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The value of information
in signals and cues

michael lachmann

In this chapter I will discuss some uses of information measures

in animal behaviour and genetics. Instead of delving into the question of

when, whether and how a signalling system evolves, I will examine a simpler

definition of information transfer and mutual information from statistical

mechanics and the theory of communication. This circumvents, but does not

solve, the question of whether or not signalling systems exist in biology.

However, in my opinion, understanding the evolution of information use and

transfer in biology is an important step in understanding the evolution of

signals and cues.

In describing the many possible ways in which animals can interact,

manipulate or maybe transmit information, the field of animal signalling

borrowed many different concepts, which sadly still do not even begin to

cover all the different possible types of biological ‘signals’, their origin

and stability. Two of these concepts are ‘signals’ and ‘cues’. Maynard Smith

andHarper (2003) define a signal as “any act or structure that alters the behavior

of other organisms, which evolved because of that effect, and which is effective

because the receiver’s response has also evolved”. They also add: “It follows

that the signal must carry information – about the external world – that is of

interest to the receiver.”

A cue, on the other hand, is defined as “a feature of the world, animate or

inanimate, which can be used by an animal to guide future actions” (Maynard

Smith & Harper, 2003, after Hasson, 1994).

Thus both signal and cue carry information about the world. When an

organism evolves to respond to a cue its fitness can only increase, since a
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strategy of ignoring the cue must have been less fit. The same is not true for a

signalling system or when interacting with other organisms. Once signaller and

receiver evolve to signal and respond, their interaction can change so that both

might lose (Hirschleifer, 1971; Box 15.1).

Box 15.1 Is information always beneficial?

When an organism has a cue, i.e. a feature of the environment that it can

respond to, it usually also has the option to ignore it. If a strategy of

responding to the cue invades, it means that

Fitness(responding to cue) > Fitness(ignoring cue)

which of course means that there is a fitness gain from responding to

the cue.

Whenwe deal with an interaction between two ormore actors, there is not

always a gain. Imagine two female, F1 and F2, competing over the mating

possibilities with twomales. Assume that one of themales has higher quality

than the other, though it is not necessarily known which, and that F1 had

first choice. F2 can then decide whether tomate with the samemale as F1, or

with the other male. Let us assume that the fitness gain from mating alone

with the high-qualitymale is 5, and with the low-qualitymale 1. Assume that

two females mating with the same high-quality male get a fitness of 2 each,

and both mating with the low-quality male get a fitness of 0 each.

If no female has information about male quality, the second female does

best in choosing the othermale. Half the time shewould thenmatewith the

high-quality male, and half of the time with the low-quality male, for an

average fitness of (5 + 1)/2 = 3. Mating with the same male as F1 would

give her a fitness of 2 or 0, both lower than 3.

What happens if F1 has information about male quality? In this case F1

would choose the high-quality male. If F2 now took the other male, she

would always get the low-quality male, and an average fitness of 0.

Therefore, she should prefer to choose the samemale as F1, for a fitness of 2.

In this case, F1 would also get a fitness of 2 – lower than her original average

fitness of 3, without information.

Notice that for F1 the strategy of ignoring the information and flipping a

coin in her choice ofmale is not stable: in that case F2would choose the other

male, and F1would be tempted to switch to the strategy of choosing the high-

quality male, and gain a fitness of 5 instead of 3. Thus in this case gaining

additional information has reduced F1’s average fitness at equilibrium.
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In the following I will introduce the notion of mutual information, and explain

its simple connection to the notion of fitness or relative growth rate. I will then

present some of the uses of information measures in genetics. This chapter is

not aimed as a review of the uses of information measures in biology (see

instead, for example, Adami, 2004; Dall et al., 2005; Dall Schmidt & Van Gils,

2010 and other articles in the same issue of Oikos; Sherwin, 2010). Instead, I want

to explain why such measures have their value in theoretical biology and in

particular in the theory of animal communication.

15.1 Entropy and mutual information

Uncertainty is closely related or identical to the concept of ‘entropy’ in

various fields. In physics, two different but closely related definitions of entropy

are used. The first, introduced by Clausius (1867), is based on macroscopic

measures of the system, such as temperature, pressure and volume. Clausius

defines the change in entropy as the integral of dQ/T, the heatflow divided by the

temperature, and writes

I propose to call the magnitude S the entropy of the body, from the

Greekword τροπή, transformation. I have intentionally formed theword

entropy so as to be as similar as possible to the word energy; for the two

magnitudes to be denoted by these words are so nearly allied their

physicalmeanings, that a certain similarity in designation appears to be

desirable. (Clausius, 1867, p. 357).

The other, based in statistical mechanics, is ameasure of the number of possible

states a system could be in given its macroscopic properties. To describe a glass

of water fully is impossible –wewould need to know the position and velocity of

more than 1024 atoms, and we cannot even measure the position or wavefunc-

tion of a single atomprecisely. Insteadwe know somemacroscopic properties of

the water – volume, temperature, weight etc. We do not know a system’s

complete description, and yet, when someone tells us the temperature of the

water, we gain information. Entropy in statistical mechanics is a measure for

the ‘number’1 of possible states a system could be in given its macroscopic

properties, or more precisely the log of the number of states. The importance

of this measure in physics comes mainly from what is known as ‘Liouville’s

theorem’, which states that for isolated physical systems, two distinct states

of the system cannot converge. So if we have a system that could be in one of

1 For simplicity I talk in this chapter about number of states, instead of talking about the

volume of an ensemble in phase space.
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1000 possible states, and let it evolve for three hours, we will still be looking

at 1000 different possible states. Thus, for example, if we start with all 1000

possible states associated with the current macroscopic properties of the sys-

tem, then at any time in the future we must still be looking at 1000 different

possible states. This means that the system cannot reach a condition where its

macroscopic properties are associated with only 500 possible states. It must

have macroscopic properties associated with at least 1000 possible states. This is

one possible explanation why entropy, the number of possible states of the

system given its macroscopic properties, cannot decrease – this is the second

law of thermodynamics.

In the theory of communication, entropy is also a name for uncertainty,

e.g. the number of possible states a signal could be associated with. Claude

Shannon developed a measure for the uncertainty, and found it to be very

similar to Boltzmann’s derivation of entropy. Tribus and McIrvine (1971,

p. 180) cite Shannon as saying:

My greatest concern was what to call it. I thought of calling it

‘information’, but the word was overly used, so I decided to call it

‘uncertainty’. When I discussed it with John von Neumann, he had a

better idea. Von Neumann told me, “You should call it entropy, for

two reasons. In the first place your uncertainty function has been

used in statistical mechanics under that name, so it already has a

name. In the second place, and more important, no one knows

what entropy really is, so in a debate you will always have the

advantage.”

Entropy measures are also seeing an increased use in statistics, mainly

in Bayesian and likelihood analysis. Jaynes’ (1957a, 1957b) maximum entropy

principle suggests a way to choose a prior distribution for Bayesian analysis: one

that maximises our uncertainty but is consistent with what we know.

The use of a measure related to entropy makes sense when we are interested

in a count or a quantification of the number of states of a system, and especially

when one is interested in the change in the number of states. Here we should

distinguish two ways to calculate the difference in uncertainty.

The first is called ‘mutual information’. Mutual information tells us how

much knowing one thing helps us in knowing something else – for example,

how much knowing the season tells us about the temperature. The second way

of calculating a difference in uncertainty, which does not seem to have a name,

but is used often, is to calculate the difference in entropy after a particular

change in our knowledge has occurred. We might, for example, hear that
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the forecast is for rain tomorrow, and as a result of hearing that particular

message “rain tomorrow” our uncertainty changes. So in the first way of calcu-

lating the difference in uncertainty we ask how much our uncertainty changes

on average when we hear the weather report, in the second way we ask how

much it changed after we heard a specific weather report, namely that it

will rain.

Of these two, mutual information is the one that is more intuitive to

understand. As we would expect from gaining information, this measure

is never below zero – being given information should not increase our

uncertainty. Thus, knowing the month reduces our uncertainty about the

temperature. The second measure described above can be negative – imagine

living in a place where it is sunny most of the time, say Palo Alto, California,

and hearing a weather report saying that tomorrow there is a 50% chance

of rain. Without this information, there was a 99% chance of sunshine, 1%

chance of rain – the average weather. But the particular report gave rain a 50%

chance, so now we are much less certain whether to take an umbrella with us

or not.

To state this again: on average, listening to a weather report whose precision

we know cannot increase our uncertainty, averaging over all possible reports

and their probability. But a certain report for a certain day can increase our

uncertainty.

If we write H(X) for the entropy, or uncertainty associated with not knowing

X (for example not knowing if it will rain), H(X|Y) for the uncertainty in

X given that we know the state of Y (Y could, for example, be the

weather report) and H(X|Y = s) for the uncertainty of X when Y is in a certain

state s, then the mutual information between X and Y, written as I(X;Y), can be

written as

IðX; YÞ ¼
X

all states s of Y

p sð Þ H Xð Þ --H X jY ¼ sð Þ½ � ð15:1Þ

where p(s) stands for the probability that Y is in state s (for more explanation

see Box 15.2). We see the connection between the mutual information and

the difference in entropy conditioning on a single state – the first is an average

of the second. Mutual information is the weighted average, over all states of Y,

of the difference in entropy conditional on each single state. Mutual informa-

tion has some very convenient properties. Thus I(X;Y) = I(Y;X): how much the

month tells us about the temperature is equal to how much the temperature

tells us about the month. Mutual information is also independent of recoding

the variables. So, if instead of measuring temperature in Celsius we measure

it in Fahrenheit, or maybe we look at the log of the temperature, the
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Box 15.2 Mutual information

Mutual information tells us howmuch our uncertainty about one thing is

reducedwhenwe are told about another. In the figure, we are looking at two

variablesXandY.Notallvaluesof XandYarepossible.Thewhitesquareoutlines

thepossible valuesofXandY, and I assume that all rectangles are equally likely.

Thus Y can take a value of 4whenX is 5, 6, 7 or 8, but notwhenX is 1, 2, 3 or 4.

The down-pointing arrow shows what happens if we are interested in X,

and ignore Y, or have no information about Y. For example, X can be 1 when

Y is 1 or 2. In this case we don’t know Y, but the chance for X = 1 is equal to

the sumof these two rectangles, or 1/8. So, when Y is not knownX can take 8

different values, all equally likely, and therefore the missing information is

H(X) = log(8) = 3 bits. If we know Y, we know something about X. Thus, when

we know that Y = 4, X can only be one of 5, 6, 7 or 8. For any value of Y, X can

take on 4 values, so once we know Y, we have H(X|Y) = log(4) = 2 bits of

information missing. The difference in the missing information when we

don’t know Y and when we know Y is the difference between these two

values, so I(X;Y) = H(X) – H(X|Y) = 3 – 2 = 1. Knowing Y gives us 1 bit of

information about X; it halves the number of possible states ofX from 8 to 4.

H (X | Y )

H (X )

X

Y

Ignoring Y, X has eight equally 
likely values, so we are missing 
3 bits of information.

Ignore Y

When we take y into account, 
for each Y, X has four 
possible states, so 2 bits of 
information are still missing.

The difference between these 
two, how much we do not 
know initially, and how much 
we still do not know when we 
know y, is I (X;Y ) = 3 – 2 = 1 bit.

2

3

4

1

1 2 3 4

Take the known state of y into account

5 6 7 8

5 6 7 8

5 6 7 8

1 2 3 4

X

Ignore Y

When we takeW y into y
or each fo Y, YY X has fouX
possible states, so 2 p
nformation are still min

The difference bet
two, how much we
know initially and

1 2 3 4 5 6 7 8

5 6 7 8

5 6 7 8

1 2 3 4

Figure 15.2
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mutual information stays the same. The same is not true, for example, for the

closely related concept of statistical correlation, which does change if we

remap our variables. Box 15.3 explains why this is the case. It is also true

that whenever there is a statistical correlation between two variables, they

carry mutual information about one another. The converse is not true – it

could be that two variables have mutual information and yet have a correla-

tion of zero.

Box 15.3 Effect of rescaling a variable on mutual
information and on correlation

Most variables we measure have no natural scale. One researcher might

look at the weight of the organism in kilograms and another in pounds, or

maybe in log scale, when comparing many different orders of magnitude.

Such changes have an effect on correlation measures of variables, but not

on the mutual information between them. Let us take X and Y from

Box 15.1, and rescale Y so that the possible values are 1, 2, 8 or 9. RescaleX so

that the possible values are 1, 2, 3, 4 or 15, 16, 17, 18. We can now complete

the same calculation we did in Box 15.1: when ignoring Y, X still has 8

possible equally likely values, and for every value of Y there are 4 possible

values of X. Nothing has changed from Box 15.1: we still gain 3 – 2 = 1 bit of

information about X when we know Y, so I(X;Y) = 1. It is easy to understand

why rescaling Y and X will never have an effect – in calculating the mutual

information we are interested in the probabilities of the different values,

and not in where they sit.

Correlation changes when we rescale the values. Graphical

representations of the correlation coefficient are not easy to understand

(see “Thirteen ways to look at the correlation coefficient” by Rodgers &

Nicewander, 1988.) One interpretation of the correlation draws a rough

ellipse around the sample points, and compares the height of the ellipse in

the Y direction to its width in the middle (see grey arrows below). The

smaller thewidth of the ellipse in themiddle relative to its height, the larger

the correlation. When we rescale the variables we will transform this

ellipse, and the correlation will change. In the example I gave above, the

correlation between X and Y increases.
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Ignoring Y, X has, as before, 
eight equally likely states, so 
we are again missing 3 bits.

When we take Y into account, 
for each Y, X has, as before, 
four possible states, so 2 bits 
of information is still missing.

Nothing changed vs. the 
previous calculation, so 
I (X;Y ) is still 1 bit.

2

8
9

1

1234
1618

15 17

1618
15 17

1234

X

ignore Y

When w
for each
four pos
of inform

1234
1618

15 17

1618
15 17

1234

1234
1618

15 17

Figure 15.3A

X X

YY

Figure 15.3B
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15.2 The information value of cues and signals

In the following, Iwill examine the information content of a cue or signal

given to an organism. Following arguments used in previous papers (Bergstrom&

Lachmann, 2004; Donaldson-Matasci, Bergstrom & Lachmann, 2010), I will argue

that even in cases where we are interested in the fitness of organisms, informa-

tion theoreticmeasureswill be related tofitness gain of lineages. I will look at two

measures of the information content. The first is the mutual information

between the cue and some aspect of the organism’s environment. The second

looks at the effect of the signal or cue on the organism’s fitness. I begin with the

latter.

Consider the difference between the optimal fitness without the cue, and the

optimal fitness with the cue. Let us write F(X) for the optimal fitness possible

when the state of X is not known to the organism, and F(X|c) for the optimal

fitness when X is not known, but a cue c is received – i.e. the fitness conditional

on X. We can then look at the “value of information” (Stephens, 1989).

Fitness gain ¼
X

all cues c

p sð Þ F Xð Þ -- F Xjcð Þ½ � ð15:2Þ

The similarity of this equation to the definition of mutual information in

Equation 15.1 is apparent, except that here we measure fitness, and above

bits. Is there any connection between these two?

In information theory we look at the frequency of events, for example how

often the word ‘me’ is used in the English language versus the word ‘encyclo-

paedia’, or how often the bit 0 is stored in a file versus the bit 1. Using these

frequencies we can then find an optimal coding – how long should theword that

stands for ‘me’ be versus the word that stands for an encyclopaedia. What is not

taken into account is the meaning of the signals. Thus, we calculate the infor-

mation capacity of a channel, without taking into account whether it serves as a

police dispatch, or a television channel for late-night infomercials. Let us look at

a simple example: we could use information theory to reduce the number of key

presses one needs to use on average to dial a number, making often-used

numbers shorter. Imagine that our dial pad had just two keys with the digits 1

and 2 on them, andwewant to be able to quickly dial three contacts, Aaron, Ben

and Claudia, but we call Aaron twice as often as each of the other two. In this

case it would be optimal to assign Aaron the number ‘1’, and assign Ben and

Claudia the numbers ‘21’ and ‘22’. With this assignment, half the time we

would have to dial just one digit (when dialling Aaron we would dial ‘1’), and

half the time we would have to dial two digits (when reaching one of the other

two we would dial ‘21’ or ‘22’). Our average dial length would be 1.5 digits,
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which is optimal in this case. But usually the assignment of telephone numbers

also takes into account other considerations: the reason that emergency num-

bers are short and easy to remember is that they are important, and not that

they are dialled more often (though they probably are). In the above example, if

an expecting couple was assigning the numbers, and Ben was their contact in

the maternity ward, the couple might use the shorter number ‘1’ for Ben, even

though they do not need to reach him very often – becausewhen they do need to

reach him it is urgent. We see that in many real-world examples, one needs to

take into account not only frequency, but also meaning.

One can ask a similar question in biology. Why would a measure of the

mutual information between a cue and the environment be at all relevant to

understanding an organism, if it is not specified what this cue is about? Why

would the information content of a cue carrying two bits of information about

the location of an ant be important if we do not knowwhether it is perceived by

a beetle or by a lion? In aworld that cares about survival and reproduction, is the

information content of a cue as measured in bits relevant?

The surprising result is that entropy-based measures are also relevant to such

cases. In economics it turns out that the information in a signal about stocks is

closely related to how much faster your money will double when using the

information (Kelly, 1956; Cover & Thomas, 1991). What we and others have

shown (Cohen, 1966; Bergstrom & Lachmann, 2004; Kussell & Leibler, 2005;

Donaldson-Matasci et al., 2010) is that a similar result also holds in biology:

under certain conditions, the Shannon information of an environmental cue is

exactly the fitness benefit one could gain from heeding it. Heeding a cue giving

one bit of information will then allow a two-fold increase in fitness, without

specifying what this cue is about, or the fitness consequences of the different

strategies available to the organism! In the following I will try to explain this

somewhat unintuitive result.

When dealingwith the evolution of strategies of organisms, we are interested

in which strategy will out-survive its competitors. The simple case examined is

an organism living in a variable environment. We assume it reacts to a cue

reducing its uncertainty about the environment, and we want to ask how

relevant is the information content of the cue about the environment as meas-

ured by Shannon’s information measure, i.e. the mutual information between

the environment and the cue.

It turns out that for evolutionary questions one needs to specify not only

whether an environment is variable, but also how the uncertainty is distributed

between individuals in the population (Donaldson-Matasci, Lachmann &

Bergstrom, 2008; Rivoire & Leibler, 2011). At the one extreme are environments

that are shared by all individuals in the population, for examplewhether it was a
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cold or warm winter. At the other extreme are variable environments that are

different for every individual in the population, for example whether a predator

is hiding close by. Between these extremes are environments whose variability

is partly shared, or ones whose variability is only shared between some individ-

uals – for example all those living in a certain location. For simplicity, I assume

that the variability is shared between all individuals in the current generation,

and that if an individual is adapted to thewrong environment, it dies. Here I also

assume that each generation is exactly one year long.

A central concept in information theory is the idea of ‘typical sequences’

(Shannon &Weaver, 1948; McMillan, 1953; Cover & Thomas, 1991). Imagine an

environment that has ‘cold years’ with probability 70% and ‘warm years’ with

probability 30%: then for long enough sequences of years we will see with high

probability a sequence that has around 70% cold years and 30% warm years. See

Box 15.4 for more explanation on typical sequences.

A hypothetical organism with no information about the environment has

little choice but to either have a fixed genetically defined phenotype, or have its

phenotype randomly determined by a ‘roll of dice’ – the juvenile develops into

an adult adapted to cold years with probability q, and adapted to warm years with

probability (1 − q). The genes will determine only the chance q, but not the

phenotype of each offspring. Thus, each organism will have a fraction q of off-

spring adapted to cold and 1 − q adapted for warmth, and each of those again will

have a fraction q of its offspring adapted to cold and 1 − q to warmth and so on. In

Box 15.5 I explain why, in this case, it is optimal for the organism to have a

genotype so that q is equal to p. The optimal strategy thus involves bet-hedging.

Without information, a lineage has to divide its bets equally between all possible

typical environments and match gthe proportion of phenotypes to the proportion of

corresponding environments. When having the wrong phenotype does not result in

Box 15.4 Typical sequences

If we look at a sequence of independent events, each ofwhich has a chance p

of occurring, then for long enough sequences we will mostly see sequences

that have a ratio of around p to 1 – p of the two event types. Thus, if we throw

a coin with even chances for heads and tails, most of the time we will see a

sequence that has around 50% heads and 50% tails.

In the figure we see the four possible outcomes of two coin tosses (with

heads and tails represented by black and white), all equally likely. A ratio of

0.5 occurs most often, but not by a huge margin. With four tosses, we will
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have 6/16 possibilities with 50% heads and 50% tails. Now 14/16 = 87% of the

possibilities are between 25% and 75%.

With a large enough sequence, almost all sequences we observe will have

that ratio; theywill all be approximately equally likely. InN events,Np times

an event with chance p happens, and N(1 – p) times one with chance (1 – p),

so the chance for each sequence is pNp(1 – p)N (1 – p), which can be written as

2N [p log p + (1 – p) log(1 – p)]. In general there will be 2NH typical sequences all

equally likely, with H the entropy of each event.

Typical sequences have a central importance in understanding

information theory. Thus, if we wish to compress the outcomes of N coin

tosses, we can just number the events that are likely to occur from 1 to 2NH.

Since other events almost never occur, it does not matter how we encode

those. This means that to encode N tosses we will only need NH bits. In a

similar way we can calculate how many different messages the English

language can transmit. If we assume that words occur at certain

frequencies, independent of each other, then we will mainly be observing

typical sequences of words, and we know howmany of those there are: 2NH.

Words, of course, do not occur independently of each other, so we can

expand our treatment to pairs of words, sentences and paragraphs.

(This example is very similar to those used in Shannon’s original paper.)

0/4 1/4 2/4 3/4 4/4

With ten tosses, 912/1024 = 89% 
of the distribution is between 
30% and 70%.

0/4 1/4 2/4 3/4 4/4

0/10 2/10 4/10 6/10 8/10 10/10 0/20 5/20 10/20 15/20 20/20 0/100 20/100 40/100 60/100 80/100 100/100

10 tosses 20 tosses 100 tosses

4 tosses

2 tosses

0/2
1/2

2/2
0/2 1/2 2/2

0/10 3/10 4/10 5/10 6/10 7/10 10/10

Figure 15.4
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death, just in lower fitness, the optimal strategy can still be one with bet-hedging,

but finding the optimal strategy is a bitmore complicated. In this case therewill be

some frequencies of warm and cold years for which there will be no bet-hedging –

instead the individuals will always develop the same phenotype. Other,

intermediate, frequencies will still have bet-hedging as the optimal strategy.

Real organisms will, of course, always have some information about the

relevant state of the environment. Below I discuss the optimal strategy in

those cases, which will, for minuscule amounts of information, be very close

to that without any information.

How will additional information about the environmental state help the

lineage? As mentioned above, information is a measure of the (fold) reduction

in uncertainty. (Iwill use theword ‘fold’ in this chapter for the amountmultiplied

or divided by. A four-fold reduction thus means that we divide the number of

possible states by four, and I will talk about the ‘fold reduction’ to speak about an

unspecified amount of reduction.) If there are 100 equally likely states, andwe get

one bit of information about them, we can see our updated uncertainty as 50

equally likely states; two bits of informationwill leave uswith 25 states and so on.

Thus, if a lineage has to divide its resources equally between 100 possible out-

comes because it is relying on bet-hedging, and it gains one bit of information, it

will need to divide its resources only between 50 possible outcomes, and thus

have twice as many surviving lineages. Therefore, if along the tree of future

possibilities a lineage gains every generation one bit of information it means

that it can exactly double its fitness – the growth rate is multiplied by two. The

fitness gain of x bits of information is in these cases exactly a 2x-fold gain in

fitness. Quite an amazing result: without knowingwhat the system in question is,

lions or bacteria, without knowing the exact conditions or fitness effects and how

many different environments the organism experiences, we can say that one bit

of information given to the organism can gain it a two-fold increase in fitness.

How can one bit of information about an important or unimportant part of

the individual’s life lead to the same fitness benefit? The trick is that one bit of

information equals one bit of fitness increase only for the case where the

organism bet-hedges on the outcomes before and after the information is

provided. If the optimal strategy before having information is to bet-hedge on

the outcomes, and after information is received the optimal strategy is still to

bet-hedge (with modified probabilities since additional information modified

the probabilities of the different outcomes), then the value of information is

equal to themutual information.When the information is about a feature of the

organism’s environment that is of little consequence, the optimal strategy will

not be to bet-hedge, and the value of the information in terms of fitness will be

less than the information content. This pre-selects on the type of information
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that our claim applies to. Whenwe give a lion information about the location of

an ant, then because the location of the ant is not important enough for the lion,

it will not have bet-hedged on the location of the ant. It might, for example, have

bet-hedged on the location of antelopes, so information about antelopes will

fulfil our criterion. A beetle will not bet-hedge on the location of antelopes, but

might do so on the location of ants. Thus bet-hedging is an equalising criterion.

Only when we provide a certain amount of information about a system to

Box 15.5 Typical sequences in the environment and
in a lineage

In our example, an organism survives only if its phenotype (fill pattern shown

in the circle)matches the environment in the generation (fill pattern shown in

the background rectangles). If the environment iswhitewithprobability p and

striped with probability (1 – p), a typical sequence of environments will have

almost exactly that ratio of white to striped states. For a future lineage of an

organism to survive (all lineages originating from circle on left), its

phenotypes must match the environmental phenotypes exactly.

If in every generation a fraction q of the offspring are white and a fraction

(1 – q) striped, then a typical sequence of phenotypes along a lineage will

have almost exactly that fraction of white versus striped phenotypes. For

the phenotype to match the environment every generation, q has to be

equal to p (see, for example, along the marked surviving lineage).

Typical sequence of environments has a fraction p type     , and (1-p) type    .

Time (generations)

Every generation
a fraction q of offspring have phenotype    ,
and a fraction (1-q) phenotype     .

Figure 15.5
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organisms that bet-hedge on the state of the system can we get exactly the same

fitness effects as the information content. Since the organismwill not bet-hedge

on unimportant aspects of its environment, these cases are excluded from our

result.

The connection between information and fitness comes from counting.

Shannon’s information measure is about a fold reduction of possible states.

When we ask about compression of a file, we have to count how many possible

equally likely states there are. When we talk about the difference in entropy

between a cup of tea at 100 or 25 °C, we ask about the difference in the number

of possible states between these two temperatures. Fitness can also be seen as a

measure of the number of possible future lineages, and since we again look at a

measure of equally likely possibilities, information and entropy can be applied.

It is interesting to note thatWagner (2007) used quite a different approach to

reach very similar results. He looked at the fitness effects of the sensing of a

limiting nutrient’s abundance, using a model for the metabolic network. In the

model, he again arrived at the result of a connection between information

content and fitness.

15.3 Information and genomes

Many bacteria live in a constant arms-race of producing toxins, anti-

toxins and other countermeasures. Some of the countermeasures to antibiotic

toxins, such as tetracycline produced by actinobacteria, involve arrested or

slowed growth – obviously a phenotype with a big cost. In these cases, an

environmental cue about the presence of a toxin could be ‘lineage-saving’.

Often, however, the action of the toxin could be so quick that the cells die

before they can respond to it. Bacteria might also be using bet-hedging, produc-

ing a subpopulation of individuals that growmore slowly, to save their lineages

from unexpected exposure to toxins. Kussel and Leibler (2005) looked at the

efficiency of response to a cue versus a bet-hedging strategy, and found the

conditions underwhich one or the other gives a faster average growth rate. They

noticed the connection between information and fitness effect. We can do a

quick analysis based on the tools described above. When the bacteria have no

information about the environment, not even the phenotypic/genotypic state of

their parents, their fitness will be reduced by at least H(Env) relative to ones that

know the exact state of the environment. If there are cues available about

the environment, their fitness can increase by up to I(cue; Env) – the mutual

information between the cue and the environment (the ‘relevant’ environment,

i.e. the environmental states over which bet-hedging is used). But the bacteria

can use an alternate method – evolutionary switching between states. We can
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then see the state of the genomewith respect to arrested growth as a ‘cue’ to the

state of the environment. The increase in fitness from using this strategy will

be I(Genome; Env) or less – themutual information between the genome and the

environment. What creates a correlation between the genome and the environ-

ment is selection, and the fact that recent environmental states, those during

which selection acted, contain information about the current environment.

Kimura (1961) tried to calculate the rate at which natural selection inserts

information into the genome:

If those individuals which are to be eliminated by natural selection in

the process of progressive evolution were kept alive and allowed to

reproduce at the same rate as the favored individuals, the population

number would become, after t generations, e–Lt. Thismeans that natural

selection allows an incident to occur with probability one, which,

without selection, could occur only with a probability of e–Lt . . . and

therefore information gained per generation is L/log(2) bits.

Here L refers to the ‘load’, a measure saying how many lineages are lost to the

population because not all individuals have the same fitness as the best in the

population (Kimura used the notation Le for this). The load L is defined so that if

in a generation half the lineages are lost through their lowfitness then exp(L)= 2,

so that L = log(2). Kimura then balanced the above measure with the rate at

which deleterious mutations destroy information per generation, to estimate

the total number of bits gained since the Cambrian explosion – around 108 bits.

Recently, Adami (2004) re-examined such an approach to estimate the selection

that acts on a sequence. Sites that are neutral are under no evolutionary con-

straints, and thus are free to take any possible sequence. Over enough evolu-

tionary time we should see every one of them. Missing sequences hint at

selection, for example if at a certain site we only see a ‘G’ across many species.

As before, we canmeasure the fold reduction in the number of sequences (again,

I use the word ‘fold’ to stand for the amount by which we divide the number of

sequences). The exact reduction is sometimes hard to calculate, because the

number of species is somuch smaller than the number of possible sequences. As

a proxy, we can look base by base, ignoring interactions between bases. As

above, the additivity of mutual information would allow us to add the measure

for each base to get the overall amount of conservation of the site. Adami also

showed how one can find interacting sites in an RNA molecule by looking at

their mutual information.

An interesting related use of entropy introduced to biology is for counting

possible states of the genome fulfilling some condition. We can measure the

specificity of a bindingmotif by counting the number of possible sequences that
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bind to a certainmolecule relative to the number of all possible sequences of the

genome in a region of the same size. Thus the method introduced by Schneider

and Stephens (1990) represents each base with a height proportional to the

information content of the position, i.e. a height related to how constrained

the motif in that position is. If the motif can have only one possible base, say an

‘A’, then we reduce the number of possibilities from 4 to 1, i.e. a four-fold

reduction. This four-fold reduction is represented by its log in base 2, so we

say that the position specifies two bits of information about the possible binding

motif, and its height is proportional to 2. If a position is not constrained at all,

and can have any of the four bases, there is no reduction. Then that position

specifies zero bits of information, and the height of that position is zero.

Because of the additive properties of information, one can add the heights of

all bases in the motif to get its overall specificity – two motifs with similar total

height put the same amount of constraint on the sequence for binding. (This

method of representation, only looking at single positions, ignores correlations

between different bases.) We can also use a similar representation to specify

motifs of amino acids in proteins.

Notice that themeasure used here is notmutual information, but instead the

reduction in uncertainty only for the regions that bind to the motif. The expres-

sion for mutual information between the binding of a molecule and the

sequence of the genome will involve at least two possible outcomes of the

binding state, e.g. either the molecule binds or it does not bind in the region,

and then we will have a second term involving the reduction in uncertainty

whenweknow themolecule does not bind in a region. Or it could be thatwe had

a certain chance to be told that the molecule binds in the region in case it does,

so the two possible events would be that we are told and we are not told that the

molecule binds in the region. The measure introduced by Schneider and

Stephens only includes the difference in binding regions. However, since the

effect on non-binding regions is so slight, the second term has an insignificant

contribution to the mutual information.

15.4 Conclusion

I have tried to highlight some of the uses of quantitative measures of

information and entropy in cues and communication between organisms. Many

biologists, including myself, hope that at some point entropy measures could

take as central a role in the theory of evolution as they do in physics and

information theory. But for now these promises are unfulfilled – few would

argue that a course in information theory should be in the standard biology

curriculum. On the other hand, small local uses of entropy are appearing, such
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as describing the specificity of a binding motif. In the narrow sense described in

this chapter, it is easy to agree that there is mutual information between a

certain cue in the environment or signal given by another organism and the

relevant environmental state of an organism. One might also look at the infor-

mation in the genome in the same way – mutual information between the

genome and the environment. The sense in which the term ‘information’ is

then used is similar to its use in statistical mechanics and the theory of commu-

nication. Beyond these static measures, if we try to analyse the behaviour of

organisms providing cues to one another, the mathematical analysis becomes

much harder. One needs to then take into account factors such as manipulation

or the stability of the signalling system tomutations and strategy changes by the

participants. Other important factors would be how the detection of the cue

originates, or how the detection of a signal or the emission of a signal originates

in evolution. All these, however, are mathematical or modelling questions,

more easily addressed than the question of whether or not the organism really

sent a ‘signal’ or was just manipulating the receiver.
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