1 + p2 log p2. The payoffs wi have dropped out.
For this very simple example, the fitness value of information
has nothing to do with the fitnesses obtained in different en-
vironments, but instead depends exclusively on the Shannon
entropy3 of the system [7, 6].

III. Extending the model
Thus far we have been looking at a very special case in

which the fitness of the organism is zero when the wrong phe-
notype is adopted. A more realistic model would allow the
possibility of non-zero fitness even when the organism develops
to the wrong phenotype. Let us now assume that an organ-
ism has to make a developmental decision between n possible
phenotypes, each of which is optimally adapted to one of n
environments. The environments occur with probabilities pi

and the fitness to phenotype j in environment i is wij .
How should an organism respond? To maximize short-run

expected payoff, an organism should simply develop the phe-
notype with the highest expected fitness. Expected fitness

then will be E[w] = maxj

[∑
i
pi wij

]
.

What about long-term payoff? Let us look at a strategy
that produces phenotype i with probability xi. The organism
will be selected to maximize the expected log growth rate for∑

i
xi = 1 so we want to find the strategy that maximizes the

log growth rate
∑

i
pi log

∑
j
wijxj subject to the constraint

that
∑

i
xi = 1. The Lagrangian for this problem is

L(x1, x2, . . . , xn, λ) =
∑

i

pi log
∑

j

wijxj − λ
(∑

i

xi − 1
)

(1)
Since the constraint function is a linear function, it imme-

diately satisfies the constraint qualification that the partials
of the constraint function at the constrained maximizer are
not all zero. We maximize the Lagrangian by taking partial
derivatives and setting to zero. The partials with respect to
xk yield a set of n equations:

∂
∂xk

[∑

i

pi log
∑

j

wijxj − λ
∑

i

xi] = 0 (2)

Assuming that W (the matrix whose (i, j) entry is wij) is
invertible, we can write yi =

∑
j
wijxj , and V = W−1, so

that xj =
∑

i
vjiyi. Then we can solve

∂
∂yk

[∑

i

pi log
∑

j

yj − λ
∑

ij

vjiyi

]
= 0 (3)

3More generally, we should replace the Shannon entropy of the
environment with the mutual information between the environment
and whatever cues are available. When the cues are perfectly ac-
curate, as in all the examples treated herein, these quantities are
identical. When they are not, mutual information is the appropri-
ate measure. Kelly [7] has shown that imperfect side information
allows a gambler to increase his earnings rate by exactly the mutual
information between the side information and the actual outcome.
Similarly, in our model the fitness value of an imperfect cue will be
exactly the mutual information between cue and environment.



for all k, which gives for all k:

pk

yk
− λ

∑

j

vjk = 0 (4)

Now we can solve for the constraint
∑

i
xi = 1, which gives

λ = 1 and thus we have yk = pk/
∑

j
vjk. Substituting this

into the equation for the log growth rate, to get the maximal
log growth rate, gives

∑

i

pi log(
pi∑
j
vji

) =
∑

i

pi log(pi)−
∑

i

pi log(
∑

j

vji) (5)

What are the values of information in each of these cases?
The log growth rate with a cue that reveals the exact en-

vironment is
∑

i
pi log(wii), so that the value of the cue is

−
∑

i

pi log(pi) +
∑

i

pi log(wii

∑

j

vji) (6)

This is exactly the Shannon entropy of the cue plus a linear
transform of the probabilities pi. We note that this equation
holds only for interior solutions where the organism develops
into all n phenotypes with positive probability, i.e., when all
xi in (0, 1). Outside of this interior, the fitness value of in-
formation will be otherwise, as we will see in the following
section.

IV. Two illustrative examples

In this section, we consider a pair of examples in which the
fitness of the organism is non-zero when it develops to the
“wrong” phenotype. We start with a two-environment, two-
phenotype example. Since the players have no control over the
state of the environment, we can study the decision-theoretic
behavior of the players without loss of generality using the
following matrix where 1 > a > b:

Phenotype 1 Phenotype 2
Environment 1 1 b
Environment 2 a 1

If the player invests x in phenotype 1and 1−x in phenotype
2, her expected log growth rate will be p log[x + a(1 − x)] +
(1− p) log[b x + (1− x)]. In the absence of information about
which environmental state is realized, the choice of x∗(p) that
maximizes expected log growth given the probability p of en-
vironment 1 is:

x∗(p) =






0 for p ≤ a(1−b)
1−a b

1 for p ≥ 1−b
1−a b

p+a b(1−p)−a
(1−a)(1−b) for a(1−b)

1−a b < p < 1−b
1−a b

(7)

If the player knows exactly the state of the environment,
she will match her phenotype to the environment always, for
an expected log growth rate of log 1 = 0. If she does not
know the state of the environment, her fitness when following
strategy x∗(p) will be:






p log[a] for p ≤ a(1−b)
1−a b

(1− p) log[b] for p ≥ 1−b
1−a b

(1− p) log[1− p] + p log[p]+
log[1− ab]− (1− p) log[1− a]−
p log[1− b] Otherwise

(8)

Since log growth is zero whenever the environment is
known, the value of the information of a cue that reveals the
environmental state is simply minus the payoff of the selected
strategy when the environment is unknown.

In the central region a(1−b)
1−a b < p < 1−b

1−a b , the fitness value
of information is equal to the Shannon entropy of the environ-
ment plus a linear function of the probability of each environ-
ment. Outside the range, when the optimal strategy invests
in only one of the phenotypes, the value of the cue is −p log[a]
or −(1− p) log[b]. This value is exactly equal to the short run
value of information that one would get when maximizing the
fitness in one generation.
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0.2

0.4

value

A

B
C

Figure 1. The value of information as a function of envi-
ronmental probabilities p (heavy solid curve) is a composite
of three value functions: Curve (A) is the Shannon-like curve
(1− p) log[1− p] + p log[p] + log[1− ab]− (1− p) log[1− a]−
p log[1−b]. Curves (B) and (C) are the linear functions p log[a]
and (1 − p) log[b] respectively. Parameter values: a = 0.65,
b = 0.35.

Simple calculus reveals that the despite being composed of
a linear component and a logarithmic component, the value
of information curve is not only continuous but also once con-
tinuously differentiable.

To get a better intuition of how the value of information
relates to the evolutionarily optimal strategy in the absence
of information, we move to the case of 3 environments that
occur with probabilities p1, p2, and (1 − p1 − p2). While the
principles generalize to larger numbers of environments and
less-symmetric payoffs, three symmetric environments are far
easier to represent graphically than some of the more com-
plicated alternatives. Thus we consider the following payoffs
structure where k > 1:

Phenotype 1 Phenotype 2 Phenotype 3
Env. 1 k 1 1
Env. 2 1 k 1
Env. 3 1 1 k

Using the approach sketched out above, we can compute
the fractional investment x1, x2, x3 in each strategy that max-
imizes long-term growth rate:

x1 = (p1(1 + w)− p2 − p3)/(w − 1)

x2 = (p2(1 + w)− p1 − p3)/(w − 1) (9)

x3 = (p3(1 + w)− p1 − p2)/(w − 1)
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Figure 2. Fractional investment in each strategy in order
to maximize long-term growth rate, displayed on the simplex
p1 + p2 + p3 = 1. Each point on the triangle corresponds
to a set of environmental probabilities {p1, p2, p3} equal to
where one corner represents (1, 0, 0), another (0, 1, 0), and the
third (0, 0, 1). The height of the three surfaces at any point
indicates the fractional investment in each strategy at that
point. Heights greater than one require corresponding bets
against the other strategies; see text.

Here we have a curious sort of investment; the gray surface
is the ”invest zero” plane. When the colored surfaces drop be-
low this, the player is effectively ”betting against” the occur-
rence of the corresponding environment. This sort of invest-
ment may be feasible in a stock market or a horse race. But
these negative bets seem to lack a biological meaning. In bio-
logical situations, we do better to look at the constrained case
where the player can make only non-negative investments in
each phenotype. The solution above is then only reasonable in
the central region where all three bets are non-negative. This
area, which we will call Region 1, is delimited by pi > 1/(2+w)
for all i = 1, 2, 3. Outside of Region 1, we will have to compute
optimal bets subject to constraints that no bet is negative. We
do this below.

When one environment is sufficiently unlikely but the other
two are common, an individual will invest in the phenotypes
corresponding to the two common environments but the rare
one. This defines three regions on the simplex given by the
trio of inequalities pi < 1/(2 + w), pj < pkw, and pk < pjw.
In these three areas which collectively we call Region 2, in-
vestment will be given by

xi = 0

xj = (pjw − pk)/(w − 1) (10)

xk = (pkw − pj)/(w − 1)

Finally, when two environments are sufficiently rare, all invest-
ment will be in the common environment. This occurs outside
of the areas covered by Regions 1 and 2, in three corner areas
which collectively we call Region 3.

Because of the different betting strategies in each region,
the value of information in each region is computed by a dif-
ferent formula. We take these in turn.

In Region 1, by equation (6), a cue that indicates the state
of the environment increases the expected log growth rate by

log[w/(2 + w)] +
∑

pi log pi (11)

This is simply a constant plus the Shannon entropy of the
environment.

In Region 2, let a be the phenotype never adopted by the
organism. Then the cue increases the expected growth rate
by

log w −
∑

i#=a

pi log pi − (1− pa) log[(1 + w)/(1− pa)] (12)

In Region 3, let b be the phenotype always adopted by the
organism. The cue increases expected log growth rate by

(1− pb) log w (13)

This is simply the decision-theoretic log value of information.
Putting these all together, we get the following surface:

Region 1 Region 2 Region 3

Figure 3. The value of information as a function of the proba-
bilities that each environment occurs, for the symmetric three-
environment scenario with w = 2, displayed on the simplex
p1 + p2 + p3 = 1.

Surprisingly, this fitness value of information surface seam-
lessly sews together a region described by the Shannon infor-
mation (Region 1), a region described by the decision-theoretic
value of information (Region 3), and an intermediate region
(Region 2). Comparing the height of the surface and the gra-
dients along the relevant edge and point boundaries, calculus
reveals that this surface is again continuous and once con-
tinuously differentiable (but not twice continuously differen-
tiable) everywhere. The fitness value of information incorpo-
rates both the Shannon measure and the decision-theoretic
value — and through the continuity of the corresponding re-
gions, we also see a fundamental connection between these two
measures.

V. Bounding the fitness value of information

We can also show that the fitness value of information is
bounded above by the Shannon entropy4. To do so, com-
pare the expected log growth rate of individuals of two types.
Type A individuals receive a cue x with possible values
x1, x2, x3, . . . , xn drawn from a distribution with probability
function P (x) and entropy H(x). Each individual then maxi-
mizes expected log growth rate by following some investment
strategy s(x) that sets how to invest in the various phenotypes,
given the receipt of cue x.

4As before, this result can be extended to replace Shannon en-
tropy with mutual information between cue and environment



Type B individuals do not receive this cue. Instead, they
follow the betting strategy r =

∑
x

P (x)s(x), thereby em-
ploying a probability-matching mixture of the various s(x)
strategies used by Type A individuals.

Represent the fitness of an individual using strategy s(y)
when the cue was x by w(s(y)|x). The expected log growth
rate for Type A individuals is then

w̄A =
∑

x

P (x) log[w(s(x)|x)]. (14)

The expected log growth rate for Type B individuals is

w̄B =
∑

x

P (x) log
[∑

y

P (y)w(s(y)|x)
]
. (15)

Since fitnesses are non-negative, the w(s(y)|x) terms in the
summation above must be at least zero even for y $= x, and
therefore

w̄B ≥
∑

x

P (x) log[P (x)w(s(x)|x)]

=
∑

x

P (x) log[w(s(x)|x)] +
∑

x

P (x) log P (x)

= w̄A −H(x). (16)

Thus the fitness value of information is at most equal to the
Shannon entropy of the cue, irrespective of the actual fitness
payoffs w.

VI. Conclusions

In this paper we have shown that two measures of infor-
mation, Shannon entropy and the decision-theory value of
information, are united into one single information measure
when one looks at the strategies that natural selection will
favor, namely those that maximize the long term growth rate
of biological organisms. Furthermore, we have shown that in
evolving biological systems, the fitness value of information is
bounded above by the Shannon entropy. These results suggest
a close relationship between biological concepts of Darwinian
fitness and information-theoretic measures such as Shannon
entropy or mutual information.

These results also suggest that biologists will be able to
make valuable use of information theory in studying the evo-
lution of communication. Even before knowing what a biolog-
ical signal means, how it is used, or what the fitness structure
of the environment may be, we have shown that one can place
an upper bound on the fitness consequences of responding to
that signal, simply by measuring the information content of
the signalling channel.
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