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Abstract

Developmental plasticity is one important way that organisms manage the risk
created by a constantly changing environment. Information collected during devel-
opment, if it helps predict environmental changes, can be used to guide develop-
ment towards a suitable phenotype. This kind of predictive plasticity can be quite
successful. On the other hand, if the environment is completely unpredictable,
a last-ditch strategy is bet-hedging—randomizing the phenotype so that at least
some offspring will get it right by chance. In situations where only partially re-
liable information is available, a well-adapted developmental strategy may strike
a balance between predictive plasticity and bet-hedging, depending on how well
developmental conditions predict environmental change. In this article, we develop
a theoretical model which shows that it is not just the predictive value of develop-
mental cues that matters, but also the correlation between those cues within and
between generations. For example, an early spring rain may prompt many seeds
to germinate early, with potentially disastrous results for the parent plant’s lineage
if that year’s growing conditions turn out to be poor. However, if there are sub-
tle differences in microclimate that affect the timing of germination, even if some
seeds germinate early, others are likely to germinate late. In such circumstances a
strongly differentiated response to individually variable developmental conditions
can achieve two goals at once: it helps match the phenotype to the predicted envi-
ronment, and at the same time creates phenotypic diversity—hedging bets in case
that prediction is wrong.

1 Introduction

Many species living in highly variable environments also show remarkable variability
in phenotype. This phenotypic diversity often stems not from genetic variation but is
rather a result of adaptive plasticity during development. For example, acorn barnacles
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develop either a bent or conical shell shape, depending on the presence of predatory
snails (Lively, 1986b). In desert annual plants, a fraction of the seeds produced by any
individual will go into diapause, delaying germination until another year—just in case
the growing conditions in the current year are poor (Cohen, 1966). For the barnacles,
the decision of which phenotype to produce is controlled by predictive developmental
cues, while for the desert annuals it seems to be at least partially random. The latter
is a classic example of what is known as bet-hedging: developmental stochasticity as an
adaptation to an unpredictable environment (Seger and Brockmann, 1987; Cooper and
Kaplan, 1982). What influences the adaptive evolution of these two different modes of
developmental control? One important factor is how well the selective environment can
be predicted using cues available during development. Another is the way that variation
in the environment is distributed among individuals, within and between generations
(Frank and Slatkin, 1990). Drought, for example, affects all the desert annuals that have
germinated that year, while predatory snails affect only barnacles that settle in certain
areas. A number of theoretical models have been developed to explore the combined
impact of these two factors (Cohen, 1967; Levins, 1968; Moran, 1992; Haccou and Iwasa,
1995), inspiring numerous empirical tests (e.g. Philippi, 1993; Clauss and Venable, 2000;
Lane and Mahony, 2002; Halkett et al., 2004; Kussell et al., 2005; Venable, 2007).

In all this research, however, a potentially important feature of developmental cues has
been overlooked. The way that developmental cues vary among individuals, within and
between generations, could be just as important as variation in the selective environment.
Consider a cue that seeds might use to predict drought, like the amount and timing of
the rain that falls during the germination season. First of all, seeds in different locations
may be subject to subtly different microclimates, so the rainfall detected by one seed may
not precisely reflect the pattern overall. Secondly, weather patterns are variable enough
that even a perfect record of the global patterns of rainfall during the germination season
would not be enough to predict a drought with certainty. These two sources of error have
very different implications for the way that cues are distributed among individuals, yet
traditionally this distinction has been ignored.

In this article, we show that the adaptive evolution of developmental plasticity depends
on both kinds of variation in developmental cues, but in qualitatively different ways.
Errors in prediction that are the result of unusual patterns in the global environment—
like early spring rains followed by an extended drought—can select for developmental
strategies that produce high levels of within-generation phenotypic diversity. However,
the strategies used to generate that diversity may be quite different, depending on how
much error there is in individual observations of developmental cues. This has several
surprising implications. Intuitively, one might predict that the less reliable a cue is, the
weaker the developmental response to it should be. This intuition holds as long as the
error in the cue affects all individuals in a generation: a strong developmental response
to the cue would mean that any mistake in prediction could lead to disaster for the whole
population. However, when each individual makes independent errors in observation of
the cue, less reliability can actually select for a stronger developmental response to the
cue. Furthermore, even though each individual may do a very poor job of predicting the
environment, the developmental strategy may perform quite well on average. Surprisingly,
this means that there will often be no selection for individuals to improve their accuracy
in observing environmental predictors, even though by doing so they could improve their
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ability to predict future environmental conditions.

2 An example: two kinds of error in a desert annual’s

prediction of drought

Cohen’s classic model of bet-hedging was based on the biology of desert annual plants (Co-
hen, 1966). Because they live in such a harsh environment, and have only one chance to
reproduce, these plants are very strongly affected by the possibility of drought. Consider
the fate of a plant whose life history strategy is to produce seeds that always germinate
the following spring. If the next year happens to be a drought year, the plant will pro-
duce no grand-offspring at all—its lineage will come to an end. Even if the next year is
not a drought year, sooner or later one will come along. Since all the descendents of the
original plant have the same life history strategy, all the seeds in its lineage will germinate
despite the drought and fail to reproduce, again ending the lineage. Many desert annual
plants get around this problem by bet-hedging: each seed “chooses” randomly whether
to germinate or not. In good years, those seeds that do germinate are likely to reproduce
successfully. In drought years, even though some seeds will germinate and die, others will
stay dormant, retaining the chance to carry on the lineage in some future year. Cohen
showed that, as long there is no chance of survival in bad years, the optimal fraction of
seeds germinating each year is equal to the fraction of good years. Thus, if severe drought
occurs about one year in five, we would expect approximately 80% of seeds to germinate
each season.

Bet-hedging is a reasonable strategy as long as there is no information available about
the quality of the coming growing season. However, when environmental cues are available
to the seed that can help predict future environmental conditions, it may be possible to
use that information to do even better (Cohen, 1967). For example, early and plentiful
spring rains may indicate that a good growing season is more likely, while late or sparse
spring rains may indicate the opposite (Philippi, 1993). Cohen showed that the optimal
fraction of seeds germinating in response to a cue is equal to the conditional probability
of a good year, given that cue. Say that severe drought occurs about half the time
overall, but in years where there are early spring rains there is just a one in five chance
of drought, while with late spring rains there is a four in five chance of drought. In this
situation we would expect about 80% of seeds to germinate in response to early spring
rains, but only about 20% of seeds to germinate in response to late spring rains. Such a
strategy combines elements of predictive plasticity, because seeds change their probability
of germination in response to cues, and bet-hedging, because not all seeds will germinate
even under the best conditions.

The above calculations assume that all individuals have exactly the same perception
of the cue—if the spring rains do come early, then all seeds will discern that and respond
accordingly, and vice versa. However, different seeds may detect slightly different amounts
of rain due to differences in their microhabitat. Say that, in years where the first spring
rains sufficient for germination come early, 20% of seeds miss them and germinate late,
while in years where the first spring rains sufficient for germination come late, 20% of
seeds germinate early anyway due to particularly moist microhabitats. This is effectively
the same strategy as described above, but now the within-generation variation is caused
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not by developmental stochasticity but by perceptual error in detecting the developmental
cue.

This very simple, but rather contrived example illustrates three important points.
First of all, variability between the cues that individuals detect can create some level
of within-generation phenotypic diversity, spreading the risk among individuals and po-
tentially obviating the need for bet-hedging. Second, even though individual errors in
perception make the cue less reliable, the optimal strategy is actually to respond more
strongly to the cue, which seems rather counterintuitive. Finally, the phenotypic distribu-
tions created by the optimal strategies with and without individual errors in perception
may in some cases be the same—which suggests that even though they make cues less
reliable, these errors may not actually be costly. In the following section we develop
a model of bet-hedging and plasticity in an uncertain environment that is designed to
highlight the role of individual errors in perception of cues, and will allow us to explore
these three points more thoroughly.

3 A model of developmental plasticity in response to

unreliable cues

We model a species with discrete, non-overlapping generations, inhabiting a fluctuating
environment. We consider population-level risk, in which the environmental state varies
from one generation to the next, affecting every individual in the population. In each
generation, the state of the environment e is drawn from a distribution Pr(e) over a
discrete set of possible environmental states.

An individual’s phenotype is determined by its developmental trajectory, which is
shaped by its genotype, the conditions it experiences during development, and devel-
opmental noise. We model this by assuming that the individual’s genotype encodes a
developmental strategy g. Each individual i receives a developmental cue ci, and de-
velops a phenotype xi, which remains fixed over its lifetime. For simplicity, we focus on
discrete phenotypes. The developmental strategy g specifies the probability of developing
each phenotype, conditional on receiving each developmental cue: g(x|c). Each strategy
shows a particular balance of stochasticity and predictive plasticity. One way to quantify
the amount of developmental stochasticity, drawn from information theory (Shannon,
1948), is the amount of uncertainty about the phenotype once the cue has been observed:
the conditional entropy, H(X|C). Similarly, a measure of predictive plasticity is how
much the knowing the cue reduces the amount of uncertainty about the phenotype: the
mutual information between the cue and the phenotype, I(X;C).

Plasticity is only useful if individual cues can be used to help predict the environmental
state. If the cues do not perfectly reflect the coming environmental conditions, then
they contain some error. This error may be either shared among all individuals in the
population, or it may be different for different individuals. For example, if early spring
rains are usually associated with a good growing season, then the exception—early spring
rains followed by a poor growing season—is a misleading cue that could potentially cause
many seeds to germinate and then die without being able to reproduce. On the other
hand, if different seeds detect slightly different amounts of rain due to differences in their
microhabitat, each seed’s error in observation affects only its own choice about whether
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to germinate.
To represent these two types of error, we posit a shared population-level cue q which

varies from one generation to the next, and is correlated with the environmental conditions
e. Individuals do not directly observe the population-level cue, but each make their own
independent observation of it, which we call the individual-level cue ci. Mathematically,
the process can be described as follows. In each generation, an environmental state e
is chosen from the distribution Pr(e). Second, a population-level cue q is chosen from
the conditional distribution Pr(q|e), which describes the population-level error in the
cue. Finally, for each individual i in the population, an individual-level cue ci is chosen
independently from the conditional distribution Pr(c|q), which describes the individual-
level error in the cue. In the example of desert annual plants, the environmental state e
would reflect the amount of rain that falls during the growing season, the population-level
cue q would reflect when the first rain sufficient for germination falls, and the individual
cue ci would reflect when each individual seed detects sufficient rain for germination.
Individual error in observation always reduces the predictive value of a cue: an individual’s
information about the environment, I(E;C), is always less than the information she
would have if she could directly observe the population-level cue, I(E;Q) (by the data
processing inequality; e.g. Cover and Thomas, 1991).

The fitness of each individual is determined by its phenotype xi and the shared envi-
ronmental state e according to the fitness function f(x, e). In a fluctuating environment,
the phenotype with the highest mean fitness is not necessarily most likely to fix in the
population. Because the environment varies from generation to generation, in some gen-
erations one phenotype will be favored, while in other generations another phenotype
will be favored. Over the long term, the genotype that is most likely to fix is the one
whose long-term growth rate is greatest. As long as there is no interaction between phe-
notypes, a good estimator of the long-term growth rate of a genotype is the mean log
fitness (which is the log of the geometric mean fitness) (Dempster, 1955; Cohen, 1966;
Cooper and Kaplan, 1982). This depends not just on the mean fitness of individuals of
that genotype, but also on the variation in mean fitness from one generation to the next
(Frank and Slatkin, 1990; Yoshimura and Clark, 1991). The general form for the long-
term growth rate of the lineage stemming from genotype g is the mean, over generations,
of the log mean fitness within generations. Since generations differ from one another in
their environmental state e and the population-level cue q, the long-term growth rate can
be written as:

r(g) =
∑
e,q

Pr(e, q) log f̄(g|e, q)

=
∑

e

Pr(e)
∑

q

Pr(q|e) log
1

n

n∑
i=1

f(xi, e) (1)

Since, in our model, an individual’s phenotype xi is determined by its developmental
strategy g and the cue it receives, ci, a good approximation when the number of individ-
uals in the lineage is large is:

r(g) ≈
∑

e

Pr(e)
∑

q

Pr(q|e) log
∑

c

Pr(c|q)
∑

x

g(x|c)f(x, e). (2)
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The mean fitness within a generation depends both on the environmental state, which
directly affects the fitness of all individuals, and the population-level cue, which influences
the developmental cues that individuals receive, and, in turn, their phenotypes and their
fitness. Note that the individual-level error, represented by the term Pr(c|q), and the
population-level error, represented by the term Pr(q|e), will have very different effects on
the long-term growth rate.

This model explicitly assumes that all individual variation in developmental condi-
tions stems from independent errors in observing the same population-level cue. More
generally, we might want to consider cases in which individual developmental conditions
are correlated with the environmental state and with each other, but there is no obvious
population-level cue that each individual is observing. In Appendix A we argue that un-
der wide variety of correlational structures, we can nonetheless mathematically identify
a global feature of a particular generation which can be treated like a population-level
cue. This feature is the frequency distribution of individual cues in the population, i.e.
the proportion of individuals that observe each possible value of the developmental cue.

4 Model Results

Using the model described above, we look at the effect of individual-level error in a cue on
the optimal developmental strategy and the fitness it can achieve. Under what conditions
is a combination of plasticity and bet-hedging better than plasticity alone—that is, when
does the optimal strategy involve some randomization? How does the optimal strategy
change as the amount of individual-level error changes? Under what conditions might
there be selection to improve individual perception, reducing the amount of individual-
level error?

To solve for the optimal developmental strategy, we must find the conditional proba-
bility distribution g(x|c) that maximizes the long-term growth rate given in Equation 2.
We base our method on the principle of proportional betting: when several outcomes are
possible, and only betting on the correct outcome yields any payoff, the optimal scheme
for long-term investment is to place money on each outcome according to its probability
of occurring—regardless of the associated payoff. For example, in Cohen’s classic model
of diapause in desert annual plants, the lineage that maximizes its long-term growth
rate is the one whose conditional probability of germination in response to a cue equals
the conditional probability of a good year (Cohen, 1967). This simple, intuitive result
depends on two special assumptions: first, that there is no chance of reproduction in
a bad year, and second, that all individuals receive the same cue. In a previous paper
we have shown how to extend this principle to cases where phenotypes can survive in
multiple environments (Donaldson-Matasci et al., 2008). Because our focus in this article
is relaxation of the second assumption, here we will assume that each phenotype survives
in just one environment in order to keep things simple. However, in Appendix B we show
that our results still hold when the first assumption is relaxed as well.

With individual-level error, because different individuals may receive different cues
even within the same generation, the principle of proportional betting does not directly
apply. However, we can still solve for the optimal response to the population-level cue,
as if individuals could observe it perfectly, and then ask whether that response could still
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be achieved by a developmental strategy that could only respond to cues with individual-
level error. According to the principle of proportional betting, the optimal strategy in
response to the population-level cue should match the probability of each phenotype to
the conditional probability that its environment occurs:

ĝ(x|q) = Pr(ex|q). (3)

The effective response to the population-level cue is determined both by the develop-
mental response to individual cues, and the probability of observing those cues given the
population-level cue:

ḡ(x|q) =
∑

c

g(x|c) Pr(c|q). (4)

In the following sections we will use row stochastic matrices to simplify the notation. The
developmental strategy is represented by a matrix G with entries g(x|c), the individual
error is represented by a matrix C with entries Pr(c|q), and the population-level error
is represented by a matrix P with entries Pr(e|q). Putting together Equations 3 and 4
and using matrix notation, we find the following criterion for the optimal developmental
strategy in response to individual cues, ĝ(x|c):

CĜ = P. (5)

This simple formulation will allow us to make several interesting observations about the
effect of individual-level error on the optimal developmental strategy and the resulting
long-term growth rate.

4.1 Individual error may make bet-hedging unnecessary

Depending on how variable environmental conditions are, individual level error in the
perception of developmental cues may make bet-hedging superfluous. Figure 1 shows
an example for the case with two phenotypes and two possible values for the cue. For
low levels of individual-level error, bet-hedging in response to both cues is almost always
advantageous, while for higher levels of individual-level error, bet-hedging in response to
both cues is only helpful when there are high levels of population-level error as well.

In general, as the level of individual-level error increases, the amount of population-
level error necessary to drive the evolution of bet-hedging increases as well. Equation
5 describes the conditions under which full bet-hedging can be favored; when it cannot
be satisfied with a stochastic matrix Ĝ, the best achievable strategy will be a boundary
solution involving only partial bet-hedging in response to some cues, or no bet-hedging at
all. This occurs when the point in conditional probability space defined by P falls outside
of the parallelopiped created by C (e.g. the grey parallelogram in Figure 1.) The volume
of that parallelopiped, | det(C)|, is 1 when individuals can observe the population-level
cue directly, is 0 when the observation is completely independent of the population-level
cue, and decreases as the amount of individual-level error increases.

4.2 A stronger response to cues with individual-level error

Any type of error in the developmental cue an individual perceives reduces the amount
of information in that cue, and makes it harder to predict environmental conditions. One
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Figure 1: Individual error may make bet-hedging unnecessary. Given a particular level
of environmental uncertainty, represented by the conditional probabilities on each axis,
the optimal developmental strategy may involve full, partial or no bet-hedging. In the
central dark grey regions, full bet-hedging—randomizing in response to both values of
the cue—would be optimal; in the lighter grey regions, partial bet-hedging—randomizing
in response to just one cue—would be optimal; in the white corner regions, bet-hedging
provides no advantage at all. With just a 10% chance that an individual will mistake
the value of the cue (panel A: Pr(c1|q1) = Pr(c2|q2) = 0.90), there is a broader range of
conditions where full bet-hedging is optimal than there is in with a 25% chance of an
individual mistake (panel B: Pr(c1|q1) = Pr(c2|q2) = 0.75.)

might expect individuals to pay more attention to more reliable cues, and less attention
to less reliable cues. This is in fact the case—as long as any changes in the cue’s reliability
are created by changes in the amount of population-level error in the cue (see Figure 2A.)
However, when the cue becomes less informative because individual-level error in the cue
is increased, the best strategy actually strengthens its response to the cue by developing
in a more directed, less randomized way (see Figure 2B.) To see this more generally,
we know from Equation 5 that | det(C)| · | det(Ĝ)| = | det(P)|. As argued earlier, an
increase in individual error will decrease the absolute value of the determinant of C; to
compensate, the absolute value of the determinant of Ĝ must increase. This corresponds
to stronger predictive plasticity, with more differentiation in the developmental responses
to different cues.

Why the difference between the two types of error? Bet-hedging is an adaptation
to environmental uncertainty shared by an entire population. As long as all individuals
in the population receive the same misleading cue, the uncertainty created by any error
in the cue is population-level uncertainty. It is this kind of uncertainty that determines
how a developmental strategy should invest its effort into different phenotypes within
and between generations. On the other hand, if some individuals perceive a common
developmental cue incorrectly, this creates uncertainty about the environment at the
individual level—for which bet-hedging is no use. This explains why individual error
does not increase bet-hedging, but why should it actually decrease the optimal amount
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Figure 2: Individual error increases the optimal strength of response to a cue. Population-
level error (A) and individual-level error (B) both increase the amount of uncertainty an
individual has about the state of the environment, making it harder to predict which
phenotype to develop. When individual error is fixed, an increase in population-level er-
ror means that a more stochastic, less plastic developmental strategy is better (panel A:
Pr(c1|q1) = Pr(c2|q2) = 0.75.) On the other hand, increasing individual-level error while
population-level error remains fixed means that a less stochastic, more plastic develop-
mental strategy is better (panel B: Pr(e1|q1) = Pr(e2|q2) = 0.75.) Individual uncertainty
is measured as the conditional entropy of the environment given a cue, H(E|C), while
the amount of plasticity is measured as the mutual information between the cue and the
phenotype, I(X;C).

of bet-hedging? Developing different phenotypes in response to a cue with individual
error can actually achieve the same purpose as bet-hedging in response to a cue with
population error; in both cases, different individuals within the same generation develop
differently.

4.3 Individual error is not always detrimental

How does individual error in a cue affect fitness, measured in terms of the long-term
growth rate? One way to measure the value of a cue is to compare the optimal growth
rate with the cue to the optimal growth rate with no cue at all. This indicates the cue’s
potential to increase the growth rate of a lineage, if the developmental strategy manages
to take full advantage of the information it contains. According to this measure, the
value of a cue is equal to the amount of information it contains about the environment,
I(E;Q), as long as that cue is observed by all members of the population and the optimal
response can be achieved (Donaldson-Matasci et al., 2010). How does the value of a cue
with individual error relate to the amount of information it carries about the environment?
As an example, if the population-level error in the cue is 25%, as long as the individual-
level error is below 25%, there is some developmental strategy that can do just as well
as a lineage that could observe the population cue perfectly (see Figure 3B.) In general,
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Figure 3: Individual error does not always decrease the value of a cue. When individual-
level error is fixed (panel A: Pr(c1|q1) = Pr(c2|q2) = 0.75), any increase in population-
level error decreases the value of the cue, measured as the difference in optimal growth
rate with and without the cue. In contrast, when population-level error is fixed (panel
B: Pr(e1|q1) = Pr(e2|q2) = 0.75), as long as individual-level error is lower, it does not
decrease the value of the cue. Note that wherever full bet-hedging is optimal, the value of
the cue is exactly equal to the amount of information in the population-level cue about the
environment, I(E;Q). In contrast, the value of the cue is always greater than the amount
of information individuals actually gain about the environment from their developmental
cues, I(E;C).

adding individual-level error in the observation of a cue has no effect on the cue’s value
at all, as long as the error is small enough. This is because whenever the conditions for
Equation 5 are met, the optimal response to the population-level cue can actually be
achieved, even though individuals do not observe the cue directly. Thus, as long as full
bet-hedging is still optimal, individual-level error does not decrease the value of a cue.
This is surprising, because it means that the growth rate is not limited by the amount
of information that individuals actually have, I(E;C); it is limited by the amount of
information that they would have if they could make perfect observations without any
error, I(E;Q).

So far we have considered the evolution of the developmental strategy in response to a
cue, assuming that all sources of error in that cue are immutable. However, if individual
error in the cue is due to something like mistakes in perception, or an insufficiently accu-
rate sensor, there may be an opportunity for its accuracy to improve. One might imagine
that this would always be advantageous, because any amount of error in a cue would
always make it harder to predict the best course of action. However, as long as there
is enough error in the cue at the population level, a certain amount of individual-level
error is tolerable and perhaps even useful. In Figure 4A we show the fitness landscape
that results when the probability of individual errors in perception and the developmen-
tal strategy are allowed to evolve simultaneously. When individual-level error is large
enough that bet-hedging is no longer favored, there will be selection to improve individ-
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Figure 4: A certain level of individual error may actually be advantageous. Here we
allow change in both the chance of individual error and the developmental strategy. To
make visualization easier, we stipulate that both the error and the developmental strategy
change symmetrically, that is, Pr(c2|q2) = Pr(c1|q1) and g(x2|c2) = g(x1|c1). The fitness
gradient, as measured by the derivatives of the long-term growth rate r(g), shows two lines
of equilibria combining various levels of individual error and developmental stochasticity
(panel A.) Together, each combination of individual error and developmental strategy
achieve an effective strategy ḡ(x|q), which is the average response to the population-level
cue q (panel B.) Along the lines of equilibria, all combinations achieve exactly the same
effective strategy, ḡ(x|q) = Pr(e|q) = 0.75.

ual perception, because it sets a constraint on the growth rate that can be achieved. On
the other hand, when individual-level error is small enough that bet-hedging is favored,
evolution may act to modify either the amount of error, the developmental strategy, or
both. A stable state is reached when the amount of stochasticity in perception and de-
velopment together create just the right levels of phenotypic diversity in response to the
population-level cue (see Figure 4B.)

5 Discussion

The importance of the distinction between environmental variation within and between
generations is well recognized where fitness functions are concerned (e.g. Seger and
Brockmann, 1987; Frank and Slatkin, 1990; Moran, 1992; Robson, 1996). It stands to
reason that, for developmentally plastic organisms, distinguishing within- and between-
generation variation in developmental cues might be just as important. Previous models
have generally considered only developmental cues that vary at the same level as the en-
vironment, either both at the individual level (e.g. Lively, 1986a; Moran, 1992), or both
at the population level (e.g. Cohen, 1967; Moran, 1992; Haccou and Iwasa, 1995). The
only exception, to our knowledge, is an interesting mathematical paper which shows, as
discussed in Section 4.3, that the value of a cue with both individual-level and population-
level error is limited by the amount of information in the population-level cue (Rivoire
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and Leibler, 2010). In all of those models, the usefulness of the cue is considered to lie
in its ability to allow individuals to develop a phenotype that is well-matched to the
environment. However, there is another potential role that developmental cues can play.
One early article on the evolution of development in response to population-level envi-
ronmental uncertainty called the production of random phenotypic diversity “adaptive
coin-flipping” (Cooper and Kaplan, 1982). The authors suggested that in some cases,
organisms could evolve to be particularly sensitive to features of their developmental
environment that are completely independent of the population-level environmental vari-
ation (also see Simons and Johnston, 1997, 2006). Those features carry no predictive
information, but are nonetheless useful because they can act as the coin flip on which the
organism’s developmental decision is based. These two viewpoints suggest that respond-
ing to developmental cues can be adaptive either because they provide useful predictive
information, or because they provide a source of randomness. We show that in fact a
single developmental cue can potentially play both roles.

An optimal developmental strategy, when it can be achieved, balances predictive plas-
ticity and bet-hedging in proportion to the amount of information available in population-
wide environmental cues and the uncertainty that remains once those cues have been
observed. Predictive plasticity creates variation in phenotype across generations, help-
ing match up individuals’ phenotypes to environmental fluctuations, while bet-hedging
creates variation in phenotype within generations, just in case predictions are incorrect.
Individual-level variation in developmental cues can affect this scenario in two ways.
On one hand, individual mistakes in the observation of developmental cues reduce the
amount of information each individual collects about the environment, potentially inter-
fering with an individual’s ability to successfully predict environmental conditions. On
the other hand, individual-level error in a developmental cue can contribute directly to
the production of phenotypic diversity, essentially acting as a coin flip for any develop-
mental strategy that responds plastically to that cue. As long as the individual-level error
is not too high, it may be used to create adaptive phenotypic diversity for the purpose of
bet-hedging. In this case, the error acts solely as a coin-flip to generate within-generation
diversity. Even though individuals may do a poor job of prediction, the right develop-
mental strategy on average can do just as good a job of responding plastically to the
population-wide environmental cue as another one would do without individual-level er-
ror. However, once the amount of individual-level error gets too large, no developmental
strategy can be responsive enough to population-level variation in the cue; too much phe-
notypic variation will be created within generations, and not enough variation between
generations. In this situation, we argue that there could be selection to reduce individual
variation in cues, for example by improving individual perception.

A large number of empirical tests have now suggested that bet-hedging could play
an adaptive role in a variety of life history traits, such as delayed germination of seeds
(Philippi, 1993; Evans et al., 2007; Venable, 2007; Petru and Tielboerger, 2008; Simons,
2009), timing of metamorphosis in anurans (Lane and Mahony, 2002; Morey and Reznick,
2004; Richter-Boix et al., 2006), arthropod diapause (Saiah and Perrin, 1990; Danforth,
1999; Philippi et al., 2001; Menu and Desouhant, 2002), egg size and number (Koops
et al., 2003), and bacterial persistance (Balaban et al., 2004; Kussell et al., 2005; Acar
et al., 2008). The most quantitatively rigorous of these show a correlation between de-
layed germination and year-to-year variation in fitness (Venable, 2007), or use simulations
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to show that the observed amount of variation in the timing of germination could promote
long-term survival (Evans et al., 2007; Simons, 2009). The difficulty of such quantitative
evaluations is that the fitness functions and environmental probabilities are very difficult
to measure, since they may vary on quite long time scales. Empirical studies that look
at both plasticity and bet-hedging as potential adaptations to environmental uncertainty
are still quite rare, but a few examples suggest strategies that combine the two (e.g. Dan-
forth, 1999; Richter-Boix et al., 2006; Sadeh et al., 2009; Khatchikian et al., 2010). Most
of these studies focus on identifying features of the global environment that could be
acting as predictive cues, like the effects of temperature and precipitation on germination
fraction (Freas and Kemp, 1983; Philippi, 1993; Khatchikian et al., 2010). Some have
also used experimental manipulations to pinpoint which features might directly cause the
developmental response (Clauss and Venable, 2000; Adondakis and Venable, 2004; Morey
and Reznick, 2004; Simons and Johnston, 2006; Sadeh et al., 2009). Our theoretical re-
sults have two important implications for these studies. We show that even when the
developmental mechanisms are unknown, environmental variation can select for certain
levels of within- and between-generation phenotypic variation. This means that an adap-
tive fit can be assessed just by looking at the effective response to population-level cues
like the weather, even if there is variation in the way individuals experience those cues.
However, we argue that in order to understand the adaptive role of the developmental
mechanisms at play, it is necessary to take into account natural variation in developmen-
tal cues, both within and between generations. A strong developmental response to a cue
with high variation within generations may just be another kind of adaptive coin-flipping.

Appendices

A A population-level cue describes the distribution of individ-
ual cues

In our model, we assume that the developmental cues that individuals receive are pro-
duced by a two-step process. The first step is the generation of a population-level cue,
which is common to all individuals within a generation. In the second step, each individ-
ual’s cue is generated independently of all other cues, conditional only on the population-
level cue. In many cases, however, it may be possible to identify only the individual-level
cues, which are generated according to some unknown process. In this appendix, we
argue that our two-step model is nonetheless often a good description, and show that the
population-level cue can be defined as the distribution of individual cues.

Say that in each generation, we can observe the environmental state e, as well as the
developmental cue ci for each individual i. In each generation, we will keep track of the
fate of every individual in a single lineage by giving each individual an index i from 1
to n. We write a sequence representing one developmental cue for each individual in
the lineage as cn = c1, ..., cn. Similarly, we use a sequence xn = x1, ..., xn to represent
the phenotypes xi adopted by all individuals in the lineage. The overall strategy for
the lineage, g(xn|cn), represents the probability that the sequence of phenotypes xn is
produced, given the sequence of developmental cues cn. The total reproductive output of
the lineage in one generation, f(xn, e), depends on the phenotype of each individual and
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on the environmental state.
Very generally, we can describe the relationship between the environmental state and

the individual cues using the joint distribution Pr(e, cn). These two things together can
be used to define the type of a generation, in terms of its effect on the per-capita fitness
of a genotype. The expected long-term growth rate for the strategy g is therefore:

r(g) =
∑
e,cn

Pr(e, cn) log f̄(g|e, cn)

=
∑
e,cn

Pr(e, cn) log
1

n

∑
xn

g(xn|cn)f(xn, e). (A-1)

To find a simpler form, we would like to distinguish between generations where the per-
capita fitness is different, but lump together those that are the same. We will argue that,
under quite reasonable assumptions, it is not important to keep track of exactly which
individual received which developmental cue.

The first assumption is that each individual’s fitness depends only on its own pheno-
type, not on the phenotypes of other individuals. The second assumption is that each
individual’s phenotype depends only on its own developmental cue, not on the cues re-
ceived by others. Given these two assumptions, the per-capita fitness of a strategy within
a particular generation can be rewritten:

f̄(g|e, cn) =
1

n

n∑
i=1

∑
x

g(xi = x|ci)f(x, e). (A-2)

Notice that this quantity does not depend on which individual received which cue, but
rather what fraction of all individuals received each different type of cue. It is therefore
sufficient to distinguish between generations that have different distributions of develop-
mental cues. We use an index θ to describe a distribution of individual-level cues, yielding
a simpler form for the per-capita fitness of a strategy within a generation:

f̄(g|e, θ) =
∑

c

Pr(c|θ)
∑

x

g(x|c)f(x, e). (A-3)

A comparison to Equation 2 in the main text shows that θ plays the same role as the
population-level cue q.

A famous theorem due to de Finetti proves a related result for exchangeable variables
(see e.g. Feller, 1966). A finite sequence of random variables C1, ..., Cn is exchangeable
if every permutation of these variables has the same probability distribution, and an in-
finite sequence is exchangeable if every finite subsequence is exchangeable. De Finetti’s
theorem states that any infinite, exchangeable sequence of binary random variables can
be understood as a draw from some probability distribution of a single random parame-
ter Θ, followed by a sequence of independent Bernoulli trials weighted according to the
parameter θ. When generalized to discrete-valued (rather than only binary) random vari-
ables, the parameter θ describes the probability distribution of individual cues (Hewitt
and Savage, 1955). We argue that even if the developmental cues received by different
individuals in the same generation are not exchangeable variables, they nonetheless act
as if exchangeable, as far as per-capita within-generation fitness is concerned. The only
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caveat comes when we consider competition between lineages. If the developmental cues
are more strongly correlated within a lineage than they are between two competing lin-
eages, this simple breakdown into population-level and individual-level cues may not be
warranted.

B Results also hold when phenotypes can survive in multiple
environments

In the main text, we have assumed that each phenotype can survive in just one environ-
ment; however, most real phenotypes are not that specialized. Generalizing the fitness
function so that each phenotype can survive in multiple environments means that the
principle of proportional betting cannot be used directly to identify the optimal pheno-
typic proportions. The key to the method developed in Donaldson-Matasci et al. (2008)
is the identification of a set of hypothetical phenotypes, each of which survive in just one
environment, but which, when combined in the right proportions, yield the same aver-
age fitness in each environment as the real phenotypes. This relationship can be nicely
captured in matrix notation as follows:

F = SD. (B-1)

Each entry of the fitness matrix F is the fitness f(x, e); the diagonal matrix D represents
the fitness of each hypothetical phenotype, f(ye, e); and the specialization matrix S
describes the combination s(y|x) of hypothetical phenotypes y that corresponds to each
real phenotype x. The specialization function s(y|x) can be interpreted as a measure
of how invested each real phenotype is in each environment where it can survive. The
advantage of rewriting the fitness in terms of these hypothetical phenotypes is that the
principle of proportional betting applies to them: we want to create a combination of
phenotypes x which is effectively like matching the proportion of y to the probability of
the corresponding environment:

∑
x s(y|x)ĝ(x) = Pr(ey).

The same idea works when we condition on cues that are common to all individuals
in the population. If we write the developmental strategy g(x|q) as a matrix G, then
the within-generation expected fitness f̄(g|q, e) =

∑
x g(x|q)f(x, e) can now be written

conveniently in matrix notation as follows:

GF = GSD. (B-2)

The principle of proportional betting says that the optimal developmental strategy in
response to cues with no individual-level error, ĝ(x|q), should meet the following criterion:

ĜS = P. (B-3)

Finally, we would like to add individual-level error in the cue. In this situation, the
within-generation expected fitness is f̄(g|q, e) =

∑
c Pr(c|q)

∑
x g(x|c)f(x, e), now written

in matrix notation as:
CGF = CGSD. (B-4)

We know that the optimal strategy in response to the population-level cue is given by
Equation B-3; can the same effective strategy be achieved in response to an individual-
level cue? This will be possible when there exists a stochastic matrix Ĝ such that

CĜS = P (B-5)
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(compare to Equation 5 in the main text.)
In Section 4.1, we describe the conditions under which an optimal strategy can ac-

tually be achieved. These conditions are more restrictive when phenotypes can survive
in multiple environments. The matrix S defines a hyperrectangular region in the con-
ditional probability space Pr(e|q) where bet-hedging is advantageous as long as there is
no individual-level error. When individual-level error is present, the matrix C acts as a
linear transformation on that region, changing its volume by a factor equal to the abso-
lute value of its determinant. As argued in the main text, as the individual-level error
gets larger, the determinant of C moves towards zero, shrinking the potential range that
P can fall into. Thus the first point generalizes: the amount of population-level error
necessary to drive bet-hedging increases as individual-level error increases, even with an
arbitrary fitness function.

In Section 4.2, we argue that increasing individual-level error will strengthen the
optimal developmental response to the cue. Trading Equation B-5 for Equation 5, we see
that the optimal strategy must satisfy | det(C)|·| det(Ĝ)| = | det(PS−1)|. Thus, as long as
the fitness function (which determines S) and the population-level error (which determines
P) remain the same, any decrease in the determinant of C will induce a corresponding
increase in the determinant of Ĝ. Thus the second point generalizes for arbitrary fitness
functions as well: the optimal amount of developmental plasticity increases as the amount
of individual-level error in the cue increases.

In Section 4.3, we argue that whenever full bet-hedging is optimal, the value of a cue is
equal to the information its population-level component carries about the environmental
state. This argument draws on the work in (Donaldson-Matasci et al., 2010), where we
show that the optimal strategy is the one that effectively invests in each environment
according to its conditional probability. The argument here is exactly the same, but now
the effective strategy is influenced not only by the fitness function, which determines the
investment each phenotype puts into each environment, S, but also the individual error
C, which scrambles the response to the population-level cue. Whenever full bet-hedging
is favored, that means that the conditions of Equation B-5 are met, and the optimal
strategy can actually be achieved. Under these conditions, there may be no selection to
reduce individual variation in the developmental cues received. Thus the third point also
generalizes to arbitrary fitness functions.

References

Acar, M., J. T. Mettetal, and A. van Oudenaarden. 2008. Stochastic switching as a
survival strategy in fluctuating environments. Nature Genetics 40:471–475.

Adondakis, S., and D. Venable. 2004. Dormancy and germination in a guild of Sonoran
Desert annuals. Ecology 85:2582–2590.

Balaban, N., J. Merrin, R. Chait, L. Kowalik, and S. Leibler. 2004. Bacterial persistence
as a phenotypic switch. Science 305:1622–1625.

Clauss, M. J., and D. L. Venable. 2000. Seed germination in desert annuals: An empirical
test of adaptive bet-hedging. American Naturalist 155:168–186.

16



Cohen, D. 1966. Optimizing reproduction in a randomly varying environment. Journal
of Theoretical Biology 12:119–129.

———. 1967. Optimizing reproduction in a randomly varying environment when a cor-
relation may exist between the conditions at the time a choice has to be made and the
subsequent outcome. Journal of Theoretical Biology 16:1–14.

Cooper, W. S., and R. H. Kaplan. 1982. Adaptive “coin-flipping”: a decision-theoretic
examination of natural selection for random individual variation. Journal of Theoretical
Biology 94:135–151.

Cover, T. M., and J. A. Thomas. 1991. Elements of Information Theory. Wiley Series in
Telecommunications. John Wiley & Sons, New York.

Danforth, B. N. 1999. Emergence dynamics and bet hedging in a desert bee, Perdita
portalis. Proceedings of the Royal Society of London, Series B 266:1985–1994.

Dempster, E. R. 1955. Maintenance of genetic heterogeneity. Cold Spring Harbor Sym-
posia on Quantitative Biology 20:25–32.

Donaldson-Matasci, M. C., C. T. Bergstrom, and M. Lachmann. 2010. The fitness value
of information. Oikos 119:219–230.

Donaldson-Matasci, M. C., M. Lachmann, and C. T. Bergstrom. 2008. Phenotypic di-
versity as an adaptation to environmental uncertainty. Evolutionary Ecology Research
10:493–515.

Evans, M. E. K., R. Ferrière, M. J. Kane, and D. L. Venable. 2007. Bet hedging via seed
banking in desert evening primroses (Oenothera, Onagraceae): Demographic evidence
from natural populations. American Naturalist 169:184–194.

Feller, W. 1966. An Introduction to Probability Theory and Its Applications, vol. II.
Wiley, New York.

Frank, S. A., and M. Slatkin. 1990. Evolution in a variable environment. American
Naturalist 136:244–260.

Freas, K. E., and P. R. Kemp. 1983. Some relationships between environmental reliability
and seed dormancy in desert annual plants. Journal of Ecology 71:pp. 211–217.

Haccou, P., and Y. Iwasa. 1995. Optimal mixed strategies in stochastic environments.
Theoretical Population Biology 47:212–243.
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