The physical limits of communication or
Why any sufficiently advanced technology is indistinguishable from noise
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It has been well known since the pioneering work of Claude Shannon in the 1940s that a message
transmitted with optimal efficiency over a channel of limited bandwidth is indistinguishable from
random noise to a receiver who is unfamiliar with the language in which the message is written. We
derive some similar results about electromagnetic transmissions. In particular, we show that if
electromagnetic radiation is used as a transmission medium, the most information-efficient format
for a given message is indistinguishable from blackbody radiation. The characteristic temperature of
the radiation is set by the amount of energy used to make the transmission. If information is not
encoded in the direction of the radiation, but only in its timing, energy, and polarization, then the
most efficient format has the form of a one-dimensional blackbody spectrurzno® American
Association of Physics Teachers.
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[. INTRODUCTION sent with that energy. Generically, this problem is one of
maximizing the Shannon information, E¢l), for an en-
Shannon’s information theoty considers the sdix;} of  semble of bosongphotons in this cagesubject to the con-
all possible messages that can be transmitted across a straint of given average energy. The solution is familiar from
channel linking a sender to a receiver. In the simplest casstatistical physics, because the formula for the Shannon in-
the channel is considered to be free of noise, so that eadiormation is identical to that for the thermodynamic entropy
message is received just as it was sent. Shannon demo@f an ensemble. The maximization of entropy for an en-
strated that the only consistent definition of the averagesemble of bosons gives rise to Bose—Einstein statistics and,

amount of information carried by such a channel per mesfor the case of electromagnetic waves, to blackbody radia-
sage sent is tion. By an exact analogy we now show that the most

information-rich electromagnetic transmission has a spec-

S= _Ei pilogp: , (1) trum indistinguishable from blackbody radiation.

wherep; is the probability of transmission of the messagell. THE TRANSMISSION OF INFORMATION USING
X;. We will take “log” to mean the natural logarithm as is ELECTROMAGNETIC RADIATION
golmmo_r:hln statls'[;rc]:al mechabm(t:st.h_ln |rr1]fo_rma_tlo? thelgrylé)ase In order to apply Shannon'’s theory to electromagngtlc ra-
ogarithms are theé norm, but this choice Just MUllipReS — g;a40n we must pose our problem in a form resembling the
by a constant. In statistical mechani€sis multiplied by the  ansmission of information over a channel. To do that, con-
Boltzmann constark; we will measure temperature in units sjder the following thought experiment. Suppose we have a
of energy, so thak=1. closed container or cavity with perfectly reflecting walls,
If there are no other constraints, th&iis maximized when  which, for reasons that will become clear shortly, we take to
all thep, are equal, that is, when all messages are transmittelde a long tube of constant cross-sectional #&gand length
with equal probability. If we transmit a constant stream of¢. Suppose also that we have the technical wherewithal to set
information in this way by sending many messages one aftemp within this cavity any electromagnetic microstate, that is,
another, chosen with equal probability from the{se}, then  any superposition of the modes of the cavity. Because the
the resulting flow of data will appear completely random towalls are perfectly reflecting, this microstate will remain in
anyone who does not know the language in which it is writ-place indefinitely.
ten; that is, it will appear to be white noise. We consider using the cavity as a communication device
We now consider the corresponding problem for a mesin the following(slightly odd way. Each possible message
sage sent using electromagnetic radiation. In outline our atthat we might wish to send is agreed to correspond to one
gument is as follows. We assume that the sender of a radimicrostate, and we simply pass the entire cavity to the re-
message has a certain amount of energy available, and veeiver of the message. The information transferred by the
ask what is the maximum amount of information that can beslectromagnetic radiation stored within it is then given by
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" density of single-particle states satisfying this criterion, tak-

A ing into account both polarizations of the photonsp(g)
5 =2¢AA,2/d’h3c®, whereh is Planck’s constant and is
L\ ; = o - the speed of light. The power spectrum of our message—the
g average energy per unit time per unit interval of energy—is
- I - thus
Fig. 1. The setup of our thought experiment. A tubular cavity of cross- 20AA, g3
sectionA; (or more precisely its open ehis used as a transmitter. The I(e)= W m (4)

message is received by a receiver of atea distancel away.

This functional form for the intensiti(e) is usually referred

to as a blackbody spectrum. A blackbody spectrum is pro-
Shannon’s formula wittp; the probability that the cavity is duced by a perfect thermal radiator in equilibrium at tem-
in microstatei. This form of communication is not the same peratureT=8"1, and, to a good approximation, by most
as sending a radio message, but as we will demonstrate, dstronomical bodies.
has the same information content. There is a small correction to E@l) because photons may

Now suppose that, as in the case of the simple channel, wiee delayed slightly if they have to take a path that reflects off

wish to transmit a steady stream of information by exchangthe walls of the cavity. This correction goes inversely as the
ing a series of such cavities. We assume that the power avaitosine of the angle subtended by the receiver at the transmit-
able to make the transmission is limited—there is a fixeder. We have assumed that the distance between transmitter
average energy “budgetE) that we can spend per messageand receiver is large enough that this cosine is well approxi-
sent—and we ask what is the greatest amount of informatiofmated by 1.
that can be transmitted per message. This amount is given by Our transmission necessarily contains all the information
maximizing Eq.(1) subject to the constraint of fixed average needed to reconstruct the original microstate of the cavity,
energy but allowing any number of photons to be present iaind therefore contains the same amount of information as
the cavity. The solution of this maximization problem is that microstate. Furthermore, no ensemble of messages can
well-knowr?* and gives the grand canonical ensemble inexist that originates within a volume less than or equal to that

which of our cavity and conveys more information per message for
the same average energy. If such an ensemble existed, revers-

p:exq_ﬁ(Ei_'“Ni)] ) ing time would allow us to trap messages drawn from that

: Z ' ensemble within a cavity of the same size and create an

. . . . ensemble of microstates that also had greater information
whereE; |s.the energy In mlcrt_)stane N.i S the nu_mber of content. This state of affairs would lead to a contradiction,
photons,Z is the grand canonical partition function, ad  acqyse the blackbody spectrum maximizes the entropy.
and u are Lagrange multipliers, usually referred to as the o, we send a stream of information in the form of many
(inverse temperat#re and chemical p?]tentlal, respec;nvely. l'such messages, each one resulting from one microstate of the
we now denote the microstates by the numbers of photons,yity. Because of the tubular shape we have chosen for our
{ni in each single-particle state of the cavity, then it is  cayity each message will last a tinféc and the transmis-
straightforward to show that the average rgf over many  gjon will have constant average intensity. The apparent tem-

messages follows the Bose—Einstein distribution perature of the transmission is fixed by the size of the energy
1 budget. Calculating the average enef@®) per message by
(ny= P (3)  integrating Eq(4) over the energy and dividing by¢/c, we

_ . find that for a transmission with powé (the energy budget
wheree, is the energy of a photon in stake We have set per unit timé the apparent temperatufe= 3~ is given by
wn=0 because there is no chemical potential for photons in a

15h3c? d?
vacuum. ) . ) T4: — P (5)
Suppose now that, instead of handing over the entire cav- 2% AA,
ity, we remove one of its ends and allow the photons t . . . o
escape in the form of a radio transmission. We sr?ould envis- he |nform_at|on transmitted per unit tmeS/cdt, can be cal-
age the end of the cavity as being the transmitter, not th€ulated usingS=logZ-p dlog Z/dp, noting thatd log Z/dp3
cavity itself. The cross-sectioh, of the cavity is the area of =(E). The result is
the transmitter, hence the subscriptUsually we will want ds  87* AA , 5127% AA,
to direct the message toward a specific receiver. For con- i T 1= v i)
. . ) . t 45h°cc d 121%°cs d
creteness we will assume that the receiver is a distahce
from the end of the cavity and presents some finite Aret@ Equation(6) gives the greatest possible rate at which infor-
the cavity as depicted in Fig. 1. Only those photons in thenation can be transferred by any electromagnetic transmis-
cavity that have their momentum within the correct intervalsion for a given average powé. It depends only on fun-
of solid angle will strike the receiver, possibly after reflecting damental constants, the areas of the transmitter and receiver,
one or more times off the walls of the cavityVe use only the distance between them, and the average power, or
the forward interval of solid angle, disallowing reflections equivalently, the apparent temperature.
off the rear wall of the cavity. If we allow such reflections, Results similar to ours have been derived using different
the transmission will convey twice as much information butmethods in Ref. 5 for information flow through a waveguide
last twice as long, making the rate of information transferand in Ref. 6. These results differ from ours in tAga, /d?
identical) Given that our cavity has volumg=¢A,, the s replaced by the waveguide’s cross-sectional area.

1/4
3

(6)
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For a transmitter and receiver of one square meter each,@timal. They prove this assumption using bounds on the
meter apart, with a power ¢¥=1 W, the information rate is quantum entropy. Finally, it is interesting to note, as in Ref.
1.61x 10°* bits per second. Note that the information rate?, that if we cannot measure transverse momenta, then the
increases aB¥*, slightly slower than linear. It also increases transmission rate of Eq9) is independent of, the speed of
with the area of the transmitter and receiver, so that the bedhe particles carrying the information. Thus phonons, say, are
information rate for a given energy budget is achieved fojust as efficient as photons.

large antennas and low apparent temperature. Interestingly, Eq.(9) also can be derived by a thought
experiment in which we transmit the signal into a black hole
Ill. ONE-DIMENSIONAL TRANSMISSIONS and consider its increase in entropy. This derivation is

closely related to the fact that Hawking radiation also obeys
To reconstruct the microstate of the original cavity anda one-dimensional blackbody spectrén.
hence extract the information from a transmission of this
kind, we need to have complete information about the pho-
tons arriving at our receiver. Thus in addition to energy and
polarization information, we need to know the transversd V- DISCUSSION AND CONCLUSIONS
components of the momentufar position of each photon. o . . -
In pfactice, we can only det(:ctpthe trgnsverse c%mponents We have shown that optimizing the information efficiency
with finite resolution, which places an upper limit on the of a transmission that employs electromagnetic radiation as

energy range over which Edd4) is valid. Conversely, the the information carrier, with a fixed energy budget per unit

finite size of the receiver places an upper limit on the wavellMe, gives rise to a spectrum of intensities identical to that
blackbody radiation. In fact, to an observer who is not

length of the photons that can be detected, and thus a low Lmiliar with the encoding scheme used, an optimally efi-

limit on their energy. Therefore, for a given receiver, the'€ . . ) S
9 g cient message of this type would be entirely indistinguish-

most information-efficient spectrum will maximize the en- ble f I ; blackbod diati 0
tropy conditioned on the frequency being between these lim@°'€ from naturally occurring blackbody radiation. One
might be tempted to say that perhaps one could tell the two

s, gpart by spotting patterns within particular frequency bands

In fact, most receivers are not capable of measuring th fth b formi ther d i
transverse components at all. Usually we have informatior?! 1€ MesSage, or by performing some other decomposition
f the signal. This possibility is however ruled out by the

about only the energy and timing of the arriving photons, an o 29 f the Sh nf S lariti
possibly their polarization. In this case E8) still holds, but ~ Maximization of the Shannon information; any regularities

- _ _ that would allow one to draw such a distinction are neces-
the density of states becompge) =2(/hc, and Eq.(4) be sarily the result of less-than-optimal encoding. For the case

comes where the transverse momentum of photons is not used to
2¢ e encode information, or for broadcast transmissions, the spec-
le)=feef—1 (7)  trum is that of a one-dimensional black body. We also have

) . shown that the characteristic temperature of the message is
Equation(7) is the form that the spectrum of a black body simply related to the energy used to send it, and we have
would take in a one-dimensional world, and we refer to it asderived an upper limit on the rate at which information can
a “one-dimensional blackbody spectrum.” The apparentpe transmitted in both cases.

temperaturél = 8~ * is then given by We end with some discussion and speculations. First, we
3h should point out that the ideas outlined here constitute only a
T?=—P, (8)  thought experiment. By a sequence of deductions we have

™ placed an upper limit on the information efficiency of elec-
and the information transmitted per unit time is tromagnetic transmissions, but we have not shown how to

achieve that upper limit. Second, we note that reasoning
©) similar to that presented here applies to transmissions using

other radiative media as well. Because many natural pro-
. . cesses maximize the Gibbs—Boltzmann entropy, they should
For an energy budget of 17 W E¢9) gives a maximum give rise to spectra indistinguishable from optimally efficient
information rate of 2.03 10'7 bits per second. This bound {4nsmissions. For instance, if we had a transmitter that could
also applies to broadgast transmission for which we do nog it any type of particlérather than just photonsit seems
know the location or size of the receiver and therefore canngf5 sible that the optimal spectrum of particle types and en-
guarantee that it will receive all, or even most, of the photon rgies would be that of Hawking black-hole radiatidn.
transmitted. _ _ Finally, we note that, in a recent science fiction novel,

Equation(9) has a long history, which has been well re- e cosmic background radiatigwhich is roughly black-

viewed by Bekenstein and Schifferand Caves and body at 3 K is revealed to consist of the highly compressed
Drummond® It often is written for a single-polarization transmissions of long-dead alien civilizations.

channel, in which caseSidt is v2 smaller. It was first de-

rived by Lebedev and Levitihwho considered the thermo-

dynamics of the receiver, modeling it as a set of harmonic

oscillators. Pendry followed an approach similar to ours in ACKNOWLEDGMENTS
which the field is in thermodynamic equilibrium.

As Yuen and Ozawa have pointed out, these derivations We are indebted to Jacob Bekenstein and Carlton Caves
implicitly assume that what Caves and Drummbmall a  for helpful discussions on the history of this subject. A pre-
“number-state channel,” in which information is received by liminary version of this paper appeared as a preprint, http://
counting photons with each frequency and polarization, isarxiv.org/abs/cond-mat/9907500.
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