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Abstract

Question: What is the general quantitative relationship between

adaptive phenotypic diversity, or bet-hedging, and the environmental

uncertainty that selects for it?

Mathematical methods: Building on the fitness set approach

introduced by Levins, we develop a graphical heuristic for determining

the optimal amount of diversity in a fluctuating environment. We use

as our optimality criterion the expected long-term growth rate of a

lineage.

Key insights: Each of the phenotypes in a polyphenic popula-

tion may be seen as investing a certain proportion of its reproductive

effort in each of the possible environments. A bet-hedging lineage

that produces the phenotypes in just the right proportions—so that

the overall reproductive investment in each environment matches the

environmental frequencies—grows faster on average than other lin-

eages. How much faster it grows than the resident population, and

thus the strength of selection towards the optimal bet-hedging strat-

egy, depends on how far the residents are from the optimal investment

profile.

Predictions: A rigorous empirical demonstration that bet-hedging

is adaptive requires a comparison of the degree of phenotypic diver-

sification in similar populations subject to varying levels of environ-

mental uncertainty. We confirm that bet-hedging should be observed
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only within a certain range of environmental variation; when the envi-

ronment is more predictable than this, a phenotypic generalist would

do better. We furthermore give a simple method to calculate this

range, based on the shape of the fitness trade-offs. Within this range,

we predict a linear relationship between the frequency of phenotypes

and the frequency of environments, independent of the shape of the

trade-offs.

1 Introduction

Organisms inhabiting a changeable, unpredictable environment face a diffi-
cult adaptive challenge. In some cases they may evolve to specialize in one
particular niche, making up for poor performace in some conditions by over-
achieving in another. In other cases environmental uncertainty may select for
a “jack-of-all-trades”, a generalist capable of overcoming any environmental
hurdle but never reaching the peak productivity of a more specialized type.
In this paper we focus on two different kinds of strategies that can func-
tion as adaptations to environmental uncertainty. A traditional generalist
is an individual of a single, fixed type whose morphology and/or behavior
is reasonably well equipped for any situation. A bet-hedging strategy, on
the other hand, produces a phenotypically heterogeneous set of individuals,
each of which may develop into one of several specialized types (Cooper and
Kaplan, 1982; Seger and Brockmann, 1987). These two strategies may be
viewed as two different ways of being a generalist: one strategy is employed
by individuals, while the other is employed by genotypes. The fitness set
framework introduced by Levins (1962) can be used to provide a basis for
comparing the two kinds of generalists, and build intuition about the general
circumstances giving rise to each.

When environmental uncertainty selects for a bet-hedging strategy, it cre-
ates non-genetic phenotypic diversity in the population. This may lead us
to expect some relationship between the amount of environmental variation
and the amount of phenotypic variation that is created as an adaptation to
it. Such a connection has in fact been drawn for the simplest models, but
a more general correspondence has been elusive (Bergstrom and Lachmann,
2004; Kussell and Leibler, 2005). We show here that the connection can
be easily generalized when the phenotypes are described according to their
relative fitness contributions in the different types of environments. These
descriptions have a simple graphical interpretation in terms of Levins’s fitness
sets, and may be interpreted as a measure of specialization. Using this mea-
sure, we develop an intuitive understanding of the quantitative relationship

2



between environmental uncertainty and adaptive generalization.

2 Background: Levins’s fitness sets and evo-

lution in an uncertain environment

Whether organisms adapt to environmental uncertainty by becoming special-
ists or generalists—or a mixture of both—depends on a number of interacting
factors (Levins, 1962; Wilson and Yoshimura, 1994). First of all, the trade-off
between adaptations to different environmental conditions may take differ-
ent forms. Weak trade-offs, which allow intermediate types to perform fairly
well in all conditions, tend to promote the evolution of generalists. Strong
trade-offs, which make intermediate types perform poorly in all conditions,
tend to promote the evolution of specialists. Secondly, the structure of en-
vironmental variation plays a key role. Environmental change that affects
all individuals in the population at once on the time scale of a generation,
like years of drought, favors the evolution of generalists. In contrast, envi-
ronmental variation between individuals in a single generation, like random
dispersal into small patches of different habitats, encourages the evolution of
specialists. Although some authors use the terms “temporal” and “spatial”
to distinguish these two kinds of environmental variation, we prefer the more
general labels population-level and individual-level environmental variation.

Levins introduced the paired concepts of the fitness set and the adap-
tive function as a way to gain intuition about the way that fitness trade-offs
and environmental variation interact to influence the evolution of specialists
and generalists (Figure 1). Each achievable phenotype is characterized by its
fitness profile over the different environments, and then plotted on a graph
whose axes are the fitness in each environment. The set of all such points in
fitness space is called the fitness set ; the portion of its boundary with nega-
tive slope is a graphical representation of the trade-off between specializing
in different environments. Weak trade-offs create convex fitness sets, while
strong trade-offs create concave fitness set. The adaptive function describes
how fitness in each environment contributes to the population’s overall re-
productive rate. Individual-level environmental variation yields populations
which reproduce according to the arithmetic mean fitness in every genera-
tion. Population-level environmental variation yields populations which vary
in their productivity from generation to generation. Over the long term, such
populations reproduce according to their geometric mean fitness (Dempster,
1955; Levins, 1962; Cohen, 1966). The fitness set and the adaptive function
can be used together to identify a phenotype that is optimal—but only in the
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sense that it maximizes the population’s reproductive rate. (We will return
to this point.)

One interesting result, which is easy to understand using Levins’s frame-
work, concerns populations containing a mixture of phenotypes. The popula-
tion’s reproductive rate depends on the average fitness of the mixed popula-
tion in each environment. The fitness profile of the mixed population is there-
fore a linear combination of the fitness profiles of the phenotypes that make
up the population. The set of points in fitness space that can be achieved
by a mixed population is known as the extended fitness set. It consists of
all linear combinations of the original fitness set, which considers only single
phenotypes (Figure 1). In mathematical terminology, the extended fitness
set is the convex hull of the fitness set. Levins distinguishes two qualitatively
different cases. Where trade-offs are weak, the extended fitness set does not
create any new points (Figure 1, right column.) Where trade-offs are strong,
however, the extended fitness set does expand the boundaries. Points along
this new boundary represent fitness profiles that can only be achieved with
a mixture of phenotypes (Figure 1, left column.) When environmental un-
certainty occurs at the population level, these points will never be optimal.
The contours of the adaptive function and the new boundary of the extended
fitness set are both linear (Figure 1, upper left.) However, when environmen-
tal uncertainty occurs at the population level, the contours of the adaptive
function are no longer linear. In this case, a point along the linear edge of the
extended fitness set may be better than any point in the fitness set (Figure
1, lower left.)

Levins initially suggested that population polymorphism could therefore
be an adaptation to population-level environmental uncertainty, when being
a generalist is not efficient—but some care is necessary in the interpreta-
tion. If, by population polymorphism, we mean genetic polymorphism, then
we must consider not only the fitness of the population compared to other
populations, but also the way that natural selection within the population
may act to change the mixture. Levins addressed exactly this question using
a simple mendelian trait in a later paper (Levins, 1964). He also suggested
that long-term selection in a fluctuating environment might act on the genetic
architecture to reduce the short-term effects of selection, thus maintaining
some amount of genetic variation (Levins, 1965, 1968). Further work on the
maintenance of genetic polymorphism as an adaptation to environmental un-
certainty suggests that it is possible under certain conditions (Haldane and
Jayakar, 1963; Gillespie, 1973; Sasaki and Ellner, 1995; Leimar, 2005). How-
ever, since natural selection does not generally maximize the geometric mean
population fitness, Levins’s fitness set framework is poorly suited to this kind
of analysis (Seger and Brockmann, 1987; Godfrey-Smith, 1996).
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Figure 1: Levins’s fitness set plots the fitness in each environment of all
achievable phenotypes. Its boundary reflects the fitness trade-off between
specializing in different environments. Trade-offs are described as weak if
intermediate types can do fairly well in all environments, or strong if inter-
mediate types do poorly in all environments. Contour lines of the adaptive
function represent points in the fitness space where the population growth
rates are equal. The achievable phenotype that maximizes the population
growth rate is the point in the fitness set that lies on the highest contour.
Specialists are favored when trade-offs are strong and environmental varia-
tion occurs at the individual level; generalists are favored when trade-offs are
weak and variation occurs at the population level. The extended fitness set
is created by considering in addition all mixtures of phenotypes. Allowing
a mixed-phenotype population can increase the reproductive rate only when
trade-offs are strong and environmental variation occurs at the population
level (lower left.)
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On the other hand, phenotypic diversity in a population need not reflect
genetic polymorphism. The notion of a stochastic developmental switch,
which randomly produces one of several possible phenotypes, has long been
recognized as a potential mechanism for producing adaptive variation (e.g.
Levins, 1968), and is central to the biological theory of bet-hedging. Ac-
cording to this theory, organisms may adapt to population-level uncertainty
in their environment by randomly developing into one of several alterna-
tive phenotypes (Cohen, 1966; Cooper and Kaplan, 1982). Such a genotype
may be thought of as a “developmental generalist”, because it produces a
lineage which survives well in a variety of circumstances; depending on how
strong trade-offs are, it may outcompete a phenotypic generalist (Wilson and
Yoshimura, 1994). Because each point within the extended fitness set may
be achieved by a single genotype that produces a mixture of phenotypes, and
the genotype which produces the fastest-growing lineage is likely to outcom-
pete all others, Levins’s diagrams are perfectly suited to distinguishing which
of the two kinds of generalist is more efficient (Seger and Brockmann, 1987;
Godfrey-Smith, 1996).

3 A model of the evolution of generalists

Consider a population of organisms with nonoverlapping generations. In each
generation the environmental state k is drawn from some fixed probability
distribution pk, independently of the state in previous years. Each individ-
ual has a phenotype x that is fixed during development, and belongs to a
continuous set of achievable phenotypes. Reproductive success depends both
on the phenotype of the individual and the state of the environment. There
may be individual-level variation in reproductive success within generations,
but the average reproductive success of a phenotype, fxk, must be consistent
between generations with the same environmental state.

This is the classical model of evolution in fluctuating environments, where
the phenotype with the highest geometric mean fitness is most likely to be-
come fixed (e.g. Dempster, 1955; Levins, 1962; Cohen, 1966). One way to
understand why natural selection tends to maximize the geometric mean
in such cases is to look at long sequences of environments, and ask which
genotype will take over the population in most of these sequences. Under
the assumptions of our model, the genotype that will win in any particular
sequence of environments is the one that had the largest growth rate. For
a simple fluctuating environment, the strong law of large numbers imples
that in almost all long sequences, each environmental condition is experi-
enced approximately in proportion to its probability of occurring. In such
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sequences of environments, the expected long-term growth rate for a lineage
expressing phenotype x is the growth rate averaged over the environmental
probabilities:

r(x) =
∑

k

pk log fxk, (1)

which is the log of the geometric mean fitness. A natural extension to this
approach also considers bet-hedging genotypes, which produce offspring with
phenotypes given by some probability distribution gx. Once a lineage is
common enough, its average reproductive success is simply the weighted
average reproductive success of the phenotypes it produces, so the long-term
growth rate is given by:

r(g) =
∑

k

pk log
∑

x

gxfxk (2)

(e.g. Seger and Brockmann, 1987; Yoshimura and Clark, 1991). The genotype
that will be observed most of the time is the one that maximizes r—since its
growth rate, over almost all sequences of environments, is larger than that
of any other strategy.

In general, natural selection need not lead to optimization of the long-
term growth rate. The model includes a number of important simplifying
assumptions. In Section 4, we discuss the realism of these assumptions and
the consequences of relaxing them.

3.1 The region of strong trade-offs

Given a model of the fitness trade-offs, we can use Levins’s fitness set dia-
gram to graphically solve for the genotype with the highest long-term growth
rate. It is easy to see that when trade-offs are weak, the best response to
population-level variation will always be a single generalist phenotype. How-
ever, when trade-offs are strong, the situation is a little more complicated. A
concave fitness set may show strong trade-offs only along part of its boundary.
In this case, bet-hedging will be an optimal strategy only when the optimal
single phenotype lies in a region of strong trade-offs. To illustrate, we begin
with a simple example inspired by the ecology of amphibian metamorphosis.

Example. Frogs laying eggs in temporary ponds face a trade-off im-
posed by their time to metamorphosis. Late-metamorphosing tadpoles be-
come larger frogs with higher fitness, but confront a higher risk that the
pond will dry up before metamorphosis is complete. In our simple model,
tadpoles are capable of metamorphosis beginning at some threshold number
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of days after hatching. After this, they grow linearly with the time to meta-
morphosis. However, if the pond dries up before metamorphosis, the tadpole
dies. Each frog lays its eggs in a different pond. In dry years, the time to
drying of individual ponds is independent and normally distributed. In wet
years, the time to drying of individual ponds is also independent and nor-
mally distributed, but with a different mean and standard deviation. From
this we can calculate the expected fitness of a tadpole metamorphosing after
a certain number of days, in a wet or dry year (Figure 2, see Appendix A for
details of the model.)

The region of strong trade-offs is the part of the fitness set that makes
it concave (Figure 3.) Since the adaptive function increases monotonically
with fitness in each environment, the best pure strategy must lie on the
boundary of the fitness set. Similarly, the best bet-hedging strategy must
lie on the boundary of the extended fitness set. Whether a single generalist
phenotype or a bet-hedging genotype is optimal depends on the overlap of
these boundaries. We call the part where they overlap the region of weak
trade-offs. The part where they do not overlap is the region of strong trade-
offs; in this area, bet-hedging can improve upon any single phenotype. In
particular, if the optimal strategy is a bet-hedging one, it will consist of a
mixture of the phenotypes at the endpoints of the region of strong trade-offs.

We would like to determine, first of all, when bet-hedging is optimal, and
secondly, if it is optimal, what is the best mixture of phenotypes. These
questions can be answered for any specific model using the traditional fitness
set approach, by identifying the point of intersection between the extended
fitness set and the highest contour of the adaptive function (Levins, 1968;
Yoshimura and Jansen, 1996). However, a much more general and intuitive
approach is possible using the measure introduced in the next section.

3.2 A quantitative measure of specialization in differ-

ent environments

When each phenotype can survive in only one environment, bet-hedging is
the only way to survive: a lineage of any single phenotype is sure to go ex-
tinct. The optimal bet-hedging mixture of such phenotypes—regardless of
fitness differences in different environments—is to match the probability of
environments. For example, Cohen’s (1966) simplest model of seed germi-
nation, in which a germinating seed can only survive in good years, showed
that the optimal germination fraction is equal to the probability of a good
year. The generality of this result is well known in information theory (Kelly,
1956; Cover and Thomas, 1991), but has only more recently been applied in
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Figure 2: Levins’s fitness set, lower right, is a parametric plot of the fitness of
each phenotype in several environments. Shown on the upper left is a graph
of average fitness in two kinds of years, for tadpoles that metamorphose at
different ages. Error bars indicate the mean and standard deviation of time to
drying. To illustrate how the parametric plot is derived, we show it alongside
individual plots of fitness in each kind of year. Consider the phenotype of
metamorphosis at 30 days. Its fitness in wet years, shown in the lower left
plot, becomes the y coordinate in the fitness set. Its fitness in dry years,
shown in the upper right plot, becomes the x coordinate in the fitness set.
When this is done for every phenotype, a curve is traced out in fitness space.
This is called the fitness set.
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Figure 3: Levins’s extended fitness set consists of all points in the fitness
set, plus all linear combinations of those points. The boundaries of this set
reflect the trade-offs in the system. Until metamorphosis at 32 days, fitness
increases in both kinds of years, so there is no trade-off at all. Between 32
and 48 days, fitness in dry years decreases while fitness in wet years increases.
This region of trade-offs can be divided into two parts. Between 34 and 48
days, the boundary of the extended fitness set goes beyond the boundary of
the fitness set. That means that if the best pure strategy lies somewhere
in this range, a mixed strategy which combines tadpoles metamorphosing at
34 and 48 days would do even better. This is called the region of strong
trade-offs. Between 32 and 34 days, the boundary of the fitness set and
the extended fitness set overlap. If the best pure strategy lies somewhere
in this range—the region of weak trade-offs—no mixed strategy can be an
improvement.
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a biological context (Bergstrom and Lachmann, 2004; Kussell and Leibler,
2005). This case provides an important reference point, and a good basis for
our measure of specialization, precisely because it is so well understood. We
will show that our measure can then easily be extended to treat the more
general case, where phenotypes can survive in several environments.

We define a phenotype that survives in only one environment as com-
pletely specialized in that environment. Furthermore, a bet-hedging genotype
that produces a mixture of completely specialized phenotypes is specialized
in each environment according to that mixture. Consider a genotype g that
allocates a fraction gk of its offspring to a phenotype that is completely spe-
cialized in environment k. Then the fitness of that genotype in environment
k is fgk = gkdk, where dk is the fitness of the completely specialized type in
its environment. We say that the degree of specialization of the genotype in
environment k is gk, because that is the proportion of its reproductive effort
that is invested in environment k. Note that, according to the result cited
above, the optimal genotype should specialize in each environment according
to its frequency.

The idea that a bet-hedging genotype divides its reproductive effort among
environments can be extended to include phenotypes that survive in multi-
ple environments. To illustrate how, we return to the example of amphibian
metamorphosis. In the last section, we saw that any optimal bet-hedging
strategy must be a mixture of just two types: a slow-metamorphosing tad-
pole (at 48 days) and a fast-metamorphosing tadpole (at 34 days.) Such
genotypes lie along a straight line on the boundary of the extended fitness
set (Figure 3.) Notice, however, that this line is a subsection of a longer line
that extends all the way to both axes (Figure 4). This longer line represents
all bet-hedging strategies that combine two completely specialized types: the
slow-metamorphosing type, which has fitness 2.42 in wet years, and fitness 0
in dry years, and another type that has fitness 2.94 in dry years, and fitness
0 in wet years. Since any particular tadpole would do better in a wet year
than a dry one, it is impossible to be completely specialized in dry years—the
second phenotype cannot actually be achieved. However, we can still ask,
if it were achievable, what would be the optimal mixture of these two com-
pletely specialized types? We know the answer must be to produce dry-year
specialists as often as there are dry years, and wet-year specialists as often
as there are wet years. If that point lies along the subsection of the line that
can be produced by combining slow and fast metamorphosing tadpoles, then
the optimal allocation of reproductive effort—matching the environmental
frequencies—can still be achieved.

We therefore define the degree of specialization of a bet-hedging genotype
in each environment in terms of the mixture of completely specialized types
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Figure 4: An optimal bet-hedging strategy matches its level of specialization
in each environment to the frequency of that environment. In the left panel,
we show how specialization levels for any bet-hedging mixture of two phe-
notypes can be calculated. The line between the two phenotypes plotted in
fitness space is extrapolated to the axes. This defines a bet-hedging strat-
egy that combines two perfectly specialized phenotypes. The best mixture
of perfectly specialized phenotypes matches the frequency of different envi-
ronments. However, in the example shown it is impossible to be perfectly
specialized in dry years. Still, some of the same results can be achieved by
using a mixture of the original phenotypes. In the right panel, we plot the
best bet-hedging mixture of metamorphosis at 48 days and at 34 days, as a
function of the percentage of dry years. The slope of this line reflects the
sensitivity of the optimal strategy to changes in the environmental probabili-
ties. The right-hand axis indicates what mixture of the two types attains the
optimal level of specialization, while the left-hand axis indicates the average
number of days to metamorphosis. We also show the best single-phenotype
strategy, in days to metamorphosis. From 0–38% dry years, bet-hedging is
better than the best single-phenotype strategy. Above this, bet-hedging can-
not achieve the optimal level of specialization, so the optimal strategy is to
produce a single phenotype.
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to which it corresponds. Consider a bet-hedging genotype g which combines
several phenotypes that are not completely specialized. Suppose that each of
those phenotypes has a fitness profile that can be represented as a different
mixture of just one set of completely specialized phenotypes:

fxk = sxkdk. (3)

Any bet-hedging mixture of the original phenotypes is then also equivalent
to a mixture of that same set of completely specialized phenotypes:

∑

x

gxfxk = sgkdk, where (4)

sgk =
∑

x

gxsxk (5)

We define the degree of specialization of the bet-hedging genotype in terms
of this mixture, sgk. Haccou and Iwasa (1995) note that, if each fitness can
be written as a product sxkdk as in Equation 3, then the optimal distribution
of types g∗

x is the one that achieves
∑

k

g∗
xsxk = pk (6)

where pk is the probability distribution over environments. Our definition
of specialization in terms of an equivalent mixture of completely specialized
phenotypes is therefore particularly convenient, because it means the right
amount of specialization in any environment, sg∗k, is simply the probability
of that environment.

It remains to be shown when and how the appropriate decomposition of
the fitness, as in Equation 3, can be accomplished. When there are just two or
three different kinds of environments, this is easy to visualize using Levins’s
fitness sets, as illustrated in Figure 4. We use the region of strong trade-
offs to identify the phenotypes that could be used in an optimal bet-hedging
strategy. The number of phenotypes in that set is limited by the number of
distinct environments, and will equal the number of environments as long as
there are strong fitness trade-offs between all environments. In that case, the
specialization levels of the individual phenotypes sxk are uniquely defined,
and can be found according to the method described in Appendix B.

Looking at genotypes in terms of their specialization in different environ-
ments provides the tools we need to answer the questions posed at the end
of the last section: when is bet-hedging adaptive, and if it is adaptive, how
much is optimal? As shown in Figure 4 (left panel), a tadpole that metamor-
phoses at 48 days is completely specialized in wet years, while a tadpole that
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metamorphoses at 32 days is only 38% specialized in dry years. Therefore,
if dry years occur more than 38% of the time, a bet-hedging strategy using
only these two types could not be specialized enough in dry years. If dry
years occur less often than this, then the optimal strategy is the combination
of the two phenotypes that matches the degree of specialization in dry years
to the probability of dry years (Figure 4, right panel). As dry years increase
in probability from 0% to 38%, the optimal mixture of types changes from all
metamorphosing at 48 days, to all metamorphosing at 34 days. That means
that a fairly small increase in the percentage of dry years corresponds to a
larger increase in the fast-metamorphosing type.

In general, bet-hedging with phenotypes that are not completely spe-
cialized in any environment can produce only a limited subset of possible
specialization levels, defined by the specialization levels of the phenotypes.
When environmental probabilities lie outside this range, a single, generalist
phenotype will be optimal. Within this range, on the other hand, the opti-
mal amount of phenotypic variation changes linearly, taking on all possible
values, as environmental probabilities change (see Equation 6). The slope of
this linear relationship, reflecting the sensitivity of the optimal bet-hedging
mixture to the environmental probabilities, depends only on the size of the
region of strong trade-offs. The general form of the relationship between the
amount of adaptive diversification and the amount of environmental uncer-
tainty that drives it is therefore quite simple and intuitive.

An additional advantage of describing genotypes in terms of their spe-
cialization in different environments is that it allows for a simple description
of the strength of selection for a bet-hedging genotype, when it is optimal.
We examine the difference between the optimal growth rate, which uses the
bet-hedging genotype g∗, and the current long-term growth rate under the
bet-hedging genotype g:

r(g∗) − r(g) =
∑

k

pk log

∑

x g∗
xfxk

∑

x gxfxk

. (7)

Rewriting the fitnesses as in Equation 3, and substituting in Equations 4 and
6, we find

r(g∗) − r(g) =
∑

k

pk log
pk

sgk

(8)

which is the Kullback-Leibler divergence between the environmental prob-
abilities pk and the genotypic specialization level sgk—the environmental
probabilities for which the current genotype g would be optimally adapted
(compare Haccou and Iwasa, 1995; Kussell and Leibler, 2005). In this sense,
the amount of environmental uncertainty indicates how much of a generalist
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an optimally adapted genotype should be; the farther away a genotype is
from this ideal, the stronger the selection to improve. Furthermore, selec-
tion for moving from the best single-phenotype strategy to any bet-hedging
strategy cannot exceed the Kullback-Leibler divergence between the special-
ization levels of the component phenotypes. If there are strong trade-offs
only in a small portion of the fitness set, there will be only a narrow range
of environmental uncertainty in which bet-hedging is optimal. Furthermore,
selection for adopting a bet-hedging strategy will be strongly limited, be-
cause the best phenotypic generalist will do almost as well as the optimal
bet-hedging genotype.

3.3 The effect of individual-level risk

Until now, we have addressed only the selective effects of population-level
risk, because this is the only kind that can lead to adaptive phenotypic di-
versification. Now we ask, how does individual-level risk affect the strength
of selection for bet-hedging that may be imposed by population-level risk?
The method of dividing the variance in average genotypic fitness over gen-
erations into the variance in individual fitness and the correlation in fitness
between individuals, introduced by Frank and Slatkin (1990), provides some
insight into this question. They represent increasing individual-level uncer-
tainty by decreasing correlations in fitness between individuals of the same
genotype. This decreases the variance in average genotypic fitness, effectively
decreasing the amount of population-level uncertainty. We may therefore ex-
pect that adding individual-level risk to our model will dampen the effects
of population-level risk.

Our example of amphibian metamorphosis contains environmental risk
at two different levels: at the population level, because dry years cause the
ponds to dry up earlier on average, and at the individual level, because within
each year the time to drying of individual ponds varies according to a normal
distribution. In Levins’s original formulation such combinations of risk at two
different levels were represented by adjusting the adaptive function (Levins,
1962). However, we have instead included the individual-level risk in the
fitness set: each phenotype is represented by a vector consisting of its average
fitness in each environment. This is possible because, given the type of year,
the ponds dry up independently of one another. Therefore, the variance
over different years of the average genotypic fitness (a sample mean) will be
negligible for large populations. In the example, individual-level uncertainty
in the time to drying makes specialized types more generalist, by decreasing
average fitness in the most favored circumstances and increasing it in the least
favored ones. In the process, it reduces the size of the region of strong trade-
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Figure 5: Individual-level uncertainty reduces selection for phenotypic di-
versification by changing the shape of the fitness set. The left panel shows
fitness as a function of phenotype; the right panel shows the resulting fitness
set and extended fitness set. Compared to the parameters used in Figures
2 and 3, the only difference here is a larger standard deviation in time to
drying, in both kinds of years. This reduces the risk associated with being
caught in the wrong kind of year, creating only a weak trade-off between
specializing in wet and dry years over the entire range. In this situation, no
matter the level of population-level risk, an individual-level generalist will
always be favored.

offs, putting stricter and stricter limits on the amount of population-level
uncertainty necessary to induce adaptive phenotypic variation. When we
increase the variation within years enough that there is significant overlap
in drying time between wet and dry years, the region of strong trade-offs
disappears completely—making phenotypic variation non-adaptive (Figure
5.)

Our approach has the advantage of singling out population-level uncer-
tainty as the driving force in the evolution of adaptive variation: it sets a
target for the amount of specialization in different environments. Individual-
level uncertainty may then alter the circumstances under which diversifica-
tion is favored, by changing the shape of the fitness set. Individual-level
environmental risk could affect the fitness profile of different phenotypes in
many ways. Its impact depends on how it affects the average performance
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of different types. In our example, within-year variation in time to drying
of different ponds makes the average fitness of similar types more similar
(the slopes in the left panel of Figure 5 are less steep than in the corre-
sponding panel in Figure 2.) This effectively reduces the size of the region of
strong trade-offs, making intermediate types better generalists, and making
bet-hedging less important. On the other hand, if individual-level stochas-
ticity affected only the variance in fitness of individual types, not the average
fitness, it would not change the fitness set at all. Still, to the extent that
individual-level uncertainty does make phenotypes more generalist, it will
make bet-hedging both less likely to be adaptive, and less strongly selected
for (see Section 3.2).

3.4 The effect of developmental plasticity costs

Our representation of the growth rate of a lineage stemming from a bet-
hedging genotype (see Equation 2) implicitly assumes that there is no cost
to plasticity. This assumption is important for our results, because it means
that the fitness profile of a bet-hedging genotype is a simple linear combi-
nation of the fitness profiles of the phenotypes it produces. However, some
kinds of cost can still be represented within our framework. If there is a
fixed cost to being able to produce more than one phenotype, regardless of
the proportions actually produced, the overall shape of the extended fitness
set will not change. Consider a cost of plasticity that is proportional to an
individual’s realized fitness. This simply scales the extended fitness set by
some factor (Figure 6, left panel.) The boundary of the extended fitness set
will still be linear wherever there are strong trade-offs, and will still corre-
spond to the same mixed strategies. What changes is the comparison between
the best pure strategies and the best mixed strategies. Mixed strategies are
optimal over a smaller range of environmental uncertainties, and the range
of optimal mixtures decreases as well. The linear relationship between the
environmental frequencies and the optimal mixture of phenotypes still holds
(Figure 6, right panel.)

Another possibility is that the cost of plasticity could depend on the
amount of phenotypic diversity it generates. For example, a plastic develop-
mental pathway might tend to build the less commonly produced phenotype
with less accuracy, and thus lower average fitness. Then a bet-hedging strat-
egy that almost always produces just one phenotype would incur very little
fitness cost, while one that produces two phenotypes in equal proportions
would incur a higher cost. In this case the boundary of the extended fitness
set will no longer be linear. The graphical method of finding the point on
the boundary which maximizes the adaptive function can still be used. How-
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Figure 6: A fixed cost to plasticity reduces the range of environmental uncer-
tainty in which bet-hedging is optimal. As in Figure 4, we use the extended
fitness set to calculate the degree of specialization in dry years for a range of
bet-hedging strategies. Because the cost is proportional to fitness, the shape
of the extended fitness set does not change; it is merely scaled down. The
phenotypes that are used to make all optimal bet-hedging mixtures are again
metamorphosis at 34 and 48 days, and the specialization levels of each do
not change. This means that the best bet-hedging strategy for any particular
percentage of dry years, shown at right, also does not change. Likewise, the
best single-phenotype strategy remains the same. What does change, how-
ever, is the comparison between single-phenotype strategies and bet-hedging
strategies. The cost of bet-hedging means that the range of environmen-
tal uncertainty in which the best bet-hedging strategy outperfoms the best
single phenotype gets smaller: 0–25% dry years instead of 0–38%. This cor-
responds to mixtures where less than 66% of tadpoles metamorphose at 34
days. Mixtures outside this range are not worth the cost of plasticity.
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ever, the most important feature of our framework—the direct relationship
between environmental probabilities and phenotypic diversity—is lost.

What does this mean for the applicability of our framework in natural
systems? The answer depends on how common costs to plasticity are, and
how those costs are related to the amount of phenotypic diversity that is
created. To our knowledge, no one has yet empirically measured cost in
a system where stochastic developmental plasticity has been demonstrated.
Most empirical studies of the costs of plasticity have focused instead on
adaptive plasticity in response to predictive cues (see DeWitt et al., 1998,
for a review). Much of the cost of plasticity in these cases may be related to
the ability to detect and respond appropriately to predictive cues. Such costs
do not apply to stochastic developmental plasticity. However, it may still be
more difficult for an organism to produce, along alternative developmental
pathways, the same phenotypes that developmentally canalized organisms
could produce. This difficulty may be due to limits on the range of plastic
development or increased developmental instability. Empirical tests for these
kinds of limitations to plasticity so far show no support for any association
between increased plasticity and decreased phenotypic range or precision (e.g.
DeWitt, 1998; Van Kleunen et al., 2000; Relyea, 2002). This suggests that
the costs to stochastic developmental plasticity may be fairly limited, and
not related to the amount of stochasticity. These are precisely the conditions
in which our model is most useful.

4 Generality of the model

A more formal analysis of the effects of stochastic environments on natural
selection would include explicit models of population dynamics. Our assump-
tion that the genotype with the highest average log fitness is most likely to fix
in the population depends on a number of key simplifications in the model.
We consider each of these simplifications in turn.

First of all, we have made the assumption that the long-term growth rate
of a lineage is a good predictor for the outcome of a competition between
two genotypes. This is clearly true if both lineages are growing exponen-
tially and completely independent of one another, but such a scenario is
not biologically plausible. In most cases there will be some kind of density-
dependent regulation of growth. We would like to know which strategy is
likely to outcompete all others, in the long term. This depends on the way
that the relative proportions of different strategies in the population change
over time. Consider some form of density-dependent population regulation
that is equally likely to affect all individuals, regardless of strategy or phe-
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notype. This would maintain realistic population sizes, but would not affect
the relative proportions of different strategies. Therefore, the strategy with
the highest long-term growth rate would still be most likely to outcompete
the others (McNamara, 1995; Grafen, 1999).

On the other hand, some kinds of density-dependent population regula-
tion can affect the proportions of different types of strategies. For example,
individuals might specialize in the use of different limiting resources, whose
availability varies from generation to generation. Then an individual’s repro-
ductive fitness will depend not only on its own phenotype, the environment,
and the population size, but also on the frequency of other phenotypes in the
population. This is a classic case of frequency-dependent selection, whose
outcome cannot generally be predicted by principles of optimization. The
concept of an evolutionarily stable strategy—a genotype that, once common,
resists invasion from potential mutant types—can then be a useful tool for
identifying adaptive strategies (Maynard Smith, 1982). In the context of
fluctuating environments, the ability of a mutant genotype to successfully
invade a resident is predicted by the long-term growth rate of the mutant
in a population of the resident (Metz et al., 1992; Yoshimura and Jansen,
1996). Our framework can still be used to predict what would be the best
bet-hedging strategy, for a particular distribution of phenotypes in the resi-
dent population. If this optimal strategy also produces the given distribution
of phenotypes, then it is at least an equilibrium strategy, although it need
not be stable.

The second important assumption is our use of the log fitness, averaged
over different environmental states, as a proxy for the long-term growth rate
of a lineage (see Equation 1). Whether this is a good approximation depends
crucially on how the environment varies on several scales: within individuals,
between individuals in the same generation, and between generations.

Our assumption that individuals live and reproduce in only one gener-
ation, and that each generation is characterized by a single environmental
state, ignores the possibility of environmental variation within an individ-
ual’s lifetime. In general, the effect of such within-individual variation is to
reduce the impact of between-generation variation, because individual life-
time reproductive success becomes less variable (Frank and Slatkin, 1990;
Sasaki and Ellner, 1995). In fact, organisms may in some cases evolve to
survive and reproduce over multiple seasons as a response to an environment
that fluctuates from generation to generation. Evolution of such a life history
strategy may therefore sometimes be seen as a kind of “risk spreading” in its
own right (Murphy, 1968; Goodman, 1984).

Variation between individuals in the same generation need not affect the
long-term growth rate, as long as the average fitness of each phenotype within
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each environmental state does not vary much. This will be true as long as the
number of individuals of each phenotype is fairly large, and the reproductive
success of different individuals is independent, conditional on the environ-
mental state (Frank and Slatkin, 1990). We have included individual-level
variation of exactly this sort in our example (see Section 3.3).

In this study, we have focused on the evolutionary impact of environmen-
tal variation between generations. We have made the important simplifica-
tion that the environmental conditions in each generation do not depend on
previous environmental history. In such cases, the asymptotic growth rate
of a lineage simplifies to its average log fitness over generations. However,
this simplification continues to hold even in more complicated scenarios: as
long as the population is unstructured, and the environmental states con-
stitute an ergodic process, the asymptotic growth rate is the log fitness of
the lineage, averaged over the stationary distribution of environmental states
(Tuljapurkar, 1990).

5 Discussion

Variable life history strategies have been studied as a potential adaptation to
fluctuating environments in a wide variety of biological systems. The best-
known example is delayed germination in desert annual plants. This was the
inspiration for Cohen’s (1966) model, and has spawned a series of follow-ups
(e.g. Philippi, 1993; Clauss and Venable, 2000; Evans et al., 2007; Venable,
2007). A similar phenomenon—an overwinter diapause—is observed in many
insects and crustaceans (Saiah and Perrin, 1990; Bradford and Roff, 1997;
Danforth, 1999; Hopper, 1999; Menu et al., 2000; Philippi and Seger, 2001).
A highly variable time to metamorphosis, as described in our example, has
been observed in some anurans breeding in temporary pools (Lane and Ma-
hony, 2002; Morey and Reznick, 2004). In fish and amphibians, the trade-off
between egg size and egg number may make variation in egg size an adap-
tation to environmental uncertainty (Capinera, 1979; Crump, 1981; Kaplan
and Cooper, 1984; Koops et al., 2003). For organisms that switch between
sexual and asexual modes of reproduction, like aphids and some plants, the
timing of that switch may vary in response to uncertainty (Berg and Redbo-
Torstensson, 1998; Halkett et al., 2004). Bacteria are rapidly becoming an
important model system for the study of adaptive non-genetic phenotypic
diversity, in part because the regulatory mechansims underlying the hetero-
geneity are particularly amenable to study (reviewed in Avery, 2006; Smits
et al., 2006). For example, Escherichia coli periodically exposed to antibiotics
switch stochastically between a fast-growing antibiotic-sensitive type and a
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slow-growing, antibiotic-resistant type; the rate of switching varies between
strains and may be adapted for different frequencies of antibiotics exposure
(Kussell and Leibler, 2005). Finally, in a few systems it is argued that a
single, low-risk life history strategy is a better adaptation to fluctuating en-
vironments than phenotypic diversity would be (Boyce and Perrins, 1987;
Einum and Fleming, 2004; Hassall et al., 2006; Simons and Johnston, 2003).
This is sometimes called conservative bet-hedging, in contrast to diversified
bet-hedging, which uses a variety of phenotypes (Seger and Brockmann, 1987;
Philippi and Seger, 1989).

Empirical studies of life history evolution in response to environmental
uncertainty use theory to make testable predictions in a number of ways.
One approach is to show that the observed strategy maximizes the geometric
mean fitness instead of the arithmetic mean fitness (Boyce and Perrins, 1987;
Philippi and Seger, 2001). The difficulty with such quantitative predictions
is that they are often quite sensitive to errors in observed parameters of the
model, such as the frequency of different kinds of environments. Instead,
most studies test qualitative predictions. For example, if it can be shown
that a mixture of phenotypes performs better in the long term than any
single phenotype, observed variation could be an adaptation to uncertainty
(Saiah and Perrin, 1990; Menu et al., 2000; Evans et al., 2007). Stronger
evidence is gained by comparing several populations or species with different
amounts of uncertainty about the environment. If the amount of phenotypic
diversity observed varies with the environmental risk as predicted by theory,
that diversity is likely to be adaptive (Philippi, 1993; Clauss and Venable,
2000; Koops et al., 2003; Halkett et al., 2004; Venable, 2007).

The framework presented here can be used to make quantitative predic-
tions about what phenotype or mixture of phenotypes would be best adapted
to a particular set of conditions. In order to use it, a realistic, data-driven
model of how different phenotypes fare in different environments is needed,
and an accurate assessment of the frequency of different kinds of environ-
ments over the long term must be made. Then the procedure illustrated with
the example of frog metamorphosis can be followed to predict the optimal
response. While similar quantitative predictions could also be made with-
out our framework—via numerical optimization or computer simulation—our
graphical method of analysis provides a clearer picture of why bet-hedging
may or may not be favored in any particular system. If bet-hedging is not
adaptive, it could be because the region of strong trade-offs is so small that
bet-hedging would almost never be adaptive. On the other hand, it might
be because the environmental frequencies just happen to lie outside the ap-
propriate range. Another reason for preferring our approach is that it gives
a comprehensive picture of how sensitive the optimal strategy is to measure-

22



ment errors in various parameters of the model. For example, small changes
in the fitness functions can change strong trade-offs into weak trade-offs (com-
pare Figures 3 and 5), going from a situation in which bet-hedging is often
favored to a situation where it is never favored.

Our framework generates several novel qualitative predictions that could
be tested using a comparative approach. The first is that the range of envi-
ronmental uncertainty in which bet-hedging is adaptive is limited by the size
of the region of strong trade-offs (see Figure 4.) Other models have indicated
that bet-hedging is only adaptive when the variance in which phenotype is
optimal exceeds a certain threshold value (Slatkin and Lande, 1976; Bull,
1987), suggesting that a minimal amount of environmental variance is nec-
essary. Haccou and Iwasa (1995) note that this minimal variance threshold
depends on how generalist the phenotypes are, and calculate it for several
specific functions describing the relationship between phenotype, environ-
ment and fitness. Our result is more general, because it is independent of
the particular form of the fitness function. It is also more explicit, because it
describes the environmental probability distributions themselves rather than
simply the variance of those distributions. The second prediction is that the
range of potentially optimal bet-hedging strategies is affected by the cost of
plasticity. As long as there is no cost to plasticity, any given mixture of the
right phenotypes can be optimal, for some particular amount of environmen-
tal uncertainty (see Figure 4, right panel.) On the other hand, if there is a
cost to plasticity, some mixtures of the right phenotypes will never be opti-
mal under any level of environmental uncertainty (see Figure 6, right panel.)
Finally, we show that there is a linear relationship between the environmen-
tal frequencies and the optimal bet-hedging mixture of phenotypes. How
sensitive the optimal mixture is to changes in environmental frequencies de-
pends on how big the the range of potentially optimal bet-hedging strategies
is, relative to the range of environmental frequencies in which bet-hedging
is optimal. That means that if the region of strong trade-offs is small—say,
making bet-hedging optimal only in the range from 50–52% dry years—even
a tiny change in the environmental probabilities can have a big effect on the
optimal mixture of phenotypes.

The idea that random phenotypic variation can lessen the negative impact
of environmental stochasticity is often explained in terms of investment in the
stock market. In a well-crafted stock portfolio, high-risk, high-return stocks
are combined with low-risk, low-return stocks in a way that maximizes the
expected rate of return. Similarly, bet-hedging genotypes often produce a
combination of two life history strategies, one with high expected fitness,
but high risk, and another with lower expected fitness and lower risk. Our
framework builds upon this analogy. What we call a completely specialized
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phenotype is completely invested in one particular environment; in all other
environments that individual is counted as a total loss. Any phenotype that is
not completely specialized, however, is effectively invested in several different
environments at once. Its proportional investment in different environments
is defined by comparing the relative fitness of different types. Bet-hedging
is a way of fine-tuning the total investment in different environments, by
producing a variety of offspring whose average specialization level matches
the probabilities of the different kinds of environments.

Two important factors in the evolution of specialists and generalists are
left for future exploration. One is the effect of competition for resources,
which can promote the evolution of within-species polymorphism in resource
use (see Skúlason and Smith, 1995, for a review). Examples of this are
widespread in birds, amphibians, and fish and may arise through genetic di-
vergence (e.g. Smith, 1993) or condition-dependent plasticity (e.g. Frankino
and Pfennig, 2001). This mechanism for the generation of adaptive variation
is driven by frequency-dependent selection, and can act independently of the
kind of population-level environmental uncertainty we have considered here.
As discussed in Section 4, our model cannot capture the full picture when
there is frequency-dependent selection. However, recent work has extended
the use of the fitness set into scenarios including frequency dependence (Ru-
effler et al., 2004; de Mazancourt and Dieckmann, 2004). Such an approach
might be a useful extension for our model. Another exciting direction will be
to consider predictive cues that can be used to direct phenotypic plasticity.
For example, some tadpoles react to decreasing water levels in their pond by
accelerating development (Denver et al., 1998). If the cues do not predict
the environment perfectly, however, some environmental uncertainty may
remain—making a combination of bet-hedging and plasticity a potentially
useful strategy (DeWitt and Langerhans, 2004). Our framework can easily
and naturally be extended to explore the relationship between the amount
of information and population-level uncertainty in a cue, and the optimal
balance between predictive and stochastic plasticity.
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Appendices

A A model of frog metamorphosis

Here we specify a simple model of frog metamorphosis. A tadpole is capable
of metamorphosis after a minimum number days, t. After this point, it grows
linearly with slope k. This determines the size of the frog at metamorphosis,
f(x) = k(x − t). However, the longer it spends as a tadpole, the more likely
it is that the pond will dry up before it manages to metamorphose. In wet
years, the time of drying for individual ponds is independent and distributed
normally, with mean µw and standard deviation σw. In dry years, the time
of drying for individual ponds is independent and distributed normally, with
mean µd and standard deviation σd. The probability that a pond does not dry
up by time x in dry years is one minus the cumulative distribution function
for the appropriate normal distribution:

sd(x) = 1 −
1

2

(

erf

(

x − µd√
2σd

)

+ 1

)

, (A-1)

where erf(x) = 2√
π

∫ x

0
e−t2dt. A similar expression holds for sw(x). The

expected fitness for a tadpole metamorphosing after x days is fd(x) = k(x−
t)sd(x) in a dry year, or fw(x) = k(x − t)sw(x) in a wet year. For Figures
2, 3, and 4, we use parameter values t = 16, k = 1/12, µd = 36, σd = 3,
µw = 56, and σw = 6. For Figure 5 we increase the standard deviations to
σd = 6 and σw = 12.

In Section 3.4, we add a cost of plasticity to the model. Compared to
the same phenotype produced without plasticity, a plastically produced phe-
notype experiences a proportional decrease in fitness: f ′

d(x) = (1 − cd)fd(x)
and f ′

w(x) = (1 − cw)fw(x). In Figure 6, we use cd = cw = 0.05. Because
the cost is proportional to fitness, the extended fitness set created by all lin-
ear combinations of f ′

d and f ′
w, instead of fd and fw, shrinks but does not

change shape. In addition, the extrapolation line used to calculate special-
ization levels is stretched without changing the proportions. This property
of a fitness-proportional cost function makes it easier to compare the results
with and without cost. However, any other kind of cost function could be
used, as long as it is constant with respect to the frequency of phenotypes
that are produced.

B Calculating specialization levels

Given a set of phenotypes (as defined by the region of strong trade-offs,
see Section 3.1) we would like to write the fitnesses of any mixture in each
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environment as a mixture of completely specialized phenotypes, having non-
zero fitness in only one environment. This corresponds to writing the fitness
fxk of phenotype x in environment k as a linear combination of values dk,
each of which represents the fitness of a phenotype completely specialized
in environment k. Each coefficient in these linear combinations, sxk, is the
specialization level of phenotype x in environment k. The problem can be
formulated as a matrix equation:

F = SD, (A-2)

where S is a stochastic matrix with rows summing to 1, and D is a diagonal
matrix.

We assume that F is a square matrix, that is, there are as many pheno-
types as environments. This will be true as long as there are strong fitness
trade-offs between specializing in all possible environments. In this case (bar-
ring singularities) both F and D are invertible, so

D−1 = F−1S. (A-3)

Multiplying on the right by a column vector of ones, we get the row sums

row sum(D−1) = row sum(F−1) (A-4)

because a stochastic matrix has all row sums equal to 1. This defines the
diagonal matrix D completely, allowing the calculation of the specialization
in each environment as

S = FD−1. (A-5)

This method will yield positive specialization levels as long as the diago-
nal matrix D has only positive entries. That is, returning to the graphical
viewpoint illustrated for two dimensions in Figure 4, the hyperplane passing
through all phenotypes plotted in fitness space must intersect each axis at a
positive point. This will be true as long as there is a trade-off between fitness
in all different environments, as we have assumed.

References

Avery, S. J. 2006. Microbial cell individuality and the underlying sources
of heterogeneity. Nature Reviews Microbiology 4:577–587.

Berg, H. and Redbo-Torstensson, P. 1998. Cleistogamy as a bet-
hedging strategy in Oxalis acetosella, a perennial herb. Journal of Ecology
13:491–500.

26



Bergstrom, C. T. and Lachmann, M. 2004. Shannon information and
biological fitness. In IEEE Information Theory Workshop 2004, pp. 50–54.
IEEE. (See also arXiv.org:q-bio/0510007).

Boyce, M. S. and Perrins, C. M. 1987. Optimizing great tit clutch size
in a fluctuating environment. Ecology 68:142–153.

Bradford, M. J. and Roff, D. A. 1997. An empirical model of diapause
strategies of the cricket Allonemobius socius. Ecology 78:442–451.

Bull, J. J. 1987. Evolution of phenotypic variance. Evolution 41:303–315.

Capinera, J. L. 1979. Qualitative variation in plants and insects: Effect of
propagule size on ecological plasticity. The American Naturalist 114:350–
361.

Clauss, M. J. and Venable, D. L. 2000. Seed germination in desert an-
nuals: An empirical test of adaptive bet-hedging. The American Naturalist
155:168–186.

Cohen, D. 1966. Optimizing reproduction in a randomly varying environ-
ment. Journal of Theoretical Biology 12:119–129.

Cooper, W. S. and Kaplan, R. H. 1982. Adaptive “coin-flipping”: a
decision-theoretic examination of natural selection for random individual
variation. Journal of Theoretical Biology 94:135–151.

Cover, T. M. and Thomas, J. A. 1991. Elements of Information Theory.
Wiley Series in Telecommunications. John Wiley & Sons, New York.

Crump, M. L. 1981. Variation in propagule size as a function of environ-
mental uncertainty for tree frogs. The American Naturalist 117:724–737.

Danforth, B. N. 1999. Emergence dynamics and bet hedging in a desert
bee, Perdita portalis. Proceedings of the Royal Society of London, Series
B 266:1985–1994.

de Mazancourt, C. and Dieckmann, U. 2004. Trade-off geometries and
frequency-dependent selection. The American Naturalist 164:765–778.

Dempster, E. R. 1955. Maintenance of genetic heterogeneity. Cold Spring
Harbor Symposia on Quantitative Biology 20:25–32.

Denver, R. J., Mirhadi, N., and Phillips, M. 1998. Adaptive plasticity
in amphibian metamorphosis: Repsonse of Scaphiopus hammonii tadpoles
to habitat desiccation. Ecology 79:1859–1872.

27



DeWitt, T. J. 1998. Costs and limits of phenotypic plasticity: Tests with
predator-induced morphology and life history in a freshwater snail. Journal
of Evolutionary Biology 11:465–480.

DeWitt, T. J. and Langerhans, R. B. 2004. Integrated solutions to
environmental heterogeneity: Theory of multimoment reaction norms, pp.
98–111. In T. J. DeWitt and S. M. Scheiner (eds.), Phenotypic Plastic-
ity: Functional and Conceptual Approaches. Oxford University Press, New
York.

DeWitt, T. J., Sih, A., and Wilson, D. S. 1998. Costs and limits of
phenotypic plasticity. Trends in Ecology and Evolution 13:77–81.

Einum, S. and Fleming, I. A. 2004. Environmental unpredictability and
offspring size: conservative versus diversified bet-hedging. Evolutionary
Ecology Research 6:443–455.

Evans, M. E. K., Ferrière, R., Kane, M. J., and Venable,
D. L. 2007. Bet hedging via seed banking in desert evening primroses
(Oenothera, Onagraceae): Demographic evidence from natural popula-
tions. The American Naturalist 169:184–194.

Frank, S. A. and Slatkin, M. 1990. Evolution in a variable environment.
The American Naturalist 136:244–260.

Frankino, W. A. and Pfennig, D. W. 2001. Condition-dependent ex-
pression of trophic polyphenism: effects of individual size and competitive
ability. Evolutionary Ecology Research 3:939–951.

Gillespie, J. 1973. Polymorphism in random environments. Theoretical
Population Biology 4:193–195.

Godfrey-Smith, P. 1996. Complexity and the Function of Mind in Na-
ture. Cambridge Studies in Philosophy and Biology. Cambridge University
Press, Cambridge.

Goodman, D. 1984. Risk spreading as an adaptive strategy in iteroparous
life histories. Theoretical Population Biology 25:1–20.

Grafen, A. 1999. Formal darwinism, the individual-as-maximizing-agent
analogy and bet-hedging. Proceedings of the Royal Society of London,
Series B 266:799–803.

Haccou, P. and Iwasa, Y. 1995. Optimal mixed strategies in stochastic
environments. Theoretical Population Biology 47:212–243.

28



Haldane, J. B. S. and Jayakar, S. D. 1963. Polymorphism due to
selection of varying direction. Journal of Genetics 58:237–242.

Halkett, F., Harrington, R., Hullé, M., Kindlmann, P., Menu,
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Skúlason, S. and Smith, T. B. 1995. Resource polymorphisms in verte-
brates. Trends in Ecology and Evolution 10:366–370.

Slatkin, M. and Lande, R. 1976. Niche width in a fluctuating
environment—density independent model. The American Naturalist
110:31–55.

Smith, T. B. 1993. Disruptive selection and the genetic basis of bill size
polymorphism in the African finch Pyrenestes . Nature 363:618–620.

Smits, W. K., Kuipers, O. P., and Veening, J.-W. 2006. Pheno-
typic variation in bacteria: the role of feeback regulation. Nature Reviews
Microbiology 4:259–271.

Tuljapurkar, S. 1990. Population Dynamics in Variable Environments.
Lecture Notes in Biomathematics. Springer-Verlag, Berlin.

Van Kleunen, M., Fischer, M., and Schmid, B. 2000. Costs of plas-
ticity in foraging characteristics of the clonal plant Ranunculus reptans.
Evolution 54:1947–1955.

Venable, D. L. 2007. Bet hedging in a guild of desert annuals. Ecology
88:1086–1090.

Wilson, D. S. and Yoshimura, J. 1994. On the coexistence of specialists
and generalists. The American Naturalist 144:692–707.

Yoshimura, J. and Clark, C. W. 1991. Individual adaptations in
stochastic environments. Evolutionary Ecology 5:173–192.

31



Yoshimura, J. and Jansen, V. A. A. 1996. Evolution and population
dynamics in stochastic environments. Researches in Population Ecology
38:165–182.

32


