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Abstract

Background: Hybridization differences caused by target sequence differences can be a confounding factor in analyzing
gene expression on microarrays, lead to false positives and reduce power to detect real expression differences. We
prepared an R Bioconductor compatible package to detect, characterize and remove such probes in Affymetrix 3'IVT and
exon-based arrays on the basis of correlation of signal intensities from probes within probe sets.

Results: Using completely mouse genomes we determined type 1 (false negatives) and type 2 (false positives) errors with
high accuracy and we show that our method routinely outperforms previous methods. When detecting 76.2% of known

Affymetrix microarrays experiments.

SNP/indels in mouse expression data, we obtain at most 5.5% false positives. At the same level of false positives, best
previous method detected 72.6%. We also show that probes with differing binding affinity both hinder differential
expression detection and introduce artifacts in cancer-healthy tissue comparison.

Conclusions: Detection and removal of such probes should be a routine step in Affymetrix data preprocessing. We
prepared a user friendly R package, compatible with Bioconductor, that allows the filtering and improving of data from

Background

In microarray gene expression analysis, there is an as-
sumption that a probe has the same set of targets in
compared groups and therefore differences in probe
signal intensity are caused by different levels of gene
expression. This assumption does not hold when ex-
perimental groups with different genetic makeup are
compared, as the target region of a specific probe may
contain SNPs and other sequence differences. Experi-
mental groups may also differ in their set of expressed
isoforms or cross-hybridizing targets. The latter issue
may arise even between genetically identical samples,
such as when comparing different tissues, or samples
differing in applied treatment. The binding affinity for
such probes will differ between exprimental groups and
the difference in signal intensity will be confounded
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with transcript abundance. We termed probes with
such binding affinity differences BAD probes.

BAD probes lead to errors in estimates of differential
gene expression [1], disruption of eQTL mapping [2,3]
and errors in resolving cis and trans effects [4]. We our-
selves have shown that BAD probes both introduce
spurious gene expression differences and, by disrupting
normalization, reduce the power to detect true ones [5].
On the other hand, BAD probes might be useful as gen-
etic markers distinguishing species or strains (called also
single feature polymorphisms, SEPs) [6,7].

The number of affected probes depends on the genetic
distance between experimental groups. Even with 1%
nucleotide differences, as observed between human and
chimpanzee or Mus musculus and Mus spretus, SFPs due
to SNPs alone will appear in ~22% of 25-nucleotide probes.

To overcome this problem, several approaches were
employed, including: removal of probes overlapping known
polymorphisms [8-10], adding group as a factor in probe-
level analysis [1,11] and methods based on correlating
expression values within a probe set [6,7,12,13]. The advan-
tage of the last approach is that information concerning
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sequences or actual targets (isoform and cross hybridizing
targets) need not be known. It also alows one to discover
SEDs.

Previously, we proposed a method to detect BAD
probes on Affymetrix gene expression microarrays
based on the expression values themselves, as we
described in [5]. Briefly, the signal for a given probe is
proportional to the amount of RNA in the sample and
its binding affinity. When one target is measured with
several probes (a probe set), as on Affymetrix arrays,
the probe signals are correlated for each sample. BAD
probes correlation differs between groups, hence com-
parison of pairwise correlations between those groups
allows to identify of BAD probes, as summarized on
Figure 1.

We present an R package implementing this method
for the detection and removal of BAD probes from the
Affymetrix gene expression data. Functions in this pack-
age improve upon the version that we made available
with the original paper [5], are compatible with current
R Bioconductor framework, and work for both Affy-
metrix 3'IVT and exon-based arrays. The package with a
vignette and example data was submitted to Bioconduc-
tor. We re-validated the method with recently available
full genome data for mouse strains and compared its
performance with competing software. We also
employed masking on a human tumour-healthy tissue
data set, to test for presence of BAD probes between
tissue types and their influence on differential gene ex-
pression detection. In such comparisons, the difference
in targets between experimental groups and impact of
BAD probes has been overlooked to date.
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Implementation
BAD probes detection
We implemented the method described in [5]. Briefly, a
signal for the probe j on the array i might be expressed as a
sum of baseline response due to nonspecific hybridization
(vj), abundance of target RNA (®;) multiplied by binding
strength of probe j (6;) and an error term.

If probes O;; and O;, hybridize to the same transcript,
the relationship between their fluorescence levels might
be expressed as
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When samples differ between groups in binding affi-
nities and/or background intensity, this linear relation-
ship still holds within each group, but their slopes differ
between groups.
We test the null hypothesis that in both groups the
binding strength, as well as the background binding
level, are the same,

1. We estimate the intercept for combined groups
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Figure 1 Principle of the masking method. Each dot represents a sample— human or chimpanzee. On the axes are fluorescence intensities
for the probes from the same probe set. Our method performs a t-test of the slopes to each point (green and blue lines), assuming that the
intercept is taken from all points (black line). On the left (a) there is no binding afinity difference between humans and chimpanzees in either
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3. The same test (1-2) is performed for all probe pairs,
in both directions. We thus build a J x J matrix of all
pairwise tests, less the diagonal.

4. For each probe in a probe set we calculate the
geometric mean of all P-values in the matrix where
this probe is involved. We record the probe with the
smallest geometric mean of P-values (mP-value) and
exclude this probe’s comparisons from the matrix.

5. The previous step is repeated, until the matrix
contains only two probes — they are both assigned
geometric mean of their pvalues.

Then a cutoff is chosen and all probes with an mP-value
below this cutoff are designated as BAD.

Description of the package

The package allows detection of BAD probes in Affymetrix
microarrays designed with several probes measuring a
target, 3’ IVT gene expression arrays and whole—transcript
expression arrays (exon and gene arrays). Standard Biocon-
ductor gene expression data structures are supported, thus
the package may be easily be used with other Bioconductor
tools.

As input for detection of BAD probes the package
requires raw expression data in the form of an AffyBatch
object and a group assignment of all samples. Detection of
BAD probes in expression data works only for probe sets
targeting transcripts that are expressed — others, picking
background and crosshybridization signal are meaningless.
Therefore by default, probe sets are evaluated with mas5-
calls() function from the package affy and only probe sets
which are expressed (“P” call) in at least 90% of samples in
each group are retained for BAD probes detection. How-
ever, the user may choose to analyze a custom set of probe
sets or use average probes values to define probe sets to
analyze. The masking achieves sufficient power with at least
five samples in each group to compare (groups may differ
in size). The resulting list contains a mask - a data frame
with quality scores for all analyzed probes.

A low quality score means that a probe is likely to be
BAD and probes with quality value below a certain cut-
off may be removed from expressionSet and downstream
analysis. Ranking of probes by quality scores depends on
the data set (sample size and number of probes within
probe sets) and hence a threshold for excluding probes
from downstream analysis is data set specific. The package
contains several functions to assist with choice of cutoff
score. A stringent (high) cutoff might be used to compare
gene expression between groups, whereas a relaxed (low)
cutoff may be used to identify candidate SEPs, because then
a low rate of false positives is important.

When BAD status is known for a subset of probes, a
cutoff might be chosen to match desired sensitivity and
specificity level, on the basis of this subset analysis.

Page 3 of 7

Function overlapExpExtMasks() computes type 1 and
type 2 errors and its confidence intervals for different
cutoffs and then plots them. Also, the distributions of
quality scores for probes defined as BAD and non-BAD
might be compared using a Kolmogorov-Smirnov or
Wilcoxon test, to estimate if cutoff is too stringent and
prevents discrimnation of BAD and non-BAD probes.

In the absence of a reference subset of probes, distribu-
tion of quality scores might suggest an appropriate cutoff
level.

It is advisable to inspect some probes that have
borderline quality score. The function plotProbe() allows
comparison of a probe’s intensities against all other
probes from the same probe set.

Probes may be removed from the original AffyBatch ob-
ject with prepareMaskedAffybatch(). It returns a new affy-
Batch object and an appropriate CDF environment, which
are both devoid of BAD probes. At this step the user may
decide what is a minimal number of probes left to still keep
a probe set in the analysis. For prepareMaskedAffybatch()
BAD probes may be identified by a mask object and a
cutoff value or as a list of probes to remove.

After removal of BAD probes, expression estimates
might be obtained in any way preferred by the user, as
for every probe set the remaining probes are treated as a
redefined probe set. Masking might be coupled also with
probe set redefinition by a custom cdf.

The package is compatible with 3’ IVT arrays and
gene/exon arrays. The resulting affyBatch object may be
used downstream as a usual affyBatch object.

Performance

We took the opportunity to use the recent sequencing
of 20 inbred mouse strains as a comprehensive source of
information about SNPs and indels. We detected BAD
probes in a public dataset of striatum expression from
C57BL/6N]J and DBA/2 ] strains [[14], GEO Series
GSE26024], measured on the MOE430 2.0 array based
on C57BL sequences. We estimated false positives
(probes detected as BAD with no polymorphism) and
false negatives (undetected BAD probes) of expression-
based mask by comparison with polymorphisms in
probe target regions in a similar way as in [5].We did
the same with SNEP [15], which is a method to detect
BAD probes shown to be superior to several other
approaches and not compared with ours before.

We also tested for the presence of BAD probes and
masking effects in a public dataset comprising 17 healthy
tissue and 20 tumour samples from human lung ([16], data
from http://www.broadinstitute.org/mpr/lung/), measured
on U95 arrays. The mask was produced with default fea-
tures and a cutoff of 0.001 (1373 probes masked — 4.5%),
determined from the distribution of probes’ quality scores.
Probe sets were defined as being differentially expressed if,
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after gcrma normalization, their Benjamin-Hochberg cor-
rected t-test p-values were smaller than 0.01.

Results and Discussion

The package maskBAD is designed to detect and remove
BAD probes and the resulting bias in expression esti-
mates. Previously we demonstrated the high accuracy
and detection rate of the method in detecting artificially
introduced BAD probes [5]. We detected 90% of probes
with an artificially introduced difference and masked
only 1.8% of probes without a difference. We estimated
also false positive and false negative rates in actual data
from two mouse strains and a human-chimpanzee com-
parison. However, this approach suffered from incomplete
mouse polymorphism data at the time, and unknown poly-
morphisms between human and chimpanzee individuals
used in the expression studies. However, with the full gen-
ome information for inbred mouse strains it was possible
to estimate it with greater accuracy [Figure 2]. According to
the sequence data, within the 22748 expressed probe sets,
2.4% of probes were affected by either a SNP or an indel.
At cutoff 0.032 we detect 76.2% of known SNPs/indels, at
the same time masking only 5.5% of probes without any
known polymorphism. Still, some of the probes without
known polymorphisms might differ in binding affinity be-
cause of other differences between experimental groups, for
example in additional file 1 we show a probe (quality
score =2.46e — 10) without a known polymorphism be-
tween mouse strains and with obvious BAD behavior.
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Figure 2 Detection of known polymorphisms by maskBAD.
Performance maskBAD compared with SNEP algorithm for the
mouse dataset. X-axis: fraction of probes masked, but without
known polymorphism. Y-axis: detected fraction of known SNPs/
indels. Masks were build using 4 or 10 individuals from each group.
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We compared the performance of our method with
SNEP [15] using the same dataset. For group sizes 4 and
10 our method is equally good for low cutoffs and supe-
rior for high cutoffs [Figure 2]. When detecting 75.6% of
real SNPs/indels, it detects as BAD 8.5% probes without
SNP/indel and with type 2 error 5.5% it detects 72.8% of
known SNPs/indels.

We find also that BAD probes are present in the cancer-
healthy tissue comparison and influence DE detection. We
analyzed 1913 (15%) probe sets which were expressed in
both groups and identified 1373 (4.5%) BAD probes at cut-
off 0.001 between carcinoid lung tumors and healthy lung
tissue. Such differences between two human tissues mean
qualitative differences in targets, such as cross-hybridizing
targets or isoforms between tumour and normal tissue. We
enquired how masking influences differential expression
detection. There were 656 probe sets detected as differen-
tially expressed (DE) both before and after masking, while
94 probe sets were only DE before masking and 38 were
only DE after masking.

A single BAD probe can cause an extreme difference
in calling differential expression. For example, a probe
set (38657_s_at), targeting clathrin, before masking
showed no difference in expression (p =0.41). By remo-
ving probe 3 (detected as BAD: quality score=2.5e-5,
additional file 2), the P-value becomes highly significant
(p=0.009). The probe response shows the opposite di-
rection of intensity change for this probe than the
others, leading to a biased expression estimate.

On the other hand, in probe set 37766_s_at differential
expression detected without masking (p=0.01) is an
artifact of only one BAD probe (x=420 y =307, quality
score =5.5e-6) in this probe set (Additional file 3) and
disappears after masking (p = 0.08). This detected difference
might be still of interest, as it might indicate differential iso-
form expression or RNA editing between two tissues, or
identical somatic mutations in tumour samples, but it is
not a “simple” difference in expression levels.

If removal of BAD probes reveals a real biological sig-
nal, and does not not just introduce a random change in
expression estimates due to a reduction in the number
of probes in probe set, than when discarding BAD
probes one should see much a bigger difference in DE
estimates compared to removing probes randomly. To
test this, we ran a simulation 1000 times where we
removed the same number of probes, with the same dis-
tribution of probes per probe set, as the set of probes we
removed as BAD. The number of probe sets detected as
DE was much smaller (Figure 3).

As we have shown previously [5], excluding BAD probes
both removes artifacts and reveals a real biological signal.
Previously, it was used in comparisons between genetically
different strains or species [12,17-21]. Systematic differ-
ences in probes’ targets might also be present between
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Figure 3 Probe sets changing DE status after removal of BAD or random probes. Number of probe sets changing DE status after removal
of 1373 probes, randomly chosen (sampled 1000 times) or identified as BAD probes. (a) All probe sets (b) probe sets detected as DE only after
masking, (c) probe sets loosing DE status after masking.

different tissues (as in the previous cancer-healthy tissue
comparison) or samples subjected to different treatments.
Whereas regions of known differences might be accommo-
dated in array design (by careful design and annotation of
separate probe sets targeting known isoforms and exon-
level analysis), other differences that are not recognized
might lead to errors in detecting DE. To date, their identifi-
cation and removal is usually not a part of a 3IVT arrays
data analysis pipeline. As they differ in binding affinity
between compared groups, but are still in relation to other
probes within a probe set, downweighting of outlier probes,
as performed in summarization step of preprocessing
methods (RMA, GCRMA, affyILM, plier etc.) does not re-
duce their interference.

BAD probes violate the assumption made in methods
for estimating gene expression from microarrays, that
there is a common binding affinity for a given probe for
all samples. Therefore, for DE gene discovery, they
should be removed from analysis.

As BAD probes are a result of systematic differences
between compared groups, they might identify candidate
loci for further investigation, for example differing in
splicing isoforms between compared groups. When
using expression data to classify samples, they might be
another factor discriminating samples. However, as they
obscure real expression levels, by potentially canceling
out expression differences with reciprocal signal or by

disrupting the normalization process, they should be
removed before estimating expression level differences.

Therefore BAD probe detection should be a part of
standard differential gene expression analysis. When a
goal is to find both quantitative and qualitative diffe-
rences in expression between samples, the analysis might
be done twice, with and without BAD probes. Compari-
son of results for the same dataset before and after
masking, along with the localization of BAD probes,
would help to interpret which probe sets apparently
detecting DE differ in expression levels and which have
rather qualitative target differences.

A set of probes identified as BAD for a specific experi-
ment might be removed from analysis of other similar data-
sets. However, each tissue, developmental stage etc. might
differ qualitatively in transcriptome and therefore have a
different set of BAD probes, so identification of ones spe-
cific for the experiment is better.

Conclusions

We introduce “maskBAD”, the R package to detect and
remove probes with different binding affinity in Affyme-
trix array expression data. The method implemented in
maskBAD performs better than other methods in detect-
ing BAD probes. Identification and removal of BAD
probes removes spurious gene expression differences
and helps to reveal real ones. In clustering analysis of
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gene expression, identification of BAD probes guides in-
terpretation of discriminating probe sets.

The BAD probes are prevalent in comparisons of geneti-
cally distinct samples, such as different strains of a species
or between species, but systematic qualitative differences in
transcriptome might introduce them also when samples
differ by treatment, health status or tissue type. All com-
monly used preprocessing procedures assume constant
binding affinity for a probe in all samples and their down-
weighting of outlier probes does not protect from BAD
probes. Therefore masking should be a routine step in data
preprocessing. The “maskBAD” package allows identifying,
inspection and removing BAD probes in R and Bioconduc-
tor environment and make it a part of standard gene
expression analysis pipeline.

Availability and requirements

Project name: Masking BAD microarray probes.

Project home page: http://bioinf.eva.mpg.de/masking/
test/pmwiki.php/Site/MaskingMicroarraysProbesWith
BindingAffinityDifferences and Bioconductor (http://bio
conductor.org/packages/2.10/bioc/html/maskBAD.html)
Operating systems: Linux, OS X, Windows
Programming language: R (currently requires R-devel
version)

Other requirements: packages affy, gcrma

License: GNU GPL

Links

Package is available at
http://bioconductor.org/packages/2.10/bioc/html/
maskBAD.html
http://bioinf.eva.mpg.de/masking/test/pmwiki.php/
Site/MaskingMicroarraysProbesWithBindingAffinity
Differences

Additional files:

Additional file 1: A BAD probe without known polymorphisms in
the targets. Examples of fluorescence intensities for probes from the
probe set 1415723_at, without any polymorphisms in target region
according to sequence data, for mice from C57BL/6NJ (green) and DBA/
2 J (blue) strains. A. BAD probe (quality score 2.46e — 10) B. Probe without
BAD (quality score 0.876).

Additional file 2: BAD probe introduces spurious DE. Fluorescence
levels of the probe set 37766_s_at for normal lung and tumor lung tissue.
Each dot represents a sample. This probe set is detected as DE (alpha=0.01)
with raw data, but is not significant after masking. Intensities and its
correlations with some other probes of the probe set are shown for the
probe 15, identified as BAD (left) and probe 13, non-BAD (right). In the
middle fluorescence levels for consecutive probes.

Additional file 3: BAD probe prevents detection of DE. Fluorescence
levels of the probe set 38657_s_at for normal lung and tumor lung tissue.
Each dot represents a sample. This probe set is detected as DE (alpha=0.01)
only after masking. Intensities and its correlations with some other probes
of the probe set are shown for the probe 3, identified as BAD (left) and
probe 4, non-BAD (right). In the middle fluorescence levels for consecutive
probes.
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