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ABSTRACT

Motivation: When comparing gene expression levels between
species or strains using microarrays, sequence differences between
the groups can cause false identification of expression differences.
Our simulated dataset shows that a sequence divergence of only 1%
between species can lead to falsely reported expression differences
for >50% of the transcripts—similar levels of effect have been
reported previously in comparisons of human and chimpanzee
expression. We propose a method for identifying probes that
cause such false readings, using only the microarray data, so that
problematic probes can be excluded from analysis. We then test
the power of the method to detect sequence differences and to
correct for falsely reported expression differences. Our method can
detect 70% of the probes with sequence differences using human
and chimpanzee data, while removing only 18% of probes with
no sequence differences. Although only 70% of the probes with
sequence differences are detected, the effect of removing probes on
falsely reported expression differences is more dramatic: the method
can remove 98% of the falsely reported expression differences from
a simulated dataset. We argue that the method should be used even
when sequence data are available.
Contact: lachmann@eva.mpg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
To study the evolution of gene expression one can compare gene
expression of species, strains, or populations (Brem et al., 2002;
Khaitovich et al., 2004; Lai et al., 2006; Nuzhdin et al., 2004;
Vuylsteke et al., 2005). For this comparison to be valid, transcript
detection and quantification should be equally efficient for all
individuals compared. Otherwise, efficiency differences might be
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‡Present address: Max Planck Institute for Evolutionary Biology, Ploen,
Germany.

mistaken for differences in expression levels. Thus, when gene
expression is compared using qPCR, primers are designed so
that they do not cover sequence differences between individuals.
Oligonucleotide arrays measure the expression of thousands of genes
by binding mRNA molecules to probes. The density of molecules
that bind to a probe, a patch of oligonucleotides on the array,
indicates the original amount of mRNA present in the sample.
Equal efficiency of detection requires that the mRNA targets for
a probe are identical across all samples. When the samples to be
compared have different transcriptomes, for example, belong to
different species, subspecies or genetically different populations,
some target sequences will differ between the groups, and thus
their probe binding affinity might also differ. This would cause a
difference in signal intensity even if no difference in expression
level between the targets exists. Such sequence differences between
targets are sometimes referred to as ‘single-feature polymorphisms’
(SFPs; Winzeler et al. 1998). Since we also address differences
between species in this article, and not just polymorphisms, we will
call this difference a ‘binding affinity difference’ (BAD) and a probe
hybridizing with BAD targets, a ‘BAD probe’. Since a part of a
probe’s signal comes from its hybridization with sequences others
than the desired target (Binder and Preibisch, 2005), BAD probes
can also arise from a difference in the secondary target—either a
difference in sequence or in expression level. Finally, BAD probes
can also be produced as a result of differences in the splicing of
transcripts between the groups.

The impact of BAD probes on expression estimates, when
comparing expression between species, was recognized by Hsieh
et al. (2003), who identify some of the changes in gene expression
as artifacts of species-specific probes: when chimpanzee expression
is measured on human-specific arrays, a 1% nucleotide difference
between species leads to >22% of probes with a sequence difference
within them. It is difficult to estimate how serious the general bias
introduced by those probes is—Hsieh et al. calculated that in the
study by Enard et al. (2002), species–probe interaction is significant
for more than half the genes.

BAD probes will have an especially strong impact on studies
doing QTL analysis (Alberts et al., 2007) of gene expression. When
an expression difference stems from a sequence difference in a
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probe’s target, it will give a very strong signal, mapping exactly
to the region in the genome where the difference occurs. It will
therefore look like cis-regulation when the sequence difference is in
the target region of the gene, or as trans-regulation when the signal
stems from a sequence difference in a secondary target. Alberts et al.
(2007) use a method similar to the one used by Greenhall et al.
(2007) to correct specifically for such problems.

How can one overcome this problem? Designing a special
microarray for each of the species or strains involved in the study
without taking into account the differences in target sequences, does
not solve the problem, because in that case the same mRNA target
will be measured using different probes and thus with different
binding efficiency. One could design arrays with probes whose
targets have no sequence difference between the species. Some
authors have tried to design arrays for all studied species, and
through a cross-hybridization design take the BADs into account
(Gilad et al., 2005). The approach that we describe in this article is
finding BAD probes, and masking them, i.e. not using them in the
expression analysis.

When several probes measure each mRNA target molecule—
on Affymetrix gene expression arrays usually 11 or 16 probes
measure a single mRNA target—it is possible to remove all BAD
probes from the probesets used in a study (Khaitovich et al., 2004)
and estimate expression levels using only the remaining probes.
Different methods for detecting BAD probes have been proposed.
One approach uses genomic, mRNA or EST sequence data to
identify and remove from analysis (i.e. mask) probes that have a
sequence difference within the targets of the probe (Khaitovich et al.,
2004), thereby creating a sequence-derived mask. This requires all
sequence differences within targets to be known for the compared
groups—i.e. species, subspecies, strain or population sequence data.
However, such a mask still does not account for any non-primary
target sequence differences, as secondary targets remain mostly
unknown (Rule et al., 2009). On the other hand, the approach
may also be too conservative, since not every probe that differs
in sequence from the probe’s target necessarily causes a difference
in binding affinity (Naiser et al., 2008). Another approach uses
expression data to identify BAD probes. Since oligonucleotide
arrays measure gene expression using several different probes
to determine the expression level of a single mRNA molecule,
comparisons between these probes can detect BAD probes. This
approach was used by Càceres et al. (2003), Khaitovich et al.
(2004) and Greenhall et al. (2007). Ronald et al. (2005) couple
a similar approach with an analysis of the signal expected based on
a probe’s thermodynamic properties. Here, we expand and improve
upon the method used by Khaitovich et al. (2004) to build a mask
to remove BAD probes and present an analysis for evaluating the
quality of the mask produced. We developed an R package to detect
BAD probes in Affymetrix Gene Chip array data. The R package
implementing our method and compatible with the Bioconductor
package for analyzing microarray data can be downloaded from
http://bioinf.eva.mpg.de/masking/. On the same web page, we also
provide scripts for producing all results reported here.

One method to evaluate the efficiency of the masking algorithm
is comparing it with a sequence-derived mask. However, since a
sequence-derived mask does not remove any probes that are BAD
due to secondary target differences, it only approximates an ideal
mask. We also do not know the ‘real’ expression differences in
the samples to which we could compare our results. To overcome

this problem, we generated datasets in which the real expression
differences are known. We use evaluation datasets in which we
artificially create BAD probes, replacing the signal from perfect
matching (PM) probes by the signal from their coupled mismatch
(MM) probes. Since the expression differences are known in the
original datasets, we can evaluate how well our mask recovers the
original expression differences.

2 METHODS
Our method for detecting BAD probes uses an Affymetrix array design
feature: the probeset. A probeset is a set of probes, all of which are
designed to measure the same target transcripts, but each of which binds
to a different region of the mRNA molecule. If the probes truly measure
the same transcripts, the signal intensities of probes within one probeset
should be correlated to the level of this transcript, and thus to each other.
When there is no difference in binding affinity between groups of samples,
this correlation will be the same for all groups. When binding affinities
differ between groups, signal intensities remain correlated within groups,
but the correlation differs between groups (Fig. 1). Notice that when several
alternative transcripts for the target mRNA molecule exist, some of them
might not contain targets to all the probes. In that case targets that contain
two probes contribute to their correlation, and a target molecule that contains
one but not the other will add noise on top of this correlation. In that sense
the effect of alternative transcripts is similar to that of secondary targets,
except that instead of adding expression, expression is subtracted.

In the following, we use Li and Wong’s (2001) model for signal intensities.
According to this model, the signal intensity for the i-th array and j-th probe
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Fig. 1. Comparison of fluorescence level between two probes that measure
the same mRNA target molecule—belonging to the same probeset. Each
dot represents a sample—humans (blue) and chimpanzee (green). On the
left, (a) and (c) relative fluorescence level when there is no sequence
difference between humans and chimpanzees in either probe. In this case the
relationship of fluorescence level between probes is expected to be linear.
On the right, (b) and (d) probe comparison for the same probesets, but
the probe on the y-axis has a sequence difference. On top, for probeset
37312_at, there is no detectable expression difference between humans
and chimpanzees, on the bottom, for probeset 32594_at there is a
difference. Our method performs a t-test of the slopes to each point (green
and blue lines), assuming that the intercept is taken from all points (black
line).
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can be expressed as:
Oij =νj +�iθj +ε (1)

Where νj is the baseline response of the j-th probe due to non-specific
hybridization, �i is the abundance of the target RNA sequence, θj is the
rate of increase of probe j to the target sequence, and ε is an error term. We
can rearrange this equation, where probes j=1 and 2 produce:

Oi2 = ν2θ1 −ν1θ2

θ1
+ θ2

θ1
Oi1 +ε (2)

Therefore, assuming the binding strength of probes 1 and 2 are equal across
all samples and if the background binding level for the two probes is also
identical, then the expression level measured by probe 2 will be a linear
function of the expression level measured by probe 1. When samples come
from different species, the binding affinities (θj) or background levels (νj)
could be different for different arrays. In that case, there will be a different
linear relationship between the signals Oi1 and Oi2, or between probes
1 and 2 in the two species, but a linear relation will remain for within species
comparisons.

The model used above is not an exact model for the fluorescence levels
in microarrays, as these measurements are not linear at the target mRNA
levels. Zhang et al. (2003) model this probe response function. The baseline
response is also not constant it depends on cross-hybridization—additional
transcripts that bind with a lower affinity to the probe. Finally, the error
term is not known to have the same distribution across the whole range
of expression. We therefore need to construct a method that is robust to
these deviations. Since we wish to detect expression differences between
species, the method must also be robust to real differences in expression
levels between the species.

We tested several different methods (see Supplementary Material). Of
these, the following test gave the best results. Our null hypothesis considers
that in both species the two sequences compared are the same, as well as the
background binding level. We estimate the intercept

β= ν2θ1 −ν1θ2

θ1
(3)

from the data using the Reduced Major Axis regression (RMAr—not to
be confused with the Robust Multichip Average method used to analyze
microarrays). If the RMAr slope is negative, the minimal value for probe 2
is taken as the intercept. We then have:

Oi2 −β

Oi1
= θ2

θ1
+ε (4)

We can therefore test if (Oi2 −β)/Oi1 has the same distribution for both
species. This test will give us a P-value for the hypothesis that the two
species have the same binding strength and background binding level for
probes 1 and 2. When the hypothesis is rejected, we do not know which
of the two probes has a difference in binding strength or background. So,
we then perform the same test for all probe pairs. As the test result is not
symmetric in the two probes used, we conduct the tests in both directions.
We thus build a J ×J matrix of all pairwise tests, less the diagonal.

A probe that has a BAD across the species cannot inform us about other
probes, since the null hypothesis does not hold. Therefore, we remove probes
from the probeset one by one and repeat the tests. To obtain a single value
for each probe in a probeset, we use the following algorithm:

(1) For each probe, calculate the geometric mean of all P-values in the
matrix where this probe is involved, and ignore comparisons of the
probe with itself.

(2) Record the probe with the smallest geometric mean of P-values (we
will call this mean the mP-value, to distinguish it from a real P-value).
Exclude comparisons with this probe from the matrix.

(3) Repeat Step 1, until the matrix contains only two probes.

(4) Assign the last two probes the same mP-value, which is the geometric
mean of their P-values.

Once each probe has been assigned an mP-value, we choose a cutoff and
designate all probes with an mP-value below this cutoff as BAD probes.

2.1 Choice of the cutoff
The last step when constructing an expression-based mask involves masking
all probes with an mP-value below a certain cutoff. The choice of this
cutoff depends on the goal of the analysis. For detecting candidate sequence
differences between species, where a strong type 2 error control is important,
we might be more concerned that all differences reported are indeed sequence
differences, than our concern that some sequence differences are missed. In
this case a low cutoff is reasonable. In contrast, when masking BAD probes
in between-species comparisons of gene expression, it is important to mask
as many BAD probes as possible, eliminating any probes that cause false
expression readings, as long as a sufficiently high number of probes for
a reliable expression analysis is retained. Since mP-values depend on the
particular dataset, an individual cutoff must be chosen for each dataset. In
the next section, we outline our assessment of each cutoff by evaluating its
effects on detecting differential gene expression. We will demonstrate that
a good cutoff selection is the one that eliminates a fraction of probes close
to the expected number of differences between the species. An alternative
strategy for choosing the cutoff is to sequence some of the probes, and then
use these data to calculate types 1 and 2 errors for different cutoffs, and select
the desired cutoff.

3 RESULTS

3.1 Evaluating the expression-based mask
3.1.1 Comparison with a sequence-based mask First, we tested
our mask’s ability to detect probes with known sequence differences.
We used a human–chimpanzee brain expression dataset from U95A
arrays (Khaitovich et al., 2004), comprising six different brain
tissues from three individuals for each species. This array has 16
probes in every probeset. Notice that for constructing a mask,
pooling different tissues should not pose a problem as long as
differences in expression levels of secondary targets do not generate
so much noise as to mask out the signal we are looking for.
All probes on the U95A array were mapped to the human and
chimpanzee genomes and cDNA (see Supplementary Material). For
our comparison of sequence results with the expression-based mask,
we used a conservative definition of matching and mismatching
probes, so as to minimize mis-calling either (see Supplementary
Material). We estimated type 1 errors—the fraction of probes
undetected by our expression mask among all probes with a sequence
difference, and type 2 errors—the fraction of probes identified as
different by our mask among all probes with no sequence difference
between the species. As illustrated in Figure 3, our expression-
based mask detects >70% of probes with a sequence difference,
while at the same time removing 18% of probes without a known
sequence difference (cutoff = 0.05, masking 26% of the probes). At
this cutoff, an average of 3.3 probes are removed from a probeset,
leaving an average of 12.7 (See Supplementary Fig. 10 for the
distribution of probes left per probeset). In comparison, our method
is more powerful than Greenhall’s method (Greenhall et al., 2007),
since we detect ∼10% more probes with a sequence difference,
while maintaining the same level of type 2 errors (Supplementary
Fig. 7).

A sequence-based mask only masks probes where the primary
target differs, but does not consider differences caused by the cross-
hybridization of secondary targets between the two species. Thus, the
intended target probe might have the same sequence in both species,
but one of the cross-hybridizing targets might have a changed
sequence or a changed expression level. In this case, an expression-
based mask might detect a BAD probe that a sequence-based mask
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Fig. 2. An example of a BAD probe not detected by a sequence-derived mask
based on human and chimpanzee data, in probeset 34701_at measuring
expression of gene DLG4 (post-synaptic density protein 95). (a) Probe 5
versus probe 4: no BADs between the species can be seen. (b) Probe 5
versus probe 12: even though none of the probes have a sequence difference
between species, it is clear that probe 12 displays a difference between
the species that is not the result of a difference in the expression level of
DLG4. This probe could cause a spurious expression difference between the
species.
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Fig. 3. Power of detecting sequence differences using an expression-based
mask. The x-axis, type 1 error, refers to the fraction of probes without a
sequence difference, that are still detected as BAD by the method. The y-axis,
type 2 error, refers to the fraction of probes with a sequence difference
that are not detected as BAD by the method. Shown are power curves
for detecting BAD probes for the human–chimpanzee dataset, and for
the two simulated datasets. Dashed lines are simulated datasets in which
only the probes that were the most difficult to detect as BAD were used
(highest GC content among probes with an A/G in the middle of the
probe).

misses; therefore, not all type 2 errors of the expression-based mask
are actual errors. An inspection of such probes often shows clear
differences in binding affinity (Fig. 2). For such probesets, the
assumptions underlying the calculation of expression levels using,
for example, the RMA method, do not hold. Such probes should be
excluded when calculating expression levels.

Similarly, not all type 1 errors have the same consequences.
A sequence-based mask only points to a sequence difference, but
not its effect on the probe’s signal. A sequence change at the edge

of a probe might have negligible effects on binding affinity and
expression estimates. Indeed, we find that the position of the MM
in the probe significantly impacts our ability to detect a sequence
difference—changing from a detection rate of ∼30% at the edges to
80% in the middle of the probe (see Supplementary Fig. 2).

3.1.2 Datasets with artificially created BAD probes For a better
estimate of our method’s power to improve detection of expression
differences, we constructed simulated datasets. In a subset of
samples, we introduced probes with a 1 nt MM to the target.
Affymetrix arrays contain probes matching the target perfectly
(called PM probes), as well as probes containing a single MM to
the target (called MM probes). MM probes are identical to the PM
probes, except for a change in the middle nucleotide. In half of a
dataset’s samples, in a fraction of probes (e.g. 20%), we exchanged
the PM probe intensity for the MM probe intensity, and thus created
artificial BAD probes (‘flipped probes’). We then used those artificial
datasets to create masks, and compared expression values obtained
before and after masking. Since PM and MM values are used for
deciding whether a probeset is expressed, we used the ‘expressed’
calls from the original dataset.

The first dataset, the ‘single-tissue dataset’, consists of 30 samples
of healthy human prefrontal cortex, arbitrarily divided into two
groups (Ryan et al., 2006). In one of the two groups, group 1,
we randomly selected 20% of the probes, and replaced the PM
values with the corresponding MM values. This is the percentage of
BAD probes one would obtain from a sequence difference of ∼1%
per nucleotide. The other half of this dataset, group 2, remained
unchanged.

The second dataset, the ‘two-tissue dataset’, comprises expression
data for two human brain regions (caudate nucleus and frontal
cortex), from 12 individuals each (Hodges et al., 2006). Here, we
replaced the PM with MM values for the caudate nucleus samples.
As two brain regions differ in their expression pattern, the second
dataset mimics two genetically distinct groups differing in gene
expression.

In the simulated datasets, types 1 and 2 errors of detecting the
flipped probes for almost any cutoff are smaller than for the human–
chimpanzee mask compared against sequence mask (Supplementary
Fig. 3). This is mainly because in the simulated dataset, we replaced
always the middle nucleotide, whereas the sequence differences in
the human–chimpanzee data occur at any position, and also because
MM probes always replace A↔T and C↔G, whereas for species
differences all possible replacements occur. Supplementary Figure 3
shows that our ability to detect flipped probes in the simulated dataset
is a function of the type of change in the MM probe and the GC
content of the remainder of the probe. We can see that probes with
a low GC content and central A/G in PM probes are detected best,
whereas probes with a high GC content and central C/T are the most
difficult to detect. Our greater ability to detect a difference in probes
with a low GC content could imply that these changes have a larger
effect on the binding affinity. This larger difference in affinity for
A/G changes was observed by Binder and Preibisch (2005).

Because flipping probes with a high GC content and a central
C or T produce error profiles closest to those produced in the
human–chimpanzee data, we decided to only use such probes in
the simulations described below, in order to get closer to the error
profiles of real sequence differences. The results for randomly
selected probes were similar (see Supplementary Material).
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Fig. 4. Black: rate at which probesets gain spurious expression differences
versus sequence divergence rate per base. In the single-tissue dataset, we
flipped a number of probes equivalent to the sequence divergence rate shown
on the x-axis (per base). Then we measured what fraction of probesets
showing no difference in the original dataset show an expression difference
after flipping (t-test P-value <0.05). Notice that in this plot, we first applied
flipping only to high GC, middle C/T probes, but as those ran out to all
probes. Red (grey): fraction of probes without a sequence difference versus
divergence rate per base.

3.1.3 Influence of masking on gene expression estimates We used
the simulated datasets to study the influence of BAD probes and
masking on expression differences. We can compare our results to
both the expression differences observed before the probes were
flipped, and to the results one would obtain with a ‘perfect’ mask,
since we know exactly which probes should be removed (exactly
those that were flipped). Notice that after applying this perfect
mask, which eliminates all flipped probes, we do not obtain exactly
the original expression values and expression differences. This is
because even expression differences detected with the ‘perfect’mask
have some ‘error’ versus the original expression data, both due to
the loss of power to detect differential expression when probes are
discarded from probesets and to the noise in expression levels caused
by using different subsets of probes.

In the single-tissue dataset, group averages should be the
same, since all samples come from one population. Therefore, we
examined only the newly introduced expression differences, but not
the effect flipping may have on the few false positive expression
differences that were present in the original data. First, we look at the
effect of BAD probes on false detection of expression differences.
Figure 4 shows the fraction of probesets that had no expression
difference in the original dataset, which showed a difference after we
flipped some of the probes. We can see that at a sequence divergence
of 1% between the groups, which corresponds to ∼20% of probes
flipped, 55% of the probes that originally showed no difference
between the groups show a difference (t-test, at P<0.05 level).
This number is similar to the result estimated by Hsieh et al. (2003).

Almost all of these introduced differences disappear after
masking, and the expression-based mask is as effective as the
‘perfect mask’—only 2% of the probesets without an original
difference are marked as differentially expressed (Fig. 5a).

For the two-tissue dataset, we can consider both types of error.
After flipping, >78% of probesets that showed no difference between
the tissues, now show a significant difference. This is reduced to 27%
after masking, compared with 8% with a perfect mask (Fig. 5b). Of
the probesets that had a significant difference in the original dataset,
18% lose their significance after flipping. This is reduced to 10% of
probesets with the expression-based mask, and 5% with the perfect
mask.
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Fig. 5. Detecting differential expression with masked datasets. The y-axis
represents all genes.Above the dashed line are differentially expressed genes,
below are non-differentially expressed—in the original dataset. The x-axis
represents the fraction of genes removed by masks with different cutoffs.
The white area represents correctly classified genes. The shaded area, above
the dashed line, represents misclassified genes—genes that were originally
different, but after masking are classified as not differently expressed. The
shaded area below the dashed line represents genes that were originally not
different, and after masking are classified as different. In both the cases,
we distinguish those genes where the misclassification occurred already
after flipping (dark shaded), and those where the misclassification was
only introduced after masking, and did not occur after just flipping (light
shaded). Black dots: perfect mask—exactly those probes are removed to
which sequence differences were introduced. (a) Single-tissue dataset with
20% of probes simulated as BAD. (b) Two-tissue dataset with 20% of probes
simulated as BAD.

Why is there a difference between the two simulated datasets?
In the single-tissue dataset, after masking, there are almost no
new expression differences, whereas in the two-tissue dataset, after
masking, 27% of the probesets without any original difference in
expression now show a difference. One possibility is that when there
are real differences in expression between the groups, our method
has less power to detect a BAD probe. Another possibility is that
our mask removes probes with a different cross-hybridization profile
between the tissues (present only in the two-tissue dataset) and by
doing that increases the power to detect differences between the
groups.

To examine these possibilities, Figure 5 distinguishes between
errors in detecting expression differences that were introduced by
the mask and those errors that appeared when the BAD probes were
introduced, when MM and PM were flipped. We can see that most
of the errors that were introduced by flipping are removed by the
mask—it performs almost as well as the perfect mask—4% versus
5%. The reason for the large difference between the two datasets,
therefore, is not reduced power. Instead, it might be that masking
makes more expression differences between the tissues apparent,
an effect unrelated to flipping. In fact, most of the new expression
differences we see after masking of flipped data, are also observed
when we run masking algorithm for the raw (unflipped) two-tissue
dataset and apply the resulting mask on it. We hypothesize that this
is because masking removes probes that have a difference in cross-
hybridization profiles between the tissues, present already in the
raw data. After removing these probes, the power to see expression
differences between the tissues increases.

3.1.4 Comparing gene expression between strains In populations
with a large effective population size, the sequence difference
between groups can be large enough to introduce a large number
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of transcript differences, and thus a large number of spurious
expression differences. One can estimate this effect by looking at
Figure 4. At 1% sequence divergence between groups, as we would
see, for example, between strains of Saccharomyces cerevisiae (Liti
et al., 2009) and strains of Drosophila melanogaster (Aquadro
et al., 2001), >50% of genes without a significant expression
difference will be falsely identified as having such a difference.
The effect decreases when the divergence between groups is down
to 0.1%—only 5% of genes are falsely classified.

We applied our method to a dataset consisting of two strains of
mice, C57BL/6J and A/J taken from Hovatta et al. (2005). This
dataset consists of expression from seven brain regions: amygdala,
bednucleus of the stria terminalis, cingulate cortex, hippocampus,
hypothalamus, periaqueductal gray and pituitary gland, with two
replicates each. The study used the U74Av2 array, in which the
large majority of probesets contain 16 probes. We looked for
BAD probes in the comparison between the strains. Our masking
method is able to identify 60% of a set of 313 known SNPs
(downloaded from the Mouse Genome Database, Bult et al. 2008,
http://www.informatics.jax.org in June 2009) within probe target
regions between these strains, while masking only 8.3% of all
probes. In fact, of the 400 probes with the lowest mP-value, a third
are among these known SNPs. As was the case in our other datasets,
we can see obvious differences between the groups in correlation
between some of the probes—both for probes with known SNPs in
them, and for probes without known SNPs (Supplementary Fig. 1).

The divergence between these strains is ∼0.08% (Frazer et al.,
2007), and the divergence at the target regions for the probes is
probably lower. At this divergence level, BAD probes have a low
effect on expression differences. Of the 3430, 1163 probesets that
were significant at P<0.05 for the strain effect in a strain by
tissue ANOVA, 249 become non-significant after masking, and 155
new probesets become significant. It is obvious that at such a low
divergence between groups applying the mask is not crucial, but
might improve the quality of the data.

As we mentioned in Section 1, when a study is mapping QTL for
gene expression between strains, a spurious expression difference
that stems from a BAD probe—in particular a sequence difference
in the target molecule between the strains, or a sequence difference
in a cross-hybridizing molecule, will give a strong signal, since it
will map exactly to the sequence difference that causes it.

3.1.5 Effect of number of BAD probes We looked at the ability to
detect BAD probes. We flipped 10%, 20% and 30% of the probes
in the single- and two-tissue datasets. Note that by increasing the
percentage of flipped probes, we are also increasing the average
number of BAD probes per probeset. The overall effect on the
detection rate of BAD probes was minimal (Supplementary Fig. 6).
In all the cases, the number of removed probes required to eliminate
errors in reported expression levels corresponds to the number of
probes flipped 10%, 20% or 30%.

3.1.6 Influence of number of probes in a probeset Standard
Affymetrix probesets contain usually 16 or 11 probes. We checked
how our method performs for probesets of different size. This was
done by artificially creating probests that contain fewer probes, and
measuring the error rate in them. With three and five probes per
probeset the error rate is significantly increased, but the effect for
seven probes per probeset is already very small (see Supplementary

Fig. 9). One can also infer that the additional power gained from
going beyond 16 probes per probeset will be very small.

3.1.7 Data needed to build a reliable mask We tested how the
size of the groups used to build a mask influences error rates for
human–chimpanzee dataset (Supplementary Fig. 4). Using more
individuals also increases the power to detect expression differences
(Supplementary Fig. 5). We see that beyond six individuals, the
effect of increasing the number of individuals per group is negligible.

4 DISCUSSION
Large-scale measurement of gene expression provides an invaluable
tool for studying the phenotype of organisms. Comparing expression
of orthologous genes or transcripts across species gives important
insights into the evolution of their phenotypes. However, since
expression differences are not the only difference between the
species compared, we must ensure that the detected differences
are indeed in the expression of the target transcripts, and not
the result of some other difference between the species, such as
the thawing rate of tissues, rate of RNA degradation or large-
scale differences in the mRNA profile, which would invalidate our
normalization assumptions. Methods that measure gene expression
by binding molecules to an oligonucleotide probe will also
misidentify expression level differences between transcripts because
of sequence differences in the targets transcripts or cross-hybridizing
transcripts or because of differences in the expression profile of
such cross-hybridizing transcripts. In some cases custom arrays
designed for each of the species compared are available. If we
measure expression using these arrays, we are not measuring the
expression levels using the same probe, and thus the relationship
between fluorescence level and mRNA expression level will be
different between the species. In this case, the differences detected
will in most cases be probe differences.

There are two principal ways to overcome these obstacles
and reliably measure expression differences between species: (1)
experimentally decreasing or negating the binding differences
to the target, and (2) only using targets without any binding
differences. Methods based on (1) include application of longer
targets sequences in the hope of washing out the effect of a few
sequence differences (Walker et al., 2006), or using probes with
the sequences of targets in both (or all) species, and including
binding affinity in the statistical analysis model (Gilad et al.,
2005). Our article, focuses on approach (2), only using probes
with no binding differences to their targets—and masking out all
the rest. Masking BAD probes has some shortcomings. One is
that the number of usable probes decreases as sequence divergence
between the species increases. At a divergence of 1% per nucleotide
in the target region, ∼80% of 25mer probes have no sequence
difference and can be used; at 5% divergence <30% of the
probes have no sequence difference, and at 10% divergence, only
7% of the probes are usable (Fig. 4). The number of usable
probes further decreases if we include more than two species
in our comparison, as we then need to mask probes that have
a binding difference for their targets in any of the species. We
must also ensure that less conserved genes, which potentially
have more sequence differences, do not preferentially drop out
of our analysis, and do not suffer from a greater measurement
error. Therefore, applying any kind of masking approach is limited
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to closely related species and reasonably conserved genes. The
approach is also applicable to expression comparisons between
strains or populations, when the number of sequence difference is
small.

In this article, we present a method to detect probes with
BADs between species based on the expression data itself. Since
the method is based on expression, it has no power to detect
differences in unexpressed genes. As it does not rely on sequence
data, it is especially useful when comparing expression in different
subspecies, strains, populations and other genetically distinct groups
when not all genetic differences are known.

We also present methods for estimating the efficiency of our
method in removing falsely reported positive expression differences
between the groups. When there are no or only a few expression
differences between the compared groups, such as in our single-
tissue dataset, our method is very effective, removing 98% of these
false positives. When there are real expression differences between
the samples, as was the case in our two-tissue dataset, after masking
only 5% of the expression differences introduced by the sequence
differences remain—this is as few as would remain with a perfect
mask removing all introduced sequence differences. However, in
addition, 20% of genes which did not show a gene expression
difference—neither in the raw data, nor after using the ‘perfect
mask’—are detected as differentially expressed after our expression-
based masking. Where do these additional differences come from?
Since virtually no additional differences are introduced when there
are no expression differences of a molecule, we interpret this to stem
from an increase in the power to detect expression differences, by
removing noise in the dataset. Therefore, expression-based mask
is useful not only to avoid spurious expression differences, but
also to improve detection of others, unidentified in noisy unmasked
data.

We are aware that our method of simulating species-derived
BAD probes suffers from a few shortcomings. First, in the MM
probes, it is always the central base among the 25 bases in a
probe that is changed. In flipping MM and PM readings, we
therefore do not cover the full range of affinity differences that
are produced by sequence changes on all 25 positions. Second,
our simulation scheme flips the probe sequence for one of the
groups, but the target sequence in that group stays just as it was
before flipping. When comparing expression between species, one
is using the same probe for both groups, but the target sequence in
one of the groups has a difference. It is not clear what effect this
difference has. Third, changes in cross-hybridization have different
origins in in vivo experiments versus our in silico simulation with
respect to secondary targets: when comparing between species, false
expression differences can result from both sequence changes in
secondary targets and from changes in the expression levels of
secondary targets. In the simulated dataset, the whole population
of secondary targets that bind to the MM versus the PM probes are
potentially different (rather than just one of the secondary targets
changing sequence). In addition, no expression level differences
in the secondary targets are introduced by flipping, whereas in
comparing between species, many secondary targets can change
their expression. Notice, however, that in the two-tissue dataset,
there could be differences in the expression levels of secondary
targets that were present even before flipping. Fourth, sequence
and splicing differences between the species beyond the probes
themselves might affect the binding affinity of the target in real life.

These are impossible to be introduced by flipping. Again, in two-
tissue dataset such differences between the tissues might be present
even before flipping.

We have shown that relatively few samples per group are sufficient
to construct a mask—even three already provide some power, which
increases until we reach about 10 samples per group. Note that all
samples used in the analysis must be run on the same microarray
scanner, because we use the fluorescence response curve of the
probes, which differs not only from machine to machine, but even
across calibrations of the same machine. When insufficient numbers
of samples per species from a single tissue are available, several
different tissues can be pooled for the purpose of building the mask.
For example, our dataset for finding differences between humans
and chimpanzees comprises data from five different brain regions,
and the mouse dataset contains seven different brain regions. Notice
that expression differences between the tissues do not necessarily
hamper our ability to construct the mask. We are testing to what
degree, when fluorescence level of one probe increases because
more target molecules were available, the level of another probe
targeting the same molecule will also increase. In such cases it
should not hamper the test if the target molecules are present in
different levels in the different samples—in fact that is exactly what
powers the test. When differences between the tissues is too large,
however, differences in expression levels of secondary targets will
reduce the power of detection of BAD probes between the species.
A similar source for noise within a group is sequence differences
between individuals within it. The effect, again, will be that there
are BAD within the group, and therefore probes will not lie on
a single line. This will mainly be a problem if the same probe
has differences between and within the groups, in which case it
might not be detected as a BAD probe. It is not clear if such a
probe will produce spurious expression differences between the
groups, but it might be good to develop methods to detect these
cases, when the rate of polymorphism within the groups is high
enough.

The expression-based masking we propose, allows us to compare
gene expression when insufficient sequence data is available to build
a sequence-based mask. Even in datasets where a full sequence-
based mask is available, additional masking based on the expression
data will provide a benefit (Khaitovich et al., 2004). This is because a
simple sequence-based mask only removes probes due to differences
in primary targets. Changes in sequence or expression levels of
secondary targets can still falsify expression differences. Differences
in splicing between the groups could also be identified as differences
in expression levels of the mRNA target. Our mask detects cases
where some of the assumptions of the methods used to calculate
gene expression levels, such as the RMA method, break down. Thus,
our method will point to additional problematic probes, and enhance
the sequence-based mask.
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