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Abstract. We present a model inspired by task switching of ants in
a colony. The model consists of a system composed of many identical
ants. Each ant has a finite number of internal states. An ant’s internal
state changes either by interaction with the environment or by interac-
tion with another ant. Analyzing the model’s dynamics, we prove it to
be computationally complete. This gives us a new perspective on the
sophistication a colony can display in responding to the environment. A
formalism for measurement and response in the framework of the model
is presented. A few examples are studied. The model demonstrates the
possibility of inducing very complex global behavior without any hierar-
chical structure.

1 Introduction

Understanding the dynamics of ant colonies is a classic problem in sciences that
try to understand the behavior of “complex systems.” It is a clear example of a
system in which the complex behavior of the whole arises from the interactions
of many parts, so that the whole seems to be more than the sum of its parts.
What kind of behavior of the single ant creates the complex behavior of the
whole colony ?

In many systems consisting of a multitude of entities, the composite behavior
of the individuals creates a coordinated complex behavior of the whole system.
There are two possible ways to achieve such a coordination – the top-down
approach, and the bottom-up approach. In the top-down approach, a hierarchy
in the entities creates a control structure that guides the behavior of the system.
This approach is for some reason is the one easier to understand, perhaps because
of the similarity between the apparent structure, and its manifestation in the
causal structure of events. A manifestation of this approach is found in the way an



army is coordinated, through a hierarchical command structure. In the bottom-
up approach, the rules followed by the individual entities bring a self-organization
of the system. Most systems in nature have elements of both approaches in
them. The behavior of a modern free-market economy is composed both of some
hierarchy imposed by corporations and the government, and of self-organization
resulting from the action of independent agents in the free market.

In this paper we present a model that is inspired by the behavior of ants
in a colony. The aim is twofold. The first is to show what level of coordination
might be expected from an ant colony, even under very simplistic assumptions
about the behavior of the ants. Thus, it is not claimed that an ant colony is fully
described by the model, rather, as the ingredients of the model are contained in
an ant colony, the colony will surely be able to achieve at least a response which
is as sophisticated as the one described by our model. The second aim is to show
one way in which a system can perform certain tasks or computations using the
bottom-up approach. This insight will be useful in studying systems other than
ant colonies.

Understanding the behavior of an ant colony requires understanding of global
coordination without hierarchy. Even though the reproducing ant in the colony
is called the queen, empirical work shows that in many cases she does not seem to
be at the top of a hierarchy which rules the colony. The behavior of the colony
seems to simply arise from the behavior of the individual workers. There are
many other cases in nature where we face the same phenomenon. These include
the behavior of colonies of other social animals such as bees or termites, but also
the understanding of the action of the immune system or the interactions of the
proteins and other molecules which make up the cell.

There are several approaches to studying the behavior of a colony of social
insects. One is through understanding how the behavior of the colony might be
affected by pheromone trails laid by ants (see Deneubourg and Gross, 1989).
Several models show how this might lead to optimal, or observed, foraging pat-
terns of the colonies (Deneubourg et al. 1989, 1990; Gross et al. 1990; Millonas
1994). Another approach is to understand the allocation of individuals to tasks
in the colony. Individuals in a colony often engage in different tasks – foraging,
nest-maintenace, brood care, etc. It has been shown that social insects may re-
act to the environment by changing the proportion of individuals allocated to
the various tasks in the colony (Calabi 1987; Gordon 1989; Robinson 1992). An
example of this is recruiting ants for nest maintenance when there is a need to
remove obstacles from the neighborhood of the nest. In this paper we follow the
trail laid by the second approach, trying to understand mechanisms underlying
the task allocation. It will, of course, be worthwhile to synthesize this work with
the first approach in further research.

How does an ant colony react to its environment? Let us examine a reaction
of a multi-cellular organism, such as our body, to the environment. Light sig-
nals are absorbed by photo-receptors in the retina cells. These signals are then
transmitted through the central nervous system (CNS) to the brain, where they
are assessed using information about the environment currently stored in the



brain. A signal for a reaction is then transmitted through the CNS to regulating
neurons controlling a muscle in the hand, for example. The ant colony might
face a similar task. Some ants – patrolers – might gain information about a
food source, and other ants will then need to be recruited to forage at that food
source, potentially bringing into account some information about the current
state of the colony, the hunger level in the brood for instance. This has to be
achieved without a CNS connecting the various ants, and without a brain to
store and assess the information.

Gordon et al. (1992) showed how certain behaviors of individuals in the
colony may enable the colony to process information like a Hopfield net. The
model assumed, however, that individual ants are able to measure global states
of the colony, such as the proportion of ants allocated to certain tasks. Our
model is based on the model presented by Pacala et al. (1994). In this model
ants can engage in a task or be inactive. Ants doing a task can also be either
“successful” or “unsuccessful” and can switch between these two according to
how well the task is performed. Unsuccessful ants also have a certain chance to
switch to be inactive, and successful ants had a certain chance to recruit inactive
ants to their task. This is an example of how certain interactions of ants can give
rise to global behavior in the colony.

In the model presented in this paper, the notion of a “successful” or “un-
successful” ant engaging in a certain task is expanded to a general notion of a
state that the ant is in. An ant in the colony can be in one of a finite number of
states. Ants doing different tasks are always in different states, but ants doing
the same task could also be in different states. Such a state might correspond,
for example, to an ant foraging while hungry and successful. It is assumed that
there are many more ants in the colony than states, so that it makes sense to
talk about the fraction of ants in a certain state. The ways in which an ant
can change its state are through interaction with the environment and through
meeting another ant. The model is aspatial, and thus does not regard the place
of ants in the colony or the pheromones left by the ants in certain places in the
environment.

In Sect. 2 we present the master equation for this model, assuming an infinite
number of ants in a colony. Then in Sect. 3, we show that this model can lead
to a very complex behavior, including amplification, cycling, and potentially the
performance of any computation that can be done by a finite Boolean network or
by a finite Turing machine. We also present a different formulation of the model,
in which the interaction with the environment is separated to “measurement”.
In Sect. 4 we present two examples. One is a test of how well a finite colony fits
the predictions of the model. The other presents a model developed by Seeley et
al. (1991) in order to show a possible solution to choosing between two alternate
foraging sites in bees. It is shown how this solution can be stated within the
framework of our model.



2 The Infinite-size Model

Our infinite-size model consists of the following assumptions:

– At any time, each ant can be in any of M states. Let pi(t), where i =
1, . . . ,M , be the fraction of ants in the colony that are in state i. Different
tasks correspond to different states, but different states can correspond to
the same task.

– An ant can switch tasks either spontaneously, or through social interaction.
The probability of spontaneous switching is dependent on the environment.
The probability per unit time for an ant in state i to switch to state j in
an environment s, is denoted Aij(s). In a social interaction in which an ant
in state i encounters an ant in state j, this ant has a probability Bijk of
switching to state k.

– The number of ants is large enough, and the number of states small enough,
that pi(t) can be treated as a real number.

Under these assumptions, the master equation is1:

dpi
dt

= −
M∑
j=1

Aij(s)pi +

M∑
j=1

Aji(s)pj

+ α(N)

− M∑
j,k=1

Bijkeij(s)pipj +

M∑
j,k=1

Bjkiejk(s)pjpk

 , (1)

where i = 1, . . . ,M , and eij(s) is the probability per time unit for an ant in
state i to encounter an ant in state j. This probability can be a function of s,
the environment. We will not deal with the determination of eij , and for the
simplicity of the analysis it will be subsumed by Bijk. α(N) is a factor to scale
the speed at which ants meet relatively to the speed at which they switch states
spontaneously, as the density changes as a result of a change in the number of
ants in the colony, N .

Because pi is the fraction of ants in state i, it is subject to the constraints∑M
i=1 pi = 1, pi ≥ 0. In Appendix A, it is shown that, assuming Aij ≥ 0 and

Bijk ≥ 0, these constraints are maintained by this master equation.
In this model we omit the effects of space and finite size. These are briefly

addressed in the example in Sect. 4. Furthermore, in the initial study of the
model we have not included the changes to the environment resulting from its
interactions with the ants, such as foraging, nest maintenance, and pheromone

1 In general all variables in this equation could depend on the environment and on the
density of the ants, but we believe the formulation given in the equation covers a
wide range of cases. Thus Bijk could depend on the environment, but we separated
out cases in which this change could simply be called a change of the ant’s state, or
a change caused by changing the chance of the ants to meet (which is included in
eij(s)) , or a change caused by the effect of the number of ants in the colony on the
density of the ants (which is included in α(N)).



marking. In the following sections we show the dynamics of this model to be
very rich, even without these feedback mechanisms. Nevertheless, we believe
understanding these mechanisms is important for understanding the behavior of
an ant colony.

3 Interpreting the Master Equation

As we show in Sect.3.3, a colony in the model be computationally complete just
as a computer or a neural network. This means that the colony can respond to
the environmental input in a complex way. It is also shown that in this model
the colony may exhibit stable fixed points, or periodic cycles.

The systems studied in the following sections are defined by the specific
choices of A’s and B’s. Using the notation illustrated in Fig. 1 will be helpful in
studying specific examples. An arrow (see Fig. 1a) shows that an ant in state 1
has a certain non-zero chance of going over to state 2; in other words, A12 6= 0.
The number under the arrow indicates the value of A12, in this case 0.64. An
arrow with a dashed line connected to it (see Fig. 1b) means that if an ant in
state 1 meets an ant in state 2, the former has a non-zero chance of changing to
state 3; B123 6= 0. Again, the number under the arrow shows the value of B123,
0.7.

3.1 Amplifier

In this section we consider a colony that exhibits a behavior like an amplifier.
Two states (state 1 and 2) are affected by the environment, so that under certain
conditions ants in state 1 tend to go to state 2, and under other conditions ants
in state 2 tend to go to state 1. These will be called input states. This colony
will behave like an amplifier, because the ratio of the ants in the input states
will be amplified to states 3 and 4; thus, if p1/p2 > 1, then p3/p4 > p1/p2, and
if p1/p2 < 1, then p3/p4 < p1/p2. The relationship of the states is illustrated in
Fig. 1c. The equations for this system are

dp1
dt

=
dp2
dt

= 0 , (2)

dp3
dt

= −bp3p2 + ap5p1 , (3)

dp4
dt

= −bp4p1 + ap5p2 , (4)

dp5
dt

= −ap5p1 − ap5p2 + bp3p2 + bp4p1 . (5)

They can be derived from the figure by adding, for each arrow with a dashed
line that goes from i to j and has a dashed line at k, and a weight Bikj – the
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Fig. 1. a) Arrow representing spontaneous state transition. b) Transition through an
encounter. c) Transition diagram of the amplifier. d) Transition diagram of the oscil-
lator.

term −Bikjpipk to dpi/dt and the term Bikjpipk to dpj/dt. Given the initial
conditions pi(0), i = 1, . . . , 5, the system will converge to the solution

p1 = p1(0) , (6)

p2 = p2(0) , (7)

p3 = s
a

b

(
1

α2 + α+ 1

)
, (8)

p4 = s
a

b

(
1

α−2 + α−1 + 1

)
, (9)

p5 = s− p3 − p4 , (10)

where α = p1(0)/p2(0), and s = p3(0) + p4(0) + p5(0). For this point one gets

p3
p4

=

(
p1
p2

)2

. (11)
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Fig. 2. βin, the input to the amplifier at time 0, vs. βout the output of the amplifier
at equilibrium.

Thus, the ratio of p1 to p2 was amplified. If we define the input to the amplifier
as βin = p1/(p1 + p2), which will be a number between 0 and 1, and the out-
put of the amplifier as βout = p3/(p3 + p4), then the colony will settle on the
equilibrium

βout =
β2
in

2β2
in − 2βin + 1

. (12)

The graph of βout vs. βin is shown in Fig. 2.
It can be seen that this function is similar to the sigma function used in

neural nets. Thus, the relation between the number of ants in states p1 and
p2, which is represented by βin, was amplified in a sigmoid-like manner to the
relation between the number of ants in states p3 and p4, represented by βout.
By connecting several amplifiers “sequentially”, by having the output states of
one amplifier act as the input states of the other, one can approximate a step
function, building a unit that acts much like a neuron.

3.2 Oscillator

The following colony has a periodic trajectory as a solution. The dynamics are
depicted in Fig. 1d. The equations for this system are

dp1
dt

= −p1p2 + p1p3 , (13)

dp2
dt

= −p2p3 + p2p1 , (14)

dp3
dt

= −p3p1 + p3p2 . (15)
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Fig. 3. Trajectories of solutions to equations 13–15 on the simplex.

This is an equation in the two-dimensional simplex p1 + p2 + p3 = 1. It has four
fixed points: (1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

3 ,
1
3 ,

1
3 ). For solutions of these equations,

d(p1p2p3)/dt = 0, and therefore the trajectories lie on lines with constant p1p2p3.
From this it follows that all solutions, except for the four fixed points and the
boundary of the simplex, are periodic. Figure 3 shows the trajectories on the
simplex.

3.3 NOR-gate

The last example for possible behaviors of an ant colony under the assumptions
of the model can be interpreted as a NOR-gate. A NOR-gate is a Boolean gate
and has the property that with it any Boolean network can be built. Appendix B
describes this gate. The relations of the states in the gate are depicted in Fig. 4.
The full gate needs to feed the output through three amplifiers. The equations
for this system are

dp1
dt

=
dp2
dt

=
dp3
dt

=
dp4
dt

= 0 , (16)

dp5
dt

= −p1p5 − p3p5 + p4p6 + p2p6 +
1

4
p6 , (17)

dp6
dt

= −p4p6 − p2p6 + p1p5 + p3p5 −
1

4
p6 . (18)

The inputs are defined as follows: p1 + p2 = p3 + p4 = 1
3 ; if p1/p2 > 3, then the

left input is 0 (see Fig. 4); if p1/p2 <
1
3 , then the left input is 1. If the ratio

is between these two values, the input is undefined. The right input is defined
similarly. The output is defined in the same way: if p5/p6 > 3, the output is 0;
and if p5/p6 <

1
3 , the output is 1. In Appendix B it is shown that in all cases of

a well-defined input (that is p1/p2, p3/p4 <
1
3 or p1/p2, p3/p4 > 3), the output

behaves as it should for a NOR-gate.
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3.4 Computation Completeness and other Conclusions

The NOR-gate of Sect. 3.3 concludes the tools we need to prove that the system
is computationally complete. Using this NOR-gate, one can build any Boolean
circuit. Using a Boolean network of polynomial size (in the input size), with
a clock of the sort built in Sect. 3.2, one can compute anything that a finite
computer can (see Borodin 1977; Parbery 1994). Thus, such a system can do
computation as much as silicon computers can.

A potential problem might arise because as the size of the memory of the
system scales up, the number of potential states of each ant goes up, and with
them the size of the transition matrices A and B; one might say that the indi-
viduals are not simple anymore. If we build the system with NOR-gates, then
for an ant in a certain state, the number of other states it needs to interact with
and that it can potentially reach, is small and does not scale up as the system
scales up. Thus, most of the entries in these matrices are 0, and the ant just has
to be supplied with the rule “do not interact with an ant in a state you do not
know”; this might restore the “simplicity” of the ants.

By showing computational completeness of the model,we do not mean to
say ant colonies perform universal computation. Computational completeness
is a property characterizing the complexity of the dynamics, like being chaotic
(discussion on the dynamical implications of systems with computational power
could be found in C. Moore 1990). A use for the computational abilities described
is briefly addressed in the discussion. Another implication of the computational
completeness is that it can give us a new perspective on the level of sophistication
an ant colony can display in its interaction with the environment. In Sect. 4.2 we
describe a model presented by Seeley et al. for explaining the behavior of bees,
in deciding between alternative foraging sites. The computational completeness
tells us that even a more elaborate response, taking into account more inputs
from the environment should not be surprising.



3.5 A Mechanism for Measurement and Response

Further understanding of the model can be reached by showing that for certain
choices of A’s and B’s, one can interpret the dynamics as consisting of two
processes: one in which the colony measures the environment, and another in
which it uses the information from the measurement for a computation. Such a
computation can result in a response to the measured environment.

A simple formalism is to denote each state, using two indices: i = (m,n)
where (m = 1, . . . ,M and n = 1, . . . , N.) The first index, m, will be related to the
measurement, and the second, n, to the computational state. We further assume
that the A elements mediate the measurement: A(m,n)(m′,n′) = Am′,mδn,n′ (δ is
the Kronecker delta function, δij = 0wheni 6= j, δii = 1), i.e the A elements do
not change the computational index of the state, and

B(m,n)(m′,n′)(m′′,n′′) = Bn(m′,n′)n′′δm,m′′ . (19)

That is, the B elements do not change the measurement state. This assumption
is made in order to simplify the following equations. Defining Pmes

m =
∑

n p(m,n)

and P com
n =

∑
m p(m,n), leads to the following equations for the change in Pmes

m

and P com
n :

dPmes
m

dt
=
∑
m′

Am′,mPm′ −Am,m′Pm , (20)

dP com
n

dt
=

∑
n′,m′′,n′′

Bn′(m′′,n′′)nP
com
n′ p(m′′,n′′) −Bn(m′′,n′′)n′P com

n p(m′′,n′′) .(21)

The first set of equations are like standard master equations in statistical me-
chanics for Pmes

m s. One can interpret it as the colony measuring the environment
with the result represented by the vector (Pmes

1 , . . . , Pmes
M ). The second set of

equations describes change in the computational states according to both the
computational states and the measurement states.

It may be claimed that the term measurement is not simply a mathematical
definition, that when one speaks of measurement one assumes the intervention
of some intelligent entity that performs it. We do not claim that an ant colony
does a measurement in this respect. Nevertheless, following a line of argument
set by J. von Neumann (1955), we demonstrate the existence of a process having
the physical manifestation of a measurement: One feature of measurement is the
correlation induced between the state of the measuring apparatus and the state of
the system measured. Furthermore, when a human performs a measurement, the
perception of its result induces a correlation between the state of the brain and
the state of the system. Another feature related to the process of measurement
is the possibility of its result affecting the actions of whoever performed it. The
possibility of these two features in the framework of the model was demonstrated.

As for the existence of “real” measurement, one may conceive an ant colony
as an entity with purpose, and as such it might “qualify” to perform “real”
measurements. Whether this is the case, is an interesting question, but beyond
the scope of this work.



4 Examples

In this section we present two examples of systems exhibiting a behavior that
can be explained by the described model. Only the first is an ant colony. The
second is a bee colony, from a model done by Seeley et al. (1991).

4.1 Discrete Spatial Model

A first step in testing the applicability of this model to an ant colony is to change
the model to a finite-size population. Another step is to take into account each
individual ant’s spatial position.

Aij of (1) is interpreted now as the probability that any single ant in state i
will change to state j per time unit. Bijk is the chance for an ant in state i to
go over to state k during an encounter with an ant in state j. A simulation was
done using the following additional assumptions.

– N ants were put on a rectangular grid with cyclic boundary conditions.
– Each ant did a random walk with equal probabilities of walking in the eight

possible directions (the eight nearest cells on the grid) and staying in its
place. An ant never walked to a position already occupied by two other ants.

– The ants could be in M possible states. In each time unit, ants had a chance
of changing their states according to Aij . If two ants occupied the same grid
point, they changed states according to Bijk.

The simulation was run for the amplifier colony. Figure 5 shows βin vs. βout
for colony sizes of 10, 20, 50, and 100 ants on a square grid of size 20. It can be
seen that in this case the colony acts like an amplifier even when colony size is
small.

4.2 Allocation of Bees to Alternate Foraging Sites

The model in this section is adapted from a model by Seeley et al. (1991), which
explains how a bee colony can consistently allocate more foragers to the richer
site, as they showed empirically. When the colonies were presented with two food
sources at equal distances, more foraging effort was directed to the site with the
richer food source. In the model, each foraging bee can be in one of seven states.
A bee associated with a particular site can be in three states – at the hive, at
the hive dancing, or foraging at that site. A bee can also not be associated with
any site, in which case it is called “following” (see Fig. 4). The only difference
between the models is that in the original model the bees spend a certain time
at the site, whereas we use a Poisson process for the transition between foraging
and being at the hive; at each moment a bee has the same chance of deciding
to return to the hive. The results for this model are then, of course, exactly like
those of Seeley et al. This model also demonstrates how a model with spatial
components can be fit into the scheme of the model described here.
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Fig. 5. βin vs. βout for a finite-size colony of size 10, 20, 50, and 100. Each point
represents the mean of 10 simulation runs. The simulation was run on a square grid of
size 20 by 20.

5 Discussion

Motivated by the manner in which an ant colony displays a highly coordinated
global behavior in the absence of a hierarchical control structure, we studied a
model system consisting of many identical units with a finite number of internal
states. The state of the whole system is then determined by the fraction of
units in each internal state. Following the bottom-up coordination scheme, the
internal state of each unit was updated following a local rule. In this framework
we demonstrated how such local rules can induce globally coordinated behavior.
Furthermore, we addressed the question of how complex the global dynamics
of such a system can be in this bottom-up approach. It is important to notice
that even though the coordination is induced bottom-up, the collective complex
behavior induced cannot be reduced to the level of the individual unit. Stated
in computational terms, even though the system as a whole could perform a
complex computation, no computation is performed by the single unit. This is
necessary in the model (and maybe in an ant colony), since a single unit has no
information on the state of computation. This information is coded in the state
of the system, i.e. in the distribution of the units to the different states. In this
sense, the whole is more then the sum of its parts.

The global behavior of computation resulting from a local rule has coun-
terparts in neural networks (NN) and cellular automata (CA) models. These
differ conceptually from this model, however, in that in this model the state of
the whole system is defined by the fraction of units in the different states. This
means an individual unit has no identity, in contrast to NN – in which the label



of the firing neuron is crucial, and to CA – where the relative spatial position of
cells is likewise crucial.

This characteristic makes the ideas of the model relevant not only to ants,
but also to other partly non-hierarchical systems such as the immune system, or
a complex chemical system, which could be interpreted as performing compu-
tations, or could even be designed to do so. Indeed a model resembling the one
presented was explored by Hjelmfelt et al. (1991), in which it was shown that a
chemical reaction can potentially perform any computation a finite Turing ma-
chine can. In their model it is quite apparent that a single molecule does not
have an identity, and only the interaction and relation of the molecules holds
information and has computational power.

This model can be used as a basis for further research. One direction is to
develop more elaborate models to study ant behavior. Spatial effects could be
brought into consideration, and their effect on the encounter rate should studied.
An interesting question would be to study the complexity of response possible
with respect to the number of ants in the colony (see also Gordon 1989, Pacala et
al. 1994). A prediction which can be inferred from the model is that the statistics
of task switching should show that when switching between tasks the ants must
be going go through some minimal number of intermediate states, which might
or might not be measurable otherwise.

Three related challenging questions are : Where are the local rules instruc-
tions (the analogs of the A’s and B’s), kept? How can these rules change (i.e.
changing the A’s and B’s) so the colony can learn to react correctly to its envi-
ronment? How did such a coordination evolve in the first place?

For the version of the model studied here it was assumed that ants are iden-
tical units. It seems to be the case that for many social insects, the genetic
composition of the colony is not uniform. If the transition rates are genetically
governed, this could potentially pose a problem to selection on these genes. One
might think that selection would have minimized the genetic variation in the
colony, but this is not the case, and some colonies even have multiple queens.
From this we expect that ants have solved this problem in a different manner.

A principle we believe should be incorporated in the study of these questions,
is closing reaction loops to enable feedback (in our case feedback to the colony
through the environment). A schematic description of such a loop is: 1. The
colony measures the environment (as described in Sect. 3.5). 2. The measure-
ments outcome induces a coordinated response (as described in Sect. 3.5). 3. The
colony responses by acting on the environment. 4. The action causes changes in
the environment in a way correlated to the state of the colony, thus closing a
loop. (Which is, in a sense, a loop in which the order in the whole system grows.)
In this respect, incorporating pheromone trails laid by the ants seems natural.
The time-wise separation drawn above between the different stages is, of course,
artificial.

Considering the colony as a selection unit, the evolution of A’s and B’s
could be studied by applying a selective pressure on a population of colonies.
We believe the study of such an evolution, should also include a closed loop



of reaction. Thus, not only having the selective pressure act on the population
of colonies, but having the population of colonies change the selective pressure.
How this should be done is indeed a challenging question.
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Appendix A
In this appendix it is shown that for the model described in Sect. 2, if the

constraints
∑M

i=1 pi = 1 and pi ≥ 0 hold for t = 0, then they will hold always.

d

dt

M∑
i=1

pi =

M∑
i=1

dpi
dt

(22)

=

M∑
i=1

− M∑
j=1

Aij(s)pi +

M∑
j=1

Aji(s)pj

+α(N)

− M∑
j,k=1

Bijkpipj +

M∑
j,k=1

Bjkipjpk

 (23)

= −
M∑

i,j=1

Aij(s)pi +

M∑
i,j=1

Aji(s)pj

+α(N)

− M∑
i,j,k=1

Bijkpipj +

M∑
i,j,k=1

Bjkipjpk

 (24)

= −
M∑

i,j=1

Aij(s)pi +

M∑
j,i=1

Aji(s)pi

+α(N)

− M∑
i,j,k=1

Bijkpipj +

M∑
k,i,j=1

Bijkpipj

 (25)

= 0 . (26)

Hence
∑M

i=1 pi = 1 always.

Next it will be shown that if pi = 0, then dpi

dt ≥ 0, so that if initially pi ≥ 0,
this will hold for later time also.

dpi
dt

= −
M∑
j=1

Aij(s)pi +

M∑
j=1

Aji(s)pj

+α(N)

− M∑
j,k=1

Bijkpipj +

M∑
j,k=1

Bjkipjpk

 (27)

=

M∑
j=1

Aji(s)pj + α(N)

 M∑
j,k=1

Bjkipjpk

 (28)

≥ 0 . (29)

This is because all quantities in the last expression are non-negative.



Appendix B
In this part it will be shown that the colony described in Sect. 3.3 behaves

like a NOR-gate. For this, it has to have the following relations between the
input and the output:

in1 in2 out
1 1 0
0 1 0
1 0 0
0 0 1

The input and output were defined such that, for example if p1

p2
> 3 the first

input is 0, and if p1

p2
< 1

3 the first input is 1. We also have p1 + p2 = p3 + p4 =

p5 + p6 = 1
3 .This translates the same table to the following inequalities, which

must hold at the steady state of the system.

p1 <
1
12 p3 <

1
12 output = 0

p1 >
3
12 p3 <

1
12 output = 0

p1 <
1
12 p3 >

3
12 output = 0

p1 >
3
12 p3 >

3
12 output = 1

At a steady state (16)-(18) give the following:

p5(p1 + p3) = p6(p4 + p2 +
1

4
) , (30)

or

p5
p6

=
p4 + p2 + 1

4

p1 + p3
. (31)

If we apply the first line of table 6 we get

p5
p6

>
3
12 + 3

12 + 1
4

1
12 + 1

12

=
9

2
. (32)

If this were amplified through three amplifiers, the relation between the output
states will be ((( 9

2 )2)2)2 which is greater than 3, so the output is 0, as required.
The second line of the table gives

p5
p6

>
0 + 3

12 + 1
4

1
3 + 1

12

=
6

5
. (33)

Amplifying this three times will give ((( 6
5 )2)2)2 which is also greater than 3, so

the output is again 0. The last line of the table gives

p5
p6

<
1
12 + 1

12 + 1
4

3
12 + 3

12

=
5

6
. (34)

and amplifying this three times gives (((5
6 )2)2)2 which is smaller than 1

3 , so the
output is 1.


