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It has been well known since the pioneering work of Claude Shannon in the 1940s that a message
transmitted with optimal efficiency over a channel of limited bandwidth is indistinguishable from
random noise to a receiver who is unfamiliar with the language in which the message is written. We
derive some similar results about electromagnetic transmissions. In particular, we show that if
electromagnetic radiation is used as a transmission medium, the most information-efficient format
for a given message is indistinguishable from blackbody radiation. The characteristic temperature of
the radiation is set by the amount of energy used to make the transmission. If information is not
encoded in the direction of the radiation, but only in its timing, energy, and polarization, then the
most efficient format has the form of a one-dimensional blackbody spectrum. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION

Shannon’s information theory1,2 considers the set$xi% of
all possible messagesxi that can be transmitted across
channel linking a sender to a receiver. In the simplest c
the channel is considered to be free of noise, so that e
message is received just as it was sent. Shannon dem
strated that the only consistent definition of the avera
amount of information carried by such a channel per m
sage sent is

S52(
i

pi log pi , ~1!

where pi is the probability of transmission of the messa
xi . We will take ‘‘log’’ to mean the natural logarithm as i
common in statistical mechanics. In information theory ba
2 logarithms are the norm, but this choice just multipliesS
by a constant. In statistical mechanics,S is multiplied by the
Boltzmann constantk; we will measure temperature in uni
of energy, so thatk51.

If there are no other constraints, thenS is maximized when
all thepi are equal, that is, when all messages are transm
with equal probability. If we transmit a constant stream
information in this way by sending many messages one a
another, chosen with equal probability from the set$xi%, then
the resulting flow of data will appear completely random
anyone who does not know the language in which it is w
ten; that is, it will appear to be white noise.

We now consider the corresponding problem for a m
sage sent using electromagnetic radiation. In outline our
gument is as follows. We assume that the sender of a r
message has a certain amount of energy available, and
ask what is the maximum amount of information that can
1290 Am. J. Phys.72 ~10!, October 2004 http://aapt.org/a
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sent with that energy. Generically, this problem is one
maximizing the Shannon information, Eq.~1!, for an en-
semble of bosons~photons in this case! subject to the con-
straint of given average energy. The solution is familiar fro
statistical physics, because the formula for the Shannon
formation is identical to that for the thermodynamic entro
of an ensemble. The maximization of entropy for an e
semble of bosons gives rise to Bose–Einstein statistics
for the case of electromagnetic waves, to blackbody rad
tion. By an exact analogy we now show that the mo
information-rich electromagnetic transmission has a sp
trum indistinguishable from blackbody radiation.

II. THE TRANSMISSION OF INFORMATION USING
ELECTROMAGNETIC RADIATION

In order to apply Shannon’s theory to electromagnetic
diation, we must pose our problem in a form resembling
transmission of information over a channel. To do that, c
sider the following thought experiment. Suppose we hav
closed container or cavity with perfectly reflecting wall
which, for reasons that will become clear shortly, we take
be a long tube of constant cross-sectional areaAt and length
,. Suppose also that we have the technical wherewithal to
up within this cavity any electromagnetic microstate, that
any superposition of the modes of the cavity. Because
walls are perfectly reflecting, this microstate will remain
place indefinitely.

We consider using the cavity as a communication dev
in the following~slightly odd! way. Each possible messagexi
that we might wish to send is agreed to correspond to
microstate, and we simply pass the entire cavity to the
ceiver of the message. The information transferred by
electromagnetic radiation stored within it is then given
1290jp © 2004 American Association of Physics Teachers
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Shannon’s formula withpi the probability that the cavity is
in microstatei . This form of communication is not the sam
as sending a radio message, but as we will demonstra
has the same information content.

Now suppose that, as in the case of the simple channel
wish to transmit a steady stream of information by excha
ing a series of such cavities. We assume that the power a
able to make the transmission is limited—there is a fix
average energy ‘‘budget’’^E& that we can spend per messa
sent—and we ask what is the greatest amount of informa
that can be transmitted per message. This amount is give
maximizing Eq.~1! subject to the constraint of fixed averag
energy but allowing any number of photons to be presen
the cavity. The solution of this maximization problem
well-known3,4 and gives the grand canonical ensemble
which

pi5
exp@2b~Ei2mNi !#

Z
, ~2!

whereEi is the energy in microstatei , Ni is the number of
photons,Z is the grand canonical partition function, andb
and m are Lagrange multipliers, usually referred to as t
~inverse! temperature and chemical potential, respectively
we now denote the microstates by the numbers of pho
$nk% in each single-particle statek of the cavity, then it is
straightforward to show that the average ofnk over many
messages follows the Bose–Einstein distribution

^nk&5
1

eb«k21
, ~3!

where«k is the energy of a photon in statek. We have set
m50 because there is no chemical potential for photons
vacuum.

Suppose now that, instead of handing over the entire c
ity, we remove one of its ends and allow the photons
escape in the form of a radio transmission. We should en
age the end of the cavity as being the transmitter, not
cavity itself. The cross-sectionAt of the cavity is the area o
the transmitter, hence the subscriptt. Usually we will want
to direct the message toward a specific receiver. For c
creteness we will assume that the receiver is a distancd
from the end of the cavity and presents some finite areaAr to
the cavity as depicted in Fig. 1. Only those photons in
cavity that have their momentum within the correct interv
of solid angle will strike the receiver, possibly after reflecti
one or more times off the walls of the cavity.~We use only
the forward interval of solid angle, disallowing reflection
off the rear wall of the cavity. If we allow such reflection
the transmission will convey twice as much information b
last twice as long, making the rate of information trans
identical.! Given that our cavity has volumeV5,At , the

Fig. 1. The setup of our thought experiment. A tubular cavity of cro
sectionAt ~or more precisely its open end! is used as a transmitter. Th
message is received by a receiver of areaAr a distanced away.
1291 Am. J. Phys., Vol. 72, No. 10, October 2004
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density of single-particle states satisfying this criterion, ta
ing into account both polarizations of the photons, isr(«)
52,AtAr«

2/d2h3c3, whereh is Planck’s constant andc is
the speed of light. The power spectrum of our message—
average energy per unit time per unit interval of energy—
thus

I ~«!5
2,AtAr

d2h3c3

«3

eb«21
. ~4!

This functional form for the intensityI («) is usually referred
to as a blackbody spectrum. A blackbody spectrum is p
duced by a perfect thermal radiator in equilibrium at te
peratureT5b21, and, to a good approximation, by mo
astronomical bodies.

There is a small correction to Eq.~4! because photons ma
be delayed slightly if they have to take a path that reflects
the walls of the cavity. This correction goes inversely as
cosine of the angle subtended by the receiver at the trans
ter. We have assumed that the distance between transm
and receiver is large enough that this cosine is well appro
mated by 1.

Our transmission necessarily contains all the informat
needed to reconstruct the original microstate of the cav
and therefore contains the same amount of information
that microstate. Furthermore, no ensemble of messages
exist that originates within a volume less than or equal to t
of our cavity and conveys more information per message
the same average energy. If such an ensemble existed, re
ing time would allow us to trap messages drawn from t
ensemble within a cavity of the same size and create
ensemble of microstates that also had greater informa
content. This state of affairs would lead to a contradictio
because the blackbody spectrum maximizes the entropy

Now we send a stream of information in the form of ma
such messages, each one resulting from one microstate o
cavity. Because of the tubular shape we have chosen for
cavity, each message will last a time,/c and the transmis-
sion will have constant average intensity. The apparent t
perature of the transmission is fixed by the size of the ene
budget. Calculating the average energy^E& per message by
integrating Eq.~4! over the energy« and dividing by,/c, we
find that for a transmission with powerP ~the energy budge
per unit time! the apparent temperatureT5b21 is given by

T45
15h3c2

2p4

d2

AtAr
P. ~5!

The information transmitted per unit time, dS/dt, can be cal-
culated usingS5 logZ2b ] logZ/]b, noting that] logZ/]b
5^E&. The result is

dS

dt
5

8p4

45h3c2

AtAr

d2 T35F 512p4

1215h3c2

AtAr

d2 P3G1/4

. ~6!

Equation~6! gives the greatest possible rate at which info
mation can be transferred by any electromagnetic transm
sion for a given average powerP. It depends only on fun-
damental constants, the areas of the transmitter and rece
the distance between them, and the average power
equivalently, the apparent temperature.

Results similar to ours have been derived using differ
methods in Ref. 5 for information flow through a wavegui
and in Ref. 6. These results differ from ours in thatAtAr /d2

is replaced by the waveguide’s cross-sectional area.

-
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For a transmitter and receiver of one square meter eac
meter apart, with a power ofP51 W, the information rate is
1.6131021 bits per second. Note that the information ra
increases asP3/4, slightly slower than linear. It also increase
with the area of the transmitter and receiver, so that the
information rate for a given energy budget is achieved
large antennas and low apparent temperature.

III. ONE-DIMENSIONAL TRANSMISSIONS

To reconstruct the microstate of the original cavity a
hence extract the information from a transmission of t
kind, we need to have complete information about the p
tons arriving at our receiver. Thus in addition to energy a
polarization information, we need to know the transve
components of the momentum~or position! of each photon.
In practice, we can only detect the transverse compon
with finite resolution, which places an upper limit on th
energy range over which Eq.~4! is valid. Conversely, the
finite size of the receiver places an upper limit on the wa
length of the photons that can be detected, and thus a lo
limit on their energy. Therefore, for a given receiver, t
most information-efficient spectrum will maximize the e
tropy conditioned on the frequency being between these
its.

In fact, most receivers are not capable of measuring
transverse components at all. Usually we have informa
about only the energy and timing of the arriving photons, a
possibly their polarization. In this case Eq.~3! still holds, but
the density of states becomesr(«)52,/hc, and Eq.~4! be-
comes

I ~«!5
2,

hc

«

eb«21
. ~7!

Equation~7! is the form that the spectrum of a black bod
would take in a one-dimensional world, and we refer to it
a ‘‘one-dimensional blackbody spectrum.’’ The appare
temperatureT5b21 is then given by

T25
3h

p2 P, ~8!

and the information transmitted per unit time is

dS

dt
5

2p2

3h
T5F4p2

3h
PG1/2

. ~9!

For an energy budget of 1 W, Eq.~9! gives a maximum
information rate of 2.0331017 bits per second. This boun
also applies to broadcast transmission for which we do
know the location or size of the receiver and therefore can
guarantee that it will receive all, or even most, of the photo
transmitted.

Equation~9! has a long history, which has been well r
viewed by Bekenstein and Schiffer7 and Caves and
Drummond.8 It often is written for a single-polarization
channel, in which case dS/dt is & smaller. It was first de-
rived by Lebedev and Levitin,9 who considered the thermo
dynamics of the receiver, modeling it as a set of harmo
oscillators. Pendry10 followed an approach similar to ours i
which the field is in thermodynamic equilibrium.

As Yuen and Ozawa11 have pointed out, these derivation
implicitly assume that what Caves and Drummond8 call a
‘‘number-state channel,’’ in which information is received b
counting photons with each frequency and polarization
1292 Am. J. Phys., Vol. 72, No. 10, October 2004
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optimal. They prove this assumption using bounds on
quantum entropy. Finally, it is interesting to note, as in R
7, that if we cannot measure transverse momenta, then
transmission rate of Eq.~9! is independent ofc, the speed of
the particles carrying the information. Thus phonons, say,
just as efficient as photons.

Interestingly, Eq.~9! also can be derived by a though
experiment in which we transmit the signal into a black ho
and consider its increase in entropy. This derivation
closely related to the fact that Hawking radiation also obe
a one-dimensional blackbody spectrum.12

IV. DISCUSSION AND CONCLUSIONS

We have shown that optimizing the information efficien
of a transmission that employs electromagnetic radiation
the information carrier, with a fixed energy budget per u
time, gives rise to a spectrum of intensities identical to t
of blackbody radiation. In fact, to an observer who is n
familiar with the encoding scheme used, an optimally e
cient message of this type would be entirely indistinguis
able from naturally occurring blackbody radiation. On
might be tempted to say that perhaps one could tell the
apart by spotting patterns within particular frequency ban
of the message, or by performing some other decomposi
of the signal. This possibility is however ruled out by th
maximization of the Shannon information; any regulariti
that would allow one to draw such a distinction are nec
sarily the result of less-than-optimal encoding. For the c
where the transverse momentum of photons is not use
encode information, or for broadcast transmissions, the s
trum is that of a one-dimensional black body. We also ha
shown that the characteristic temperature of the messag
simply related to the energy used to send it, and we h
derived an upper limit on the rate at which information c
be transmitted in both cases.

We end with some discussion and speculations. First,
should point out that the ideas outlined here constitute on
thought experiment. By a sequence of deductions we h
placed an upper limit on the information efficiency of ele
tromagnetic transmissions, but we have not shown how
achieve that upper limit. Second, we note that reason
similar to that presented here applies to transmissions u
other radiative media as well. Because many natural p
cesses maximize the Gibbs–Boltzmann entropy, they sho
give rise to spectra indistinguishable from optimally efficie
transmissions. For instance, if we had a transmitter that co
emit any type of particle~rather than just photons!, it seems
plausible that the optimal spectrum of particle types and
ergies would be that of Hawking black-hole radiation.13

Finally, we note that, in a recent science fiction nove14

the cosmic background radiation~which is roughly black-
body at 3 K! is revealed to consist of the highly compress
transmissions of long-dead alien civilizations.
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