Vol. 24 no. 13 2008, 1530-1532
AP P LI CATI ON S N OTE ’ doi:r;c()).1093/bioiri7)fz$r}risatics/btn223

Sequence analysis

PatMaN: rapid alignment of short sequences to large databases
Kay Prufer*T, Udo Stenzel®, Michael Dannemann, Richard E. Green, Michael Lachmann

and Janet Kelso

Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
Received on March 21, 2008; revised on April 24, 2008; accepted on May 3, 2008

Advance Access publication May 8, 2008
Associate Editor: Limsoon Wong

ABSTRACT

Summary: We present a tool suited for searching for many short
nucleotide sequences in large databases, allowing for a predefined
number of gaps and mismatches. The commandline-driven program
implements a non-deterministic automata matching algorithm on a
keyword tree of the search strings. Both queries with and without
ambiguity codes can be searched. Search time is short for perfect
matches, and retrieval time rises exponentially with the number of
edits allowed.

Availability: The C++ source code for PatMaN is distributed
under the GNU General Public License and has been tested
on the GNU/Linux operating system. It is available from http://
bioinf.eva.mpg.de/patman.

Contact: pruefer@eva.mpg.de

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

There is an increasing need to rapidly and accurately align
short sequences to genomic or other biological sequences. Short
sequence motifs, including restriction enzyme sites, microarray
probe sequences, transcription factor binding motifs and miRNA
sequences, are abundant in many areas of molecular biology.
Identifying these short sequences is a crucial step in designing
experiments and analyzing newly available genomic sequence data.

The most widely used approach for aligning sequences to large
databases is the BLAST algorithm (Altschul et al., 1990). Further
optimized versions have been presented to speed searches for
large numbers of sequences. The BLAST family of algorithms
search for good alignments only where short, perfect seed matches
between the query and target sequence exist. This heuristic vastly
improves the overall speed by restricting the expensive alignment
process to regions containing these short exact matches. There is
a tradeoff between an extensive search and the speed performance
of the algorithm. A search with longer seeds may miss some good
alignments that contain mismatches or gaps, while shorter seeds will
prolong alignment time. This tradeoff is especially severe for short
query sequences because these may not contain a seed match to
trigger full alignment, thereby missing good hits.

“To whom correspondence should be addressed.

' The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

A well-known algorithm for searching multiple strings was
introduced by Aho and Corasick in 1975. Although this approach
has previously been implemented to search for restriction enzyme
sites (Mount and Conrad, 1986; Smith, 1988), a comprehensive
implementation for searches with mismatches and gaps is not
available to our knowledge.

We developed PatMaN (Pattern Matching in Nucleotide
databases), a tool for performing exhaustive searches to identify all
occurences of a large number of short sequences within a genome-
sized database. The program reads sequences in FastA format
and reports all hits within the given edit-distance cutoff (i.e. total
number of gaps and mismatches). We demonstrate the program’s
functionality by aligning Affymetrix HGU95-A microarray probes
to the chimpanzee genome.

2 METHODS
2.1 Usage

The program accepts several parameters to specify a search. The user
can specify both the maximum number of gaps and the total number of
edits (gaps+mismatches) allowed in any reported match. Additionally the
interpretation of ambiguity codes can be modified. When the ambiguity flag
is set, any ambiguous character in the query sequences will be counted as
a match if the aligning base is one of the nucleotides represented by the
ambiguity code. When the flag is omitted, only the ambiguity code ‘N’ is
allowed in the query sequences, and a base aligning to this character will be
counted as a mismatch.

Both the query and target sequences must be in FastA format. The output
is given in a tab-separated format containing the target and query sequence
identifier, the start and end position of the alignment in the target sequence,
the strand and the number of edits per match.

2.2 Algorithm

‘When initiated, the program begins constructing a single keyword tree of all
the query sequences (Fig. 1). All bases along a query sequence are added as a
path from the root of the tree to a leaf, with the edges representing the bases
added, and the leaf node containing the query sequence identifier. If the user
sets the ambiguity flag, all possible bases at ambiguous positions are added
to the tree. If the user does not trigger the ambiguity flag, each base is added
only once to the tree. The search for occurrences on forward and reverse
strands is facilitated by also adding the reverse complement of all query
sequences to the same tree. If an outgoing edge is not yet occupied after
storing the query sequences, an additional suffix link is set to the longest
existing suffix for the sequence represented by the path from the root to
the node under consideration. The resulting graph will consist of internal
nodes with outgoing edges for all four possible bases and for the ambiguity
base ‘N’. This procedure corresponds to the initial processing steps in the

© 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

6102 Jequieoa(| UO Jasn AJisiaAlun 81elS BUOZIY AQ $£Z8EZ/0ES L/E L/¥Z10R11Sqe-8]0111./SO1IBIO}UIOIG/WO0 dNO"0lWapeo.//:sd)y Wol) PapEojuMO]

PatMan

Fig. 1. Keyword tree with suffix links after adding the sequences ‘CCC’,
‘GA’ and ‘GT’. The keyword tree (represented as bold lines) encodes the
probe sequence as a path leading from the root node on the left side to the
leaves on the right side. Suffix links are shown as arrows, but have been
omitted at leaf nodes for brevity.

Aho—Corasick algorithm [for a complete discussion see Navarro and Raffinot
(2002)]. Figure 1 depicts the resulting data structure for a small input
example.

Once the tree is constructed, each sequence in the target database is
evaluated base by base and compared to a list of partial matches. Each
partial match consists of a node together with the number of mismatches
and gaps accumulated. The list is initialized with one element containing
the root node of the tree and an edit count of zero. In each iteration of
the algorithm, all partial matches are advanced along a perfectly matching
outgoing edge. Additional elements are stored for following mismatched
edges and for producing all possible gaps, as long as the number of edits
remains below the threshold given. If the outgoing edge is a suffix link, the
resulting partial match is only included if no mismatch or gap occured in the
part before the suffix. The number of edits needed to align the suffix is stored
in the partial match when following a suffix link. Matches are reported when
a partial match reaches a leaf node before exceeding the predefined number
of allowed edits. The sequence identifier, match coordinates and number of
edits are printed.

2.3 Complexity

‘When ambiguity codes are not interpreted and the query sequences contain no
‘N’ character, the keyword tree can be constructed in O(L) time and requires
O(L) space, where L represents the total length of all query sequences
(Navarro and Raffinot, 2002). When ambiguity is enabled, both time and
space requirements increase exponentially in the number of ambiguity codes
used in the patterns.

The time efficiency of the search algorithm is linear in the size of the
target database, but depends heavily on the maximum edit distance as well
as the average length and number of query sequences. For each additional
edit operation, an exponentially increasing number of partial matches must
be considered, since neighboring mismatched nodes and all possible gapped
alignments are searched along with the perfect matching path through the
tree. However, if only perfect matches are searched, the algorithm acts like
the Aho—Corasick algorithm, and search time depends solely on the length
of the target sequence. Time constraints therefore mean that PatMaN is
only suitable for searching short sequences with a limited number of edit
operations.

3 RESULTS

We used PatMaN to match 201 807 Affymetrix HGU95-A micro-
array 25mer probes to the chimpanzee genome (panTro2). The
parameters chosen for this evaluation allowed up to one mismatch,

Table 1. HGU95-A probes and Bonobo Reads against Chromosome 22

Dataset Edits Gaps Run time Hits
HGU95-A probes® 0 0 Om13.31s 93225
HGU95-A probes* 1 0 1m51.87s 327028
HGU95-A probes® 1 1 3m36.92s 496 296
HGU95-A probes* 2 1 1h21m59s 1843008
Bonobo Solexa GAII data? 2 2 12h58m50s 14.3 x 10°

“Benchmarking was performed on a 2.2 GHz workstation. Independently of the chosen
parameters ~260 MB RAM were used. b Benchmarking was performed on a 1.8 GHz
workstation and 8.6 GB of RAM was used during execution. The dataset contains 2.8
million reads of 38 bp length of genomic sequence from a Bonobo individual sequenced
on the Solexa GAII platform.

but no gaps. The program spent ~2.5h searching through all
chimpanzee chromosomes and found 15.9 million hits (including
14.4 million hits to ALU repeat sequences). A table containing all
unique hits to the chimpanzee genome is available on our website.
Table 1 summarizes the time measured for conducting searches with
different edit distance parameters using the same microarray probes
and reads from one lane of the Solexa platform for chimpanzee
chromosome 22. The measurement shows the exponential increase
in runtime with the maximum allowed edit distance.

4 CONCLUSION

We present a new tool for mapping short sequences to large
nucleotide databases. The program does not require target or query
database preprocessing and runs rapidly when a search is restricted
to small edit distances. While we demonstrate the program’s utility
by aligning microarray probes, we anticipate further applications
in the near future. In particular, mapping tags generated using next
generation resequencing technology will require fast approximate
matching to genomes to facilitate large-scale analysis of gene
expression.

ACKNOWLEDGEMENTS

We would like to thank Christine Green for critically reading the
article.

Funding: Funding has been provided by the the Max-Planck Society.

Conflict of Interest. none declared.

REFERENCES

Aho,A.V. and Corasick,M.J. (1975) Efficient string matching: an aid to bibliographic
search. Commun. ACM, 18, 333-340.

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Bio., 215, 403-410.

Mount,D.W. and Conrad,B. (1986) Improved programs for DNA and protein sequence
analysis on the IBM personal computer and other standard computer systems.
Nucleic Acids Res., 14, 443-454.

Navarro,G. and Raffinot,M. (2002) Flexible Pattern Matching in Strings: Practical
On-line Search Algorithms for Texts and Biological Sequences. Cambridge
University Press, New York, NY, USA.

Smith,R. (1988) A finite state machine algorithm for finding restriction sites and other
pattern matching applications. Comput. Appl. Biosci., 4, 459-465.

1531

6102 Jequieoaq Z| UO Jasn AJISIaAluN 8]e)S BUOZUY AQ YEZ8EZ/0ES L/E |L/210r11Sqe-8]o11ie/SOI)BWIO}UI0IG/WOo dnoolwapeoe//:sd)y WoJl papeojumod

	PatMaN: rapid alignment of short sequences to large databases
	Kay Prüfer Udo Stenzel, Michael Dannemann, Richard E. Green, Michael Lachmann and Janet Kelso
	1 Introduction
	2 Methods
	3 Results
	4 Conclusion

