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Separating equilibria in continuous signalling games
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Much of the literature on costly signalling theory concentrates on separating equilibria of continuous
signalling games. At such equilibria, every signaller sends a distinct signal, and signal receivers are able
to exactly infer the signaller’s condition from the signal sent. In this paper, we introduce a vector-field
solution method that simplifies the process of solving for separating equilibria. Using this approach, we
show that continuous signalling games can have low-cost separating equilibria despite conflicting interests
between signaller and receiver. We find that contrary to prior arguments, honesty does not require wasteful
signals. Finally, we examine signalling games in which different signallers have different minimal-cost
signals, and provide a mathematical justification for the argument that even non-signalling traits will be
exaggerated beyond their phenotypic optimum when they are used by other individuals to judge condition
or quality.
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1. INTRODUCTION

Game theoretic models are commonly used to study the
strategic aspects of communication, including how and
why signals evolve. In a typical model, a signaller, who has
private information about the state of the world, sends a
signal to a receiver, who selects a response to the signal.
Communication occurs when the signaller sends informa-
tive signals that influence the receiver’s choice of response.
This communication will be stable when the signaller and
receiver pursue strategies (rules for choosing signal and
response, respectively) that together comprise a signalling
equilibrium: a pair of signaller and receiver strategies such
that neither party gains from a unilateral change in strat-
egy (Bergstrom & Lachmann 1998).

In an extremely influential paper, Grafen (1990) formu-
lated a model in which males signal quality to females,
and showed that under certain conditions, costly signals
facilitate honesty. Grafen’s analysis, based on a continu-
ous signalling game with a continuum of possible signaller
states and signals, identified a stable separating equilibrium
in which every difference in signaller state is reflected by
a difference in signal. At this equilibrium, the signal
receiver can exactly infer the signaller’s quality from the
signal sent. Pooling equilibria, in which signallers in different
states share common signals, may also exist (Bergstrom &
Lachmann 1998; Lachmann & Bergstrom 1998).

In this paper we focus on separating equilibria, and
attempt to address the following questions as generally as
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possible. What are the basic common properties charac-
terizing separating equilibria? When will separating equili-
bria exist? How many separating equilibria will exist in a
given game? Why might there be no separating equilibria
for a given game? How costly do separating equilibrium
signals have to be? What predictions for empirical studies
can be made from theoretical models of separating equili-
bria?

In § 2 we present initial definitions and describe the
conditions for the existence of separating signalling equili-
bria. In § 3, we present a simple method for finding the
separating equilibria of signalling games as integral curves
of a vector field. We also show that this approach provides
a useful intuitive picture of various signalling games. In
§ 4 we show that many signalling equilibria are possible if
one varies the cost function, and that some of these have
very low signal costs at equilibrium. For these cost func-
tions, honest signalling need not be wasteful even when
signaller and receiver interests differ substantially. In § 5
we use the results of the earlier sections to present a math-
ematical proof of an idea proposed by Lotem et al. (1999):
when non-signalling characters are used as cues by
observers, the individuals exhibiting these characters will
be selected to express levels other than the phenotypic
optimum.

2. CONDITIONS FOR SIGNALLING EQUILIBRIA

(a) Definitions
Appendix A contains a table of all variables and their

definitions. We begin by defining the signalling game �
that we will study in this paper. The game � features two
players, a signaller and a receiver of the signals. The sig-
naller has some quality q � [qmin, qmax] known only to her-
self. She sends a signal s to the responder, eliciting a
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response r � [rmin, rmax]. The signaller receives a pay-off
of H(q,r) � C(q,s), where H can be thought of as the value
of the response and C as the display cost of the signal s.
The receiver gets a pay-off G(q, r) from providing response
r to a signaller of quality q. Each signaller will have a signal
that elicits the minimal response rmin.

Let s = S(q) and r = R(s) be signaller and receiver stra-
tegies which specify what signal to send given one’s quality
and what response to provide given the signal received,
respectively. The pair (S, R) is said to be a signalling equi-
librium if neither signaller nor receiver can benefit or break
even from a unilateral change in strategy. It will be a separ-
ating equilibrium if furthermore the signaller strategy S is
one-to-one.

Denote a strategy of the receiver given that the state q
of the signaller is known to her by Rq(q). The receiver’s
optimum response is then given by the curve
R∗
q (q) = argr max[G(q,r)] (the r for which the maximum is

achieved). Hence, if the signal receiver knows the true
quality q of the signaller, she will optimally choose a
response1 R∗

q (q).

(b) Properties of separating equilibria
What are the properties of these separating equilibria?

We begin with two lemmas.

Lemma 2.1. At any separating equilibrium (S,R) in the
game �, a signaller of quality q will receive the response
R∗
q (q).

In other words, the receiver will always provide exactly
the response that she would if there was no signalling
interaction but instead she started with perfect infor-
mation. The proof is simple: by the definition of separat-
ing equilibrium, the equilibrium signalling strategy S :
q → s is one-to-one and thus has an inverse S�1: s → q.
At equilibrium the receiver must select a response r that
maximizes her own net pay-off G(q,r). By definition this
response is given by r = R∗

q (q). Having received the signal
the receiver can attain this response level by picking
R(s) = R∗

q (S�1(s)). As all separating equilibria will be
characterized by this response level, we call the curve
r = R∗

q (q) the equilibrium path. Notice that this lemma will
not hold for pooling equilibria—in those the receiver will
not have perfect information about the signaller’s state.

Once we examine a strategy pair (S, R), we can also
define a cost function Cr(q, r) that says what cost a signal-
ler has to pay to send a signal that would elicit the
response r. This cost function is defined as
Cr(q,r) = C(q,R�1(r)). Notice that while the cost function
C(q, s) does not change as we move from strategy to strat-
egy, the cost function Cr(q,r) does. Nöldeke & Samuelson
(1999) point out an enlightening corollary.

Corollary 2.1. At any separating equilibrium (S,R), the sig-
nal cost function Cr serves to bring the optimization problems
of signaller and responder into accord.

More specifically, at any separating equilibrium (S,R),
the following equality holds for all q:

argrmax[H(q,r) � Cr(q,r)] = argrmax[G(q,r)].
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The logic underlying this result is as follows. At any
separating equilibrium the signaller can essentially ‘pick’
her desired response and send the signal necessary to get
it. None the less, lemma 2.1 tells us that at any separating
equilibrium, the signal receiver always provides exactly the
response that maximizes her fitness, R∗

q (q) (assuming that
the signal cost is independent of the response). Therefore,
the optimal choice for the signaller must be to ‘ask for’
precisely the response that the responder would want to
provide.

Next we can derive a set of conditions for the slope of
signal cost on separating equilibria.

Lemma 2.2. At any separating equilibrium in the game �,
(∂H(q,r))/(∂r) = (∂Cr(q,r))/(∂r) along the equilibrium path.

The proof of this lemma, and an interesting corollary,
are provided in Appendix B.

Lemma 2.2 and corollary 2.1 tell us something interest-
ing about a signalling equilibrium: even though Cr changes
as we move from strategy to strategy, every time these stra-
tegies are a signalling equilibrium, Cr will have very dis-
tinct properties: it will align the maximum of H � Cr with
that of G, and its slope will be equal to the slope of H.

Example 2.1. Throughout this paper, we will examine an
example loosely based on the original model of Grafen (1990).
A male bird of quality q, where q is drawn from some distri-
bution with a range [0,1), signals his quality to a female, using
a signal of intensity s. The display cost, C, of producing this
signal depends on both the signaller’s quality and the signal’s
intensity: C(q,s) = s(1 � q). Upon observing his signal, the
female selects a response r. Her pay-off is then given by the
function G(q,r) = exp[�(q � r)2]; the closer in value is her
response r to his quality q, the higher is her pay-off (this func-
tion was arbitrarily chosen as a function that has its maxima
along the diagonal). Thus the receiver’s optimal response is
given by the function R∗

q (q) = q. The signaller receives a benefit
that increases as the intensity r of the receiver’s response
increases: H(q,r) = r. We assume that the cost necessary to elicit
the least-desirable response rmin = 0 is zero for all signallers q.

In figure 1a, we show the signaller’s benefit function
H(q,r), along with the signaller’s desired response (dashed
line) and the receiver’s desired response (solid line). By
corollary 2.1, at a separating equilibrium, the signal cost
must serve to bring these two different paths into accord.
In figure 1b, we show the function C(q, s) giving signal
cost as a function of signaller quality q and signal intensity
s. These two surfaces—the benefit surface H and the cost
surface C—can be seen as defining the signalling game.
Our task is then to determine optimum signaller and
receiver strategies S(q) and R(s), and from these to com-
pute the cost C(q,r) of eliciting a given response and the
net fitness consequences H(q,r) � Cr(q,r) to the signaller.

For this particular example, we can find the separating
equilibrium as follows. By the definition of separating
equilibrium, for every signaller q�, signaller’s choice of sig-
nal S(q�) maximizes the signaller’s fitness. A necessary
condition is that for all q� in [0,1)

dH(q�,R(s�))
ds

�
dC(q�,s�)

ds |
s� = S(q�)

= 0.



Signalling equilibria C. T. Bergstrom and others 1597

0.75

0.75

0.75

0.5

0.5

0.5

r

q

0.25

0.25

0.25

0

0

0

1

1

1 1.5

0.75

1.5

1

0.5

1

s

q

0.5

0.25

0.5

0

0

0

2

1

2(a)

0.75

0.75

0.75

cost

0.5

0.5

0.5

r

q

0.25

0.25

0.25

0

0

0

1

1

1
(c)

0.6

0.75

pay-off

costbenefit

0.4

0.5

0.5

r

q

0.2

0.25

0

0

0

1

1

0.8
(d )

(b)

Figure 1. Benefit, cost and net fitness functions for example 2.1. The separating equilibrium is represented by the dark curves
across the surfaces. (a) Benefit function H(q,r): dashed line, signaller’s desired response; solid line, receiver’s desired response;
(b) cost C(q,s) as a function of quality and signal sent; (c) cost Cr(q,r) as a function of quality and response elicited; (d )
signaller’s net fitness H(q,r)—Cr(q,r).

By lemma 2.1, at this equilibrium the signaller will
receive the response that optimizes the receiver’s fitness,
i.e. R(S(q�)) = q�. Therefore we have

�dH(q�,q�)
dr

dR(s�)
ds

�
dC(q�,s�)

ds �|
s� = S(q�)

= 0.

By the inverse rule for derivatives,

dR(s�)
ds |

s� = S(q�)

= 1�dS(q�)
dq |

q = q�

.

As (dH/dr) = 1 everywhere, we have simply

dS(q�)
dq |

q = q�

= 1�dC(q�,s�)
ds |

s� = T(q�)

.

It follows that the signaller’s strategy S is the solution
to the differential equation dS/dq = 1/(1 � q), i.e.
S(q) = log[1/(1 � q)] � c. Substituting our initial condition
C(q0,s0) = 0, where s0 = 0 is the signal necessary to elicit
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response rmin, we find that c = 0. Receivers will then
respond to a signal s with a response R(s) = S�1(s) = 1 �
e�s. This gives us a candidate solution; we still have to
check that it truly is an equilibrium, i.e. that no signaller
can benefit from sending an alternate signal. In § 3 we will
see an easier method for arriving at the equilibrium.

At this equilibrium, the signallers send signals of inten-
sity S(q) = � log[1 � q] and receivers respond to a signal
s with a response R(s) = 1 � e�s. The equilibrium cost to
a signaller q of eliciting a response r is then
Cr(q,r) = (q � 1)log[1 � r]. This cost function is shown in
figure 1c. Figure 1d shows the signaller’s net fitness H(q,r)
� Cr(q,r) as a function of quality and response induced.
Figure 1d illustrates the consequence of lemma 2.1 and
corollary 2.1: a signaller of quality q—who seeks to max-
imize H(q, r) � Cr(q, r) with respect to r—ends up choos-
ing the point along receiver’s optimum path q = r. The
signaller’s and the responder’s optimization problems
were brought into accord. Moreover, simple calculus veri-
fies that lemma 2.2 is met, as everywhere along the
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equilibrium path the signaller’s fitness is maximized with
respect to r, i.e. ∂H(q,r)/∂r = ∂Cr(q,r)/∂r.

3. A VECTOR-FIELD APPROACH TO SIGNALLING
GAMES

The task of finding a separating equilibrium for a given
signalling game can be difficult, since for each candidate
signalling strategy S(q) we have to compute a correspond-
ing response strategy R(s) to use in determining whether
the strategy S(q) is actually stable. In this section, we
present a method that simplifies this process. We represent
equilibria as integral curves of a vector field, and in this
way we are able to find all the possible separating equilib-
ria directly from the basic functions by which the game �
is defined: the signaller’s benefit function H(q,r), signal
cost function C(q,s), and the equilibrium path R∗

q (q),
which is easily derived from the receiver’s benefit function
G(q,r) using lemma 2.1. Not only does this approach give
us an easy way to find the equilibrium strategies S and R,
but it also provides a way of visualizing the form of various
signalling games, which serves to highlight the differences
and similarities among them.

The following proposition provides the groundwork for
the vector-field representation. A proof is provided in
Appendix C.

Proposition 3.1. Define the vector field V as2

V(s�,q�) = � d
ds
C(q�,s)|

s = s�

,
d
dq
H(q�,R∗

q (q))|
q = q�

�.

If a separating equilibrium exists for the game � with S(q0) =
s0, the integral curve of V through (q0,s0) will be an equilibrium
signalling strategy S(q), provided that everywhere along this
integral curve, the following inequality is satisfied:

d
dq

d
dp
H(q,R∗

q (p))|
p = q�,q = q�

�

�∂2C
∂s∂q(q,s)|

q = q�,s = s�

�� d
dq
H(q�,R∗

q (p))|
q = q�

�
d
ds
C(q�,s)|

s = s�

. (3.1)

The equilibrium receiver strategy is given by
R(s) = R∗

q (S�1(s)), where S�1(s) is the inverse of S.

Integral curves including points of the (q,s) plane at
which condition 3.1 is not satisfied will not be stable sepa-
rating equilibria.

The game described in example 2.1 has a corresponding
vector field of V = (1 � q,1), shown in figure 2. The cross
derivative condition 3.1 holds everywhere. Assuming that
a minimal signal of smin = 0 is sufficient to induce a mini-
mum response rmin, the equilibrium signalling strategy
S(q) is simply the integral curve of V through the point
(0,0). This curve is represented by the dark curve in figure
2. Notice that the cost of a signal s to a signaller of quality
q is simply the path integral of the x-axis component of
the vector field (∂C/∂s) along the path given by the vertical
line from y = 0 to y = s, as illustrated by the dashed line
in figure 2. This exemplifies that the signal cost depends
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Figure 2. The vector field V(s,q) for the game treated in
example 2.1. Each vector has magnitude
(d/dq) H(q�,R∗

q (q))|q = q� direction and (d/ds) C(q�,s)|s = s� in the
horizontal direction. The solid curve is the equilibrium
signalling strategy S(q).

on the properties of the vector field off the equilibrium
path. One can also see that we could have chosen many
other integral curves that lie off the point (0,0), for
example starting at a higher point (0,0.1). These would
also define signalling equilibria, except that now no signal-
ler signals the lowest cost signals, such as the signal s = 0.
The stability of these equilibria depends on how the
receiver responds to signals that the signaller never sends.
If the receiver ‘generalizes’ and responds to a signal that
is lower than 0.1 as she would to a signaller of quality 0,
the equilibrium would not be stable. However, this does
not have to be the case, and is part of the question of
equilibrium selection. For this paper we will not consider
the stability of a signalling strategy versus signals that no
signaller employs.

Figure 4a is a contour plot of the signaller’s total fitness,
H(q, R(s)) � C(q,s), when the receivers use the equilib-
rium response strategy R appropriate to the signalling
strategy S for which S(0) = 0. (This signalling strategy
corresponds to the integral curve through (0,0), and is
illustrated by the heavy yellow line.) Notice that the sig-
nalling strategy always intersects the contour lines when
they are vertical. This means that the signalling strategy
S(q) extremizes (maximizes, in this case) the signaller’s
fitness function for every signalling quality q.

The vector-field approach can also help us to under-
stand why a separating equilibrium might fail to exist.
Siller (1998) presents an example of a game similar to the
model of Grafen (1990), for which no separating equilib-
rium exists. While the mathematics behind the model of
Siller (1998) may appear somewhat daunting, the vector-
field approach clarifies the problem that Siller (1998)
describes.

Example 3.1. As in example 2.1, a male bird of quality
q � [0, 1) signals his quality using a signal s and receives a
response r. Benefit functions are as before: the receiver gets a
pay-off G(q,r) = exp[�(q � r)2] and the signaller gets a pay-
off H(q,r) = r, with the signal necessary to receive response rmin

= 0 costing zero for all signallers q. In this example, define the
signal cost as follows:



Signalling equilibria C. T. Bergstrom and others 1599

0 0.5 1 1.5 2

signaller condition, q

si
gn

al
 in

te
ns

it
y,

 s

0

5

10

15

20

Figure 3. The vector field and integral curve through (0,0)
for example 3.1.

C(q,s) = 2 �
e � q � 1
s � 1

.

This is an unusual signal cost function: the cost of any parti-
cular signal increases with signaller quality, but the marginal
cost of signalling decreases both with signaller quality and with
signal intensity. Consider signallers with qualities q on the
interval [0,2], and assume that the signaller of quality qmin

= 0 sends a signal of intensity smin = 0.

Figure 3 shows the vector field for this model. As is
clear from the figure, the signal intensity ‘blows up’ near
q = 1.5, as the vector field along the integral curve describ-
ing the signal path approaches an infinite slope. Indeed,
as Siller (1998) points out, all signallers beyond some lim-
iting point will send a signal of infinite intensity. The
maximal integral curve through the point (0,0) does not
afford an inverse on the domain [0,2], and so no separat-
ing equilibrium exists. Siller points out that this situation
may be reasonable when signal intensity measured by a
ratio such as that of pigmented surface area to non-pig-
ment surface area.

4. MANY COST FUNCTIONS ALLOW STABLE
SIGNALLING

In § 1, we assumed that the cost function was specified
as part of the game �. However, many different cost func-
tions can allow honest signalling for particular benefit
functions H(q,r) and G(q,r). In this section, we will explore
the properties of the separating equilibria that correspond
to different cost functions C. We will find that signal costs
at these equilibria may be higher or lower than those
found above.

Example 4.1. As before, a male bird of quality q � [0,1)
signals his quality using a signal s and receives a response r.
Benefit functions are in example 2.1: the receiver gets a pay-
off G(q,r) = exp[�(q � r)2] and the signaller gets a pay-off
H(q,r) = r. The signal needed to elicit response rmin = 0 costs
zero for all signallers. In this example, however, we consider a
range of different signal cost functions, represented by the func-
tion C(q, s) = s�(1 � q)�, where � is a strictly positive constant.

Figure 5 shows the signal cost for three different cost
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Figure 4. Vector fields, signalling equilibrium and contour
plots of fitness or cost. (a–c) Signaller quality q versus signal
intensity s. Arrows represent the vector field V. A signalling
equilibrium strategy S(q) that passes through the point (0,0)
is plotted in yellow, over a contour plot of the fitness
function H(q, R(s)) � C(q,s). (a) Example 2.1, V, S and total
fitness; (b) example 5.1, V, S and total fitness; (c) example
5.1, V, S and cost C; vector field and signalling strategy
overlaid over the cost C (q,s).

functions, corresponding to � = 1/4, � = 1, and � = 4.
Figure 5a shows cost as a function of signaller quality and
signal intensity, figure 5b shows cost as a function of sig-
naller quality and response received. Each cost function
affords a separating equilibrium; equilibrium signal cost at
this equilibrium is shown as a function of signaller quality
in figure 5c. This equilibrium signalling strategy can be
found as in example 2.1, and for � � 1 is given by
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Figure 5. Signal costs for cost functions C(q,s) = s�(1 – q)�. Light grey, � = 1
4; medium grey, � = 1; dark grey, � = 4. Dark

curves show the equilibrium path for each cost function. (a) Cost of signalling, as a function of signaller’s quality and signal
intensity. (b) Cost of signalling, as a function of signaller’s quality and response received given equilibrium behaviour by the
receiver. The upper cost surfaces have been partially cut away to reveal those beneath them. (c) Signal cost at equilibrium, as
a function of signaller quality.

S(q) = �(1 � q)1 � � � 1
� � 1 �1/�

.

The signalling costs at equilibrium for � � 1 are given
by

C(q,S(q)) =
(1 � q)� � (1 � q)

1 � �

(when � = 1, the equilibrium becomes that found in
example 2.1). Thus, the signal costs at equilibrium differ
dramatically for the three cost functions. Unless we know
the exact shape of the cost function—which typically will
depend on the biology of the organism and the mechanics
of signalling—signalling theory will not offer precise pre-
dictions about the necessary signal costs at equilibrium.

Indeed, we can even find a signal cost function C of this
form so that equilibrium signal costs are arbitrarily cheap.
Calculus reveals that the equilibrium cost paid by a signal-
ler of quality q will be less than � provided that � is suf-
ficiently large.3 For example, � = 8 is sufficient to ensure
that equilibrium signal costs are 	0.1 for all signallers.
In this way, we can construct cost functions that allow
arbitrarily cheap separating equilibria. Lachmann et al.
(2001) used a similar approach (but a different functional
form) to derive analogous low-cost equilibria for the para-
digmatic signalling games of Grafen (1990) and Godfray
(1991). These models—which were designed to show that
costly signalling is indeed feasible—should not be inter-
preted as evidence that costly signalling is necessary, even
when signallers’ and receivers’ interests conflict. Indeed,
contrary to the principal claim of the handicap principle
(Zahavi 1975, 1977), these results show that reliable sig-
nalling does not require waste.

We can get an intuitive understanding of why different
cost functions allow different equilibrium costs, by exam-
ining the form of the equilibrium conditions. Consider
figure 5b: lemma 2.2 specifies the slope of the cost surface
Cr(q,r) in the ‘r direction’, everywhere along the equilib-
rium path, but says nothing about the slope of the cost
surface in the q direction. If the cost surface were flat in
the ‘q direction’, then there would be no flexibility in the
shape of the cost function; absolute signal cost along the
equilibrium path would be determined as well. But the
surface need not be flat in the q direction. Thus, as one
moves along the equilibrium path, marginal increases in
signal cost from movement in the r direction can be offset
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by marginal decreases in signal cost from movement in
the q direction. In fact, figure 5c shows that equilibrium
signal cost decreases for high-quality signallers. This is
because in this case the increase necessary for the equilib-
rium to be stable in the s direction is more than offset by
the change of the cost in the q direction. Thus, we see
that cheap signalling is facilitated by the interaction
between signal and quality in determining signal cost. If
there is no interaction—for example, if signal cost is inde-
pendent of signaller quality q—cheap equilibria will not
exist.

But should we really expect signal cost to interact with
signaller quality and the signal sent? In particular, is it
realistic to expect real signal cost functions to take forms
that will allow low-cost signalling? Perhaps unsurprisingly,
this depends on the biology of the system in question. In
some circumstances, signal costs will probably not depend
on signaller quality much at all. For begging baby birds,
much of the signal cost may be associated with increased
predation risk; given a particular level of begging intensity,
this risk is unlikely to vary much with signaller condition.
In other circumstances, signal costs may depend on signal-
ler quality, but not in the right way to facilitate low-cost
separating equilibria. None the less, certain scenarios may
provide the proper forms of signalling costs. In particular,
when signal costs arise through social punishment of dis-
honest signallers, rather than through the production costs
themselves, honest signals can be free while even relatively
small deceptions can provoke retaliation and substantial
costs. Lachmann et al. (2001) explore signal costs of this
form in further detail, with a particular focus on human
language.

Empirical studies that measure the absolute costs of
equilibrium signals will usually not suffice to confirm or
reject costly signalling hypotheses. Measurements of net
expenditure on signals tell us little, because many different
costs (or even zero cost) are possible at equilibrium. Fur-
thermore, comparisons of equilibrium signal costs tell us
little because these costs can increase or decrease with sig-
naller quality (Getty 1998). If we cannot easily predict
absolute cost, what predictions can we make from signal-
ling theory? To answer this, we seek common features of
these equilibria. Lemma 2.2 tells us that for a given signal-
ler quality q, the slope of cost with respect to a response
that is induced around equilibrium (∂Cr(q,r))/∂r is the
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same regardless of which cost function we are looking at.
Indeed, here (∂Cr(q,r))/∂r = (1 � q)�/(1 � r)� = 1 along the
equilibrium path R∗

q (q) = r for all positive values of �. To
phrase this another way, at equilibrium the marginal costs
of signalling are the same regardless of the shape of the
signalling function. As the theory’s strong and unambigu-
ous predictions involve the consequences of deviations
from equilibrium, empirical studies of honest signalling
may require signal magnitudes to be experimentally alt-
ered. We are not the first to address the marginal–absolute
cost distinction (Zahavi 1981; Nur & Hasson 1984;
Michod & Hasson 1990; Hasson 1997; Getty 1998;
Lachmann et al. 2001). Nevertheless, we mention it here
because its importance is not easily understated.

5. WHEN SIGNALS HAVE INDEPENDENT MEANING

In almost all models of costly signalling, signal cost is
assumed to increase monotonically with the intensity of
the signal (the only exceptions are the discrete models in
Hurd 1995; Számadó 1999). Holding the response of the
signal receiver constant, any signaller—regardless of qual-
ity—will optimize fitnesses by expressing the minimal sig-
nal intensity.

In practice, however, some signals may be structured so
that different signallers have different minimal-cost signal
intensities. Consider, for example, the ornamental tails
exhibited by many bird species. While these extended tails
undoubtedly play a signalling role, they may also influence
flight performance. If so, different quality signallers would
have different optimal tail lengths even if the tail had no
signalling function (Hurd 1995).

We can use the framework that we have developed thus
far to explore the properties of separating equilibria for
signals of this type. Let us move directly to an example.

Example 5.1. As in previous examples, a male bird of qual-
ity q � [0,1) signals his quality using a signal s and receives
a response r. Benefit functions are as always: the receiver gets
a pay-off G(q,r) = e�(q � r)2

and the signaller gets a pay-off
H(q,r) = r. Here, however, let us assume that a signaller of
quality q can most cheaply send a signal of intensity s = q; any
deviation imposes a fitness cost. In particular, we will define
C(q,s) = (q � s)2. One might think that this sort of trait could
facilitate honest cost-free signalling (of q), between individuals
with conflicting interests, but this turns out not to be the case.

The optimal signaller and receiver strategies for this
game are as follows, where W is the Lambert W function,

S(q) =
1
2
(1 � 2q � W(�e�1 � 2q))

R(s) = s �
e � 2s � 1

2
. (5.1)

Figure 4b shows the net signaller pay-off (coloured
contours), equilibrium signaller strategy (yellow curve)
and minimum-cost signalling strategy (white curve). The
cross-derivative condition in this case is valid everywhere
above the diagonal (s = q). The signalling equilibrium in
this case starts on the optimal signal line s = q at q = 0, but
immediately heads up in signal intensity (with an infinite
derivative) . This is because the slope of the cost function
at the optimum is zero—one needs to move very quickly
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off this optimum to achieve any rise in cost. Figure 4c
shows the same signalling strategy curves, this time over-
laid on a contour plot of signal cost. From this figure we
can see that the separating equilibrium does not follow the
‘zero-cost’ valley of the cost surface (indicated by the
white curve), but rather heads off it, with each signaller
paying a bit extra to signal.

Another way to think of this is that the marginal cost
of signalling along the zero-cost valley is zero everywhere.
If the marginal gain is non-zero, then by lemma 2.2 the
equilibrium cannot possibly lie along this ridge but rather
it must lie up off the valley floor, where the marginal cost
is also non-zero.

How far above the valley floor does the signal have to
be? In Appendix D it is shown that for H, which is only
a function of r and not of q, the following equation holds:


C = 
H � �� ∂2C
∂s∂q, (5.2)

where 
C is the cost difference for signaller q of the signal
sent minus the optimal signal with 
H being the fitness
difference between the signaller q and the worst signaller.
This means that ∂2C/∂s∂q is the only factor that causes the
cost of signalling to be not more than the benefit of being
a higher quality signaller (notice that in our example this
integral is negative). This result is shown by using Gauss’s
Theorem on the vector field V.

So far, we have applied this mathematical model to a
scenario in which different signallers have different mini-
mal-cost signals. The same analysis can also be applied to
non-signalling traits. As Lotem et al. (1999) point out, we
should expect organisms to exaggerate non-signalling
traits once observers begin to use these traits (or associa-
ted cues: Maynard Smith & Harper (1995)) as sources of
information. By interpreting the ‘signal intensity’ in our
model as the quantitative value of the non-signalling trait,
the model provides a mathematical justification for the
argument of Lotem et al.: non-signalling traits will deviate
from phenotypically optimal levels when observers use
these traits in assessing an individual’s quality. Lach-
mann & Bergstrom (1999) derive an analogous result by
alternative means.

6. CONCLUSIONS

By constructing a pair of ingenious game-theoretical
models, Grafen (1990) and Godfray (1991) demonstrated
that the basic idea underlying the handicap principle of
Zahavi (1975) is at least feasible. Individuals with diver-
gent interests can communicate honestly using costly sig-
nals in an evolutionarily stable manner. Godfray (1991)
and Grafen (1990) each presented specific examples of
continuous signalling games, and found that for these
examples, costly signals allow a stable separating equilib-
rium. Their results have often been interpreted as implicit
support for the stronger claim made by Zahavi (1975):
signal cost is necessary for honest communication when
interests diverge.

In this paper, we have used a new vector-field solution
method to show that this interpretation is not valid. When
interests conflict, costly signals allow—but are not neces-
sarily essential for—honest signalling. Depending on the
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form of the function mapping from signaller quality and
signal intensity to signal cost, an honest signalling system
can exhibit any of a broad range of equilibrium signal
costs. Separating equilibria can even have extremely low
equilibrium signal costs.

These findings have important implications for empiri-
cal testing of costly signalling theory. Studies that measure
the absolute costs of equilibrium signals will usually not
suffice to confirm or reject costly signalling hypotheses,
because many different costs are possible at equilibrium.
Even the complete absence of signal cost at equilibrium (where
most empirical measurements are taken) is insufficient to reject
the hypothesis that signal cost plays a strategic role in facilitat-
ing signal honesty. Furthermore, comparisons of equilib-
rium signal costs tell us little because these costs can
change with signaller quality (Getty 1998). If we cannot
easily predict absolute cost, what is left for signalling
theory? What predictions can we make?

To answer these questions, we seek common features
of signalling equilibria, and find that signalling theory’s
strong and unambiguous predictions involve not equilib-
rium costs but rather the costs and consequences of devi-
ations from equilibrium. For this reason, we suggest that
empirical studies of honest signalling may need to focus
on the marginal costs of increased signal intensity, by
experimentally perturbing signal levels or otherwise

APPENDIX A: DEFINITION OF VARIABLES AND FUNCTIONS

variable definition

q � [qmin, qmax] signaller quality
s signal sent
r � [rmin, rmax] receiver’s response
H(q,r) fitness value to signaller of quality q when receiving response r
G(q,r) fitness value to receiver for providing response r to a signaller of

quality q
C(q,s) fitness cost for signaller of quality q of sending signal s
Cr(q,x) fitness cost for signaller of quality q when sending a signal that would

elicit the response x
R(s) receiver strategy specifying what response to provide signaller who sends

signal s
Rq(x) receiver strategy specifying what response to provide to a signaller of

quality x
R∗
q (x) receiver’s optimal response to a signaller of quality x

S(q) signaller strategy specifying signal to send when the quality is q
V(s,q) two-dimensional vector field representing partial derivatives of C and

H, and used for finding signalling equilibria

APPENDIX B: PROOF OF LEMMA 2.2

(a) Proof
Basically, we want to show that at signalling equilib-

rium, the receiver strategy automatically adjusts for the
marginal cost of signalling along the equilibrium path, so
that only the signal cost—and not the actual signal inten-
sity—affects the equilibrium response level. We can do
this as follows. Let (S,R) be a separating equilibrium,
where R(s) is the receiver’s equilibrium response to a sig-
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inducing individuals to alter the normal choices of signal
intensity.
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ENDNOTES
1Note that without loss of generality, ‘quality’ q can be defined so that
the function R∗

q(q) is monotone. We will take this approach here, and
further assume that R∗

q(q) is strictly increasing, i.e., that the receiver cares
about quality differences across the entire range q � [qmin, qmax]. For an
alternative approach, see Proulx (2001).
2Strictly speaking, the vector field V should be defined as

v(s�,q�) = � �d
ds
C(q�,s)|

s = s�

,
d
dq
H(q�,R∗

q (q))|
q = q�

� if
d
ds
C(q�,s)|

s = s�

� 0

� �
d
ds
C(q�,s)|

s = s�

, �
d
dq
H(q�,R∗

q (q))|
q = q�

� if
d
ds
C(q�,s)|

s = s�

	 0

.

However, if we are willing to treat the integral curves as undirected, the
simpler formulation proves adequate.
3Specifically, equilibrium cost to a signaller q will be less than � pro-
vided that

� �
1 � q � �

�
�
W((1/�)(1 � q)(1 � q � �)/�log[1 � q])

log[1 � q]
,

where W is the Lambert W-function.

nal s and S(q) is the signaller’s equilibrium signal when
in condition q. As (S,R) is an equilibrium, the signaller’s
strategy S will maximize his own net pay-off H(q,r)�C(q,s)
for every q. Because all component functions are smooth
and since at equilibrium C(q,s) = Cr(q,R(s)), this requires
that for every q,

∂[H(q,R(s)) � Cr(q,R(s))]
∂s |

s = S(q)

= 0. (B 1)

By lemma 2.1, if a signalling equilibrium (S,R) exists,
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the equilibrium path will be given by R(S(q)) = R∗
q (q).

Therefore, for every signalling condition q�,

∂H(q�,r)
∂r |

r = R∗
q (q�)

dR
ds |

s = S(q�)

dS
dq |

q = q�

�
∂Cr(q,r)

∂r |
r = R∗

q (q�)

dR
ds |

s = S(q�)

dS
dq |

q = q�

= 0. (B 2)

As we assumed that the receiver’s response R∗
q (q) is

strictly increasing, it follows that for every q�, at separating
equilibrium (dR(s)/ds)(ds/dq) � 0. It then follows immedi-
ately from equation (B 2) that for every q,

∂H(q,r)
∂r |

r = R∗
q (q)

=
∂Cr(q,r)

∂r |
r = R∗

q (q)

, (B 3)

where r = R∗
q (q) is the equilibrium path.�

In several signalling models (e.g. Godfray 1991; John-
stone & Grafen 1992), the cost of signalling C(q,s), is
assumed to be independent of the signaller’s quality q. In
models of this type, the cost Cr(q,r) of eliciting a response
r is also independent of q; the cost functions can thus be
written as C(s) and Cr(r). The following corollary then
applies.

Corollary B 1. When signal costs are independent of the sig-
naller quality, the equilibrium signal cost Cr(r) of eliciting a
response r does not depend on the relationship between signal
level and signal cost C(s), provided that a separating equilib-
rium exists for the cost function C.

Suppose that from a game �, we generate a new game
�� by altering the display cost function C(s) by a monotone
transformation � to generate a new display cost function
C�(s) = �(C(s)). If the game � had a separating equilib-
rium, the game �� will have a separating equilibrium (S�,
R�) for which the signal costs Cr (r) of eliciting responses
r will be exactly as for the game �.

Several important models of costly begging signals
(Godfray 1991; Johnstone & Grafen 1992; Godfray 1995)
assume that signal cost is a monotone function of signal
intensity, effectively equating signal intensity with signal
cost. This corollary provides a justification for this
assumption under certain circumstances, namely, for the
separating equilibria of games in which signal costs are
independent of signaller quality. In these models, there
will always be a one-to-one mapping between intensity
and cost at separating equilibrium, and either scale can be
used in analysing the system. However, Lachmann and
Bergstrom (1998) show that signal and cost cannot be
equated when considering pooling equilibria. Getty
(1998) provides an example in which signal costs depend
on signaller quality and in which higher-intensity signals
actually cost less to their producers than lower-intensity
signals cost to their producers; here intensity and cost
clearly cannot be equated either.

APPENDIX C: PROOF OF PROPOSITION 3.1

Now to proposition 3.1. Define the vector field V as

V(s�,q�) = � d
ds
C(q�,s)|

s = s�

,
d
dq
H(q�,R∗

q (q))|
q = q�

�.
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If a separating equilibrium exists for the game � with
S(q0) = s0, the equilibrium signalling strategy S(q) will be
the maximal integral curve of V through (q0,s0). The equi-
librium receiver strategy is given by R(s) = R∗

q (S�1(s))
where S�1(s) is the inverse of S.

To prove this, we first notice that since we are dealing
with a separating equilibrium, the integral curve of V can
be expressed as a function of q. We will now show that if
(i) signallers of qualities at and around q0 signal T(q), (ii)
the signalling function T(q) has all necessary derivatives,
and (iii) this strategy is stable to small changes of the sig-
naller strategy, then the direction of (q,S(q)) at q0 is equal
to the direction of (q,T(q)) there.

As usual, we focus on the game � and assume that the
signal strategy T(q) together with the response strategy
R(s) constitute a separating signalling equilibrium in a
neighbourhood of q0. The signal costs C(q,s) are assumed
to be non-negative for all q and s. We do not need to look
at an alternative response strategy R�, because by lemma
2.1 the responder will use a response on the equilibrium
path R∗

q(q) such that R(T(q)) = R∗
q(q).

For T to be an equilibrium, we require that the follow-
ing expression hold for all q around q0 and for all s �T(q):

H(q,R(T(q))) � C(q,T(q)) � H(q,R(s)) � C(q,s). (C 1)

Therefore, if T is to be an equilibrium, it is necessary
that for all q,

d
ds

[H(q,R(s)) � C(q,s)]|
s = T(q)

= 0, (C 2)

i.e. for all q,

d
ds
H(q,R(s))|

s = T(q)

=
d
ds
C(q,s)|

s = T(q)

. (C 3)

Expanding the left-hand side, for all q

∂
∂rH(q,r) |

r = R(T(q))

d
ds
R(s) |

s = T(q)

=
d
ds
C(q,s) |

s = S∗(q)

. (C 4)

As we said before, at equilibrium, we know by lemma
2.1 that the responder will use a response on the equilib-
rium path R∗

q (q) and therefore R(S(q)) = R∗
q (q):

� ∂
∂rH(q,r) |

r = R∗
q (q)

�� d
ds
R(s) |

s = T(q)

� =
d
ds
C(q,s) |

s = T(q)

, (C 5)

i.e. for all q,

∂
∂rH(q,r) |

r = R∗
q (q)

=
d
ds
C(q,s) |

s = T(q)

� ∂
∂sR(s) |

s = T(q)

. (C 6)

This equation is equivalent to expression (2) in Grafen
(1990). At equilibrium, the responder’s response is
R(s) = R∗

q (T�1(s)). Differentiating this expression with
respect to s, we see that

d
ds
R(s)|

s = T(q)

=
d
ds
R∗
q (T�1(s))|

s = T(q)

= � d
dq
R∗
q (T�1(s))|

s = T(q)

�� d
ds
T�1(s)|

s = T(q)

�. (C 7)
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The integrals above are each evaluated along the equi-
librium signal path s = T(q), or equivalently q = T�1(s).
Applying this substitution

d
ds
R(s)|

s = T(q)

= � d
dq
R∗
q (q)�� d

ds
T�1(s)|

s = T(q)

�. (C 8)

By the inverse rule for derivatives

d
ds
R(s)|

s = T(q)

=
d
dq
R∗
q (q)� d

dq
T(q). (C 9)

Substituting this into equation (C 6), we get an
expression for the relationship between marginal costs and
gains of signalling at equilibrium

� d
dq
R∗
q (q)�� ∂

∂rH(q,r)|
r = Rq∗(q)

� = � d
dq
T(q)�� ∂

∂rC(q,s)|
s = T(q)

�.

(C 10)

This says that at equilibrium, the product of the mar-
ginal change of response with respect to a change in sig-
naller’s condition, and the marginal gain from response
with respect to a change in the response is equal to the
product of the marginal change in signal with respect to
a change in the signaller’s condition and the marginal
change in cost with respect to a change in the signal.

Alternatively, equation (C 10) can be written as

d
dq̄
H(q̄,R∗

q (q̄)) �
∂
∂qH(q̄,R∗

q (q̄)) = � d
dq
T(q)� �d

ds
C(q,s)|

s = T(q)

�.

(C 11)

If we are interested in the decision problem facing a
particular signaller q� (who cannot, after all, change q�),
then we can evaluate H(q,r) and C(q,s) at q = q� only, treat-
ing these as functions of a single variable and writing them
as H(q�)(r) and C(q�)(s), respectively.

For this particular signaller q�, equation (C 12)
becomes simply

d
dq
H(q�)(R∗

q (q))|
q = q�

=
d
dq
C(q�)(T(q))|

q = q�

. (C 12)

Qualitatively, this means that for a given signaller q�,
the marginal fitness gain from the response induced by
pretending to be a slightly better (or slightly worse) signal-
ler q� � � is equal to the marginal fitness loss from the cost
of pretending to be this signaller. We have re-derived our
old result that at equilibrium, the marginal cost of exag-
gerating one’s condition equals the marginal benefit of
doing so, only now we have included the signal s and the
signalling strategy T(q) explicitly. We can now solve for
this signal function directly. Carrying over the derivative
in equation (C 12) with respect to s, and rearranging, we
find that

d
dq
T(q)|

q = q�

=
d
dq
H(q�)(R∗

q (q))|
q = q�

�d
ds
C(q�)(s)|

q = T(q�)

.

(C 13)

So, after much work, we arrived at the expression we
wanted. This expression says that at q0 the direction of
(q,T(q)) is equal to the direction of the curve S(q) defined
by the vector field V.
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dS
dq

∆q

∆q

X W

ZY

q

s

Figure 6. Schematic representation of a point X on the
equilibrium signalling path S(q), and three points in close
proximity.

(a) Cross derivative condition
We want to ensure that the signalling equilibrium is

indeed a local maximum of the total fitness function.
Figure 6 shows a local neighbourhood of point X, which

lies along a signalling path S(q). Point Z which is a small
distance 
q away also lies on the signalling path. Points Y
and W lie off the signalling path. For S to be a stable
signalling strategy, requirement (C 1) has to hold, and
in particular

H(X) � C(X) � H(Y) � C(Y), (C 14)

H(Z) � C(Z) � H(W) � C(W). (C 15)

From which we get

[H(Z) � H(W)] � [H(Y) � H(X)] �
[C(Z) � C(W)] � [C(Y) � C(X)]. (C 16)

Expanding to the second order in 
q, we get

C(Y) � C(X) =
∂C
∂s

dS
dq


q �
1
2

∂2C
∂s2 �dS

dq�2

(
q)2 (C 17)

C(Z) � C(W) =
∂C
∂s

dS
dq


q �
1
2

∂2C
∂s2 �dS

dq�2

(
q)2

�
∂2C
∂q∂s

dS
dq

(
q)2. (C 18)

We can do the same for H, noticing that a signaller of
quality q will get the response R∗

q (q � 
q) when signalling
at point Y. From all this we get the condition

d
dq

d
dp
H(q,R∗

q (p)) �
∂2C
∂q∂s

dS
dq

(C 19)

and if we expand dS/dq we get finally

d
dq

d
dp
H(q,R∗

q (p)) � �∂2C
∂q∂s�� d

dp
H(q,R∗

q (p))� �∂C
∂s , (C 20)

rearranging a bit will give us

∂C
∂s�

d
dq

d
dp
H(q,R∗

q(p))
∂C
∂s

� �∂2C
∂q∂s�� d

dp
H(q,R∗

q(p))�
�∂C

∂s �2 	� 0 (C 21)

or
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α

q0

γ

β

A

S(q)

0

S(q )
0

Figure 7. Schematic representation of the line �, , �, and
the area A, that the integral is taken over. Shown is an
integral curve of the vector field V, with the optimum of the
cost function on the diagonal, as in example 5.1 and figure
4c.

∂C
∂s

d
dq

dS
dq

� 0. (C 22)

Notice that if this expression is not met at some point
(q,s), then no stable separating equilibrium can assign sig-
nal s to quality q.

One can interpret this expression as saying that in areas
in which C increases with s, the derivative of S(q) has to
increase, i.e. the vector V should rotate to the left.

APPENDIX D: CALCULATING THE COST
DIFFERENCE FROM THE OPTIMUM

Figure 7 shows a schematic representation of the situ-
ation described in example 5.1. The signalling strategy
S(q) lies along an integral curve of the vector field V, and
the diagonal describes the optimum of the signal cost
function C. We want to calculate the cost difference for
signaller q0 between the cost on the signalling strategy
C(q0, S(q0)) and the optimal cost (which in this case is on
the diagonal).

In figure 7 we see the area A, which is enclosed by the
curves �,  and �. � is on the optimum of C, from 0 to
q,  is vertical at q0, and � goes back along the signalling
strategy S. Gauss’s theorem tells us that

�
∂A
V · n ds = ��

A

� · V da, (D 1)

where n is the normal to the curve along which the integral
is taken.

So we have

�
∂A
� d
ds
C(q�,s)|

s = s�

,
d
dp
H(q�,R∗

q (p))|
p = q�

�·n dl =

��
A
� ∂
∂q,

∂
∂s�� d

ds
C(q�,s)|

s = s�

,
d
dp
H(q�,R∗

q (p))|
p = q�

�dv. (D 2)

First let us look at the first integral. We have to integrate
over �,  and �. Over � the curve follows the vector field
exactly, therefore V · n = 0, so that part of the integral is
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0. Over part , the normal is (1,0), and therefore we only
get an integral of dC/ds, which gives exactly 
C, the cost
difference for signaller q0. In the integral over �, dC/ds = 0,
because we are talking about an optimum in C, so we only
integrate over dH/dp. As the integral curve points up along
the diagonal, and the normal points down, we get
(�
H), for


H = �q0
0

d
dp
H(q�,R∗

q (p))|p = q� dq� (D 3)

and when H is independent of q we get

H = H(q0,R∗

q (q0)) � H(0,R∗
q (0)). Now let us turn to the

area integral, it is

��
A

∂2C
∂q∂s �

∂2H
∂q∂p dv.

But the second term is 0 because dH/dp is constant across
s. Finally we get


C � 
H = ��
A

∂2C
∂q∂s dsdq

or


C = 
H � ��
A

∂2C
∂q∂s dsdq,

which tells us how the cost relates to how desirable it is
to be low-cost versus high-cost signallers.
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