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Abstract

Dense, genome-wide single-nucleotide polymorphism (SNP) data can be used to reconstruct the demographic history of human
populations. However, demographic inferences from such data are complicated by recombination and ascertainment bias. We
introduce two new statistics, allele frequency-identity by descent (AF-IBD) and allele frequency-identity by state (AF-IBS), that
make use of linkage disequilibrium information and show defined relationships to the time of coalescence. These statistics, when
conditioned on the derived allele frequency, are able to infer complex population size changes. Moreover, the AF-IBS statistic,
which is based on genome-wide SNP data, is robust to varying ascertainment conditions. We constructed an efficient approx-
imate Bayesian computation (ABC) pipeline based on AF-IBD and AF-IBS that can accurately estimate demographic parameters,
even for fairly complex models. Finally, we applied this ABC approach to genome-wide SNP data and inferred the demographic
histories of two human populations, Yoruba and French. Our results suggest a rather stable ancestral population size with a mild
recent expansion for Yoruba, whereas the French seemingly experienced a long-lasting severe bottleneck followed by a drastic
population growth. This approach should prove useful for new insights into populations, especially those with complex demo-
graphic histories.

Key words: genome-wide SNP data, demographic inference, identity by descent, ascertainment bias, population size changes,
approximate Bayesian computation.

Introduction
The genomic diversity of a population is shaped by a
complex interplay of a large variety of demographic events
including population growth or decline, migration of indi-
viduals between different populations, and population splits
or divergence.

It is, therefore, desirable to estimate past population size
changes as a function of time. Methods exist for making such
inferences from nonrecombinant sequence data. “Skyline
plot” methods are a collection of sophisticated nonparame-
tric methods that infer the population size trajectories by
reconstructing the underlying genealogy from mitochondrial
DNA (Pybus et al. 2000; Strimmer and Pybus 2001; Drum-
mond et al. 2002, 2005; Minin et al. 2008) and from multiple
unlinked loci (Heled and Drummond 2008).

However, the most abundant population genetic data are
from the recombinant autosomal genome, especially in the
form of single-nucleotide polymorphisms (SNPs) (Interna-
tional HapMap Consortium 2005; Li et al. 2008; Herraez
et al. 2009). Many existing methods infer demographic pa-
rameters by examining the allele frequency spectra (AFS)
(Adams and Hudson 2004; Marth et al. 2004; Keinan et al.
2007; Gutenkunst et al. 2009). Empirical AFS data are first
corrected for ascertainment bias and then fit to the best

demographic models using maximum likelihood computa-
tion. As the likelihoods of AFS can be numerically derived
or approximated by simple simulations, these methods are
computationally efficient. Nonetheless, the AFS-based meth-
ods are sensitive to different sources of ascertainment bias
and are usually applied under highly simplified demographic
models. Other methods make use of a collection of summary
statistics that reflect different aspects of the genetic diversity
data and evaluate how well they fit different demographic
scenarios (Schaffner et al. 2005; Voight et al. 2005; Fagundes
et al. 2007; Wall et al. 2009). Such methods usually involve
simulating large amounts of genome-scale SNP data and,
therefore, are highly computational intensive. Furthermore,
the obscure mutual dependency and the heterogeneous sen-
sitivities of the statistics toward simulation assumptions make
it difficult to evaluate the inference accuracy. Improvements
in simulation efficiency and novel statistics systematically de-
signed for demographic inference are much needed. Recently,
Li et al. developed the pairwise sequentially Markovian coa-
lescent (PSMC) model to infer ancient population size
changes from single re-sequenced diploid genomes (Li and
Durbin 2011). This method made use of both mutation and
recombination information and revealed many details of pop-
ulation size changes without making strong demographic
assumptions.
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Methods have also been developed based on haplotype or
linkage disequilibrium (LD) patterns. Statistics based on LD or
haplotype patterns should in theory be less affected by ascer-
tainment bias (Conrad et al. 2006). This is because LD is a
property of a genomic region, whereas ascertainment bias
influences individual SNPs. Simple effective population sizes
have been directly estimated from LD (Sved 1971; Hill 1981).
Several studies have investigated LD-based statistics for infer-
ring population size changes (Reich et al. 2001; Hayes et al.
2003; Tenesa et al. 2007). Lohmueller et al. (2009) proposed a
method based on examining the window-wise haplotype dis-
tribution throughout the genome-wide data. Nevertheless,
current LD-based inferences often suffer from limited resolu-
tion as either Ne is estimated as an average over long periods
of time or the models studied are too simplistic. Slatkin and
Bertorelle (2001) reported that the measurements of
intra-allelic variability can be used to test neutrality and to
infer population growth. Intra-allelic LD may be also well
suited for inferring more complex demography, and in this
study, we propose two intra-allelic LD-based statistics for pop-
ulation size inference. We show that these statistics are highly
informative about ancient population size trajectory and can
be used in the framework of approximate Bayesian
computation (ABC) (Beaumont et al. 2002) to accurately es-
timate demographic parameters related to population size
change from simulated data, even for relatively complex
models. Finally, we applied the ABC-based method to
genome-wide SNP data for the Yoruba and French popula-
tions from the CEPH-HGDP panel (Li et al. 2008).

Materials and Methods

Overview

In this study, we propose two statistics to infer ancient pop-
ulation size changes under neutrality. It is known that the
intra-allelic variability and the allele frequency are two differ-
ent measurements of allele ages, with the former revealing age
at the absolute time scale, for example, in generations
(McPeek and Strahs 1999), and the latter at the rescaled co-
alescent time scale (Slatkin and Rannala 2000). Slatkin and
Bertorelle (2001) proposed that the contrast of these two
measurements can be used to test neutrality or to make
inferences about population growth. Nordborg and Tavare
(2002) suggested that the intra-allelic LD can be informative
about different aspects of demography, such as ancient pop-
ulation size and population structure. We propose that the
intra-allelic LD measurement, when conditioned on allele
frequency, may indeed be very informative about complex
demographic trajectories. This is because when we compare
the allele age in absolute time scale with the age in coalescent
scale, their ratio actually measures the Ne in each time interval
(supplementary material part I for detailed discussion,
Supplementary Material online).

The two statistics we propose here are both related to the
haplotype sharing for a given derived mutation. Studies
have investigated the extension of the ancestral (identical)
haplotypes from a derived mutation, and its use in dis-
ease/quantitative trait locus (QTL) mapping and neutrality

tests (McPeek and Strahs 1999; Slatkin 2001; Innan and
Nordborg 2003; Slatkin 2008). Our statistics are similarly con-
structed. The first statistic is the extended length of identity
by descent (IBD) conditioned on derived allele frequency
(AF-IBD). Here we take the literal meaning of IBD, which is
the identity of sequences that descend from a single ancestral
sequence, without any change in status from either mutation
or recombination. IBD quantities usually have to be indirectly
estimated, as tracts of IBD cannot be directly observed (Sved
1971; McPeek and Strahs 1999). However, to directly study
how AF-IBD varies under different demographic scenarios, we
start by assuming that IBD can be directly observed, and we
later relax this assumption.

We assume that the genome is continuous, and all recom-
bination and mutation events can be detected and exactly
positioned. For any variant s of derived allele frequency j in a
sample of n haplotypes (2� j� n� 1), we denote as ln,j,s, the
length of the identical haplotype extending from s to either
side until the first detectable event (mutation or recombina-
tion) occurs (fig. 1A and B). The AF-IBD for allele frequency j is
then defined as the expectation over all variants of frequency
j: AF-IBDn,j = E(ln,j,s). To study empirical sequence or SNP data,
we propose the statistic AF-IBS, similarly defined as AF-IBD:
for a sample of n sequences, for each site s with derived allele
frequency j (2� j� n� 1), we calculate in either direction
the distance up to which the carrier chromosomes are iden-
tical by state (IBS), that is, up to one site before the first
breakpoint, here denoted as xn,j,s (fig. 1C). The maximum
distance xn,j,s is limited to 500 kb in the simulations; any dis-
tance larger than 500 kb in either empirical or simulated data
is taken as 500 kb. The AF-IBS of allele frequency j is then
taken as the average of xn,j,s over all sites of allele frequency
j: AF-IBSn,j = Mean(xn,j,s).

We first study the properties of AF-IBD under different
demographic scenarios, and then we examine the perfor-
mance of AF-IBD in demographic parameter estimation
using an ABC approach on simulated data. We then examine
the relationship between AF-IBS and AF-IBD and establish
an efficient ABC approach for relating AF-IBS to AF-IBD.
Finally, the AF-IBS-based ABC method is evaluated in simu-
lations and applied to the estimation of demographic
histories from empirical SNP data for human populations
(Li et al. 2008).

Examining AF-IBD under Various
Demographic Scenarios

We first examined how AF-IBD behaves under different sce-
narios of population size changes, by analyzing the mathe-
matics and generating simulations.

For a mutation s of allele frequency j in the n sampled
sequences, when the coalescent tree is given, it occurs on the
root edge (shown in green in fig. 1A) of a subtree J with j
lineages (shown in red in fig. 1A). The recombination and
mutation events (hereafter referred to as “events”) can then
be superimposed onto the tree with rates � and � base�1

generation�1, respectively. As in equation (4) of Slatkin and
Bertorelle (2001), ln,j,s follows an exponential distribution with
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the rate parameter as the event rate integrated over time and
lineages in the subtree J:

ln, j, s � Exp TJ, s �+�ð Þ
� �

ð1Þ

where TJ,s is the total length of the subtree J in generations,
defined by the mutation s.

AF-IBDn,j, which is the expectation of ln,j,s over all sites of
frequency j out of n, can be integrated over all sites of j out of
n as:

AF� IBDn, j ¼ E ln, j, s½ � ¼

Z 1
L¼0

Z 1
�¼0

P TJ, s ¼ �
� �

P ln, j, s ¼ LjTJ, s ¼ �
� �

d�dL

ð2Þ

where E
�
T�1

J, s

�
is the expectation of the inverted total length

of the subtree across all mutations of frequency j. Denote the
absolute time as � and the variable population size as a func-
tion of �, N(�). The distribution of AF-IBD can be derived by
simulating a large number of coalescent trees as proposed
previously (Slatkin and Bertorelle 2001). Details of calculating
the distribution of AF-IBD can be found in the supplementary
material part II, Supplementary Material online. We refer to
this procedure as the tree sampling method, and we used it to
study different models of population size changes.

To understand how AF-IBD responds to population size
changes, we simulated models of various demographic sce-
narios including constant size, bottleneck, exponential
growth, and complex models. A total of 1,000 coalescent
trees were generated for each model. The sample size was
set to be 100, so AF-IBD for j = 2–99 were calculated. The
mutation and recombination rate were both set to the arbi-
trary value of 2.5� 10�8 gen�1 site�1. All coalescent trees in
this study were simulated with the software ms (Hudson
2002). The constant size models assumed different popula-
tion sizes of 1,000, 5,000, and 10,000. The scenario of expan-
sion was examined by assuming that the population size grew
exponentially from an ancestral population size of 500, 1,000,

and 10,000 to a present population size of 10,000, 50,000, and
100,000, starting at a time point between 40 and 2,400 gen-
erations ago. A series of models of single bottlenecks were
simulated with the event occurring sometime between 200 to
3,200 generations ago, with the reduction factor being 0.3, 0.1,
or 0.01, and the duration ranging between 10 and 100 gen-
erations. Finally, a series of complex models were also simu-
lated with an expansion event following a bottleneck event,
or two or three consecutive bottlenecks. Combinations of
events of various times of onset, durations, and magnitudes
were examined. To quantify the effects of population size
changes on AF-IBD, the AF-IBD vectors from various
models were compared with that of a standard constant
size model with Ne of 10,000.

Parameter Estimation with AF-IBD Using ABC

To further analyze the properties and information content of
AF-IBD, we applied ABC. The underlying idea of ABC is that
observed and simulated data sets are summarized into several
representative values, which are then compared to find the
simulations which best match the observed data. We imple-
mented the ABC approach as described previously (Excoffier
et al. 2005). The aim was to investigate whether underlying
demographic parameters can be estimated if only AF-IBD is
used to summarize a data set. Here, we assumed AF-IBD can
be calculated from the observed (simulated) data; later we
develop a procedure to relate AF-IBD to the statistic AF-IBS,
which is directly calculated from the observed data. All data
were generated by simulating coalescent trees as described in
the previous section. The sample size of 100 was assumed but
only AF-IBD for j = 2, 3 . . . 41 were considered as summary
statistics for the ABC calculation. Pseudo-observed (i.e., sim-
ulated data sets for which we knew the true values of the
parameters) were generated for 300 parameter sets from each
of three different demographic models. One million ABC
simulations, with parameters drawn from the uniform param-
eter prior distributions, were then compared with the

FIG. 1. Illustration of the model, and the statistics AF-IBD and AF-IBS. (A) The coalescent of n individuals, where j (here j = 4) lineages form a subtree J,
colored red, before joining the other lineages by a root edge colored in green. The total length of subtree J, Tn,j is the sum of the red edges measured in
generations. (B) The extension of the ancestral haplotypes in red is shown for multiple sequences from a core mutation of frequency of j = 4 (shown in
green). Mutation and recombination are taken as equivalent events that terminate the extension of the original ancestral haplotype. The ancestral
shared haplotype is, therefore, the overlapping red segment that ends at the first event among all the sequences. The length of this segment is taken as a
measurement of ln,j,s, which when averaged over all sites of frequency j defines AF-IBD for j. (C) As the counterpart of ln,j,s in empirical sequence/
polymorphism data, xn,j,s is taken as the length of the shared haplotype extending from the core mutation up to the first observed site that varies among
the j haplotypes xn,j,s averaged over all sites of frequency j gives the estimation of AF-IBS for sequence/polymorphism data.
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pseudo-observed data to calculate the posterior parameter
distributions. See supplementary note part IV, Supplementary
Material online, for details concerning the ABC settings.

The first model assumes a constant size with a single pa-
rameter, the effective population size Ne; the second model
was a 2-parameter sudden-growth model, in which the an-
cestral population size is fixed to 10,000 and starts growing
exponentially at time T1 ago until reaching a present day
population size of �*10,000; and the third was a 3-parameter
single-bottleneck model of a fixed ancestral population size of
10,000, whose population size declines by a factor � at time T1

and then recovers to 10,000 at time T2.
The accuracy and performance of this AF-IBD–ABC ap-

proach were evaluated by the relative root mean square error
(RMSE, which is the square root of the mean square error
divided by the true value), the mean absolute error (MAE, a
weighted average of the absolute errors, with the relative fre-
quencies as the weight factors), and the 95% and 50% cover-
age (proportion of times in which the true parameter value is
inside the equal tailed 95% or 50% credible interval [CI]).
These measurements were calculated by taking the mode
of the posterior distribution as a point estimate. In table 1,
for both the sudden-growth and the bottleneck model, an-
cient Ne was fixed to 10,000. In the bottleneck model, the
population recovered 100% of its original size after the bot-
tleneck event. Each estimation was based on the comparison
between one pseudo-observed AF-IBD and 1 million simu-
lated AF-IBD statistics. The ranges for the uniform prior dis-
tributions for each parameter are given as well.

Use of AF-IBS for Sequence or Polymorphism Data

When considering realistic polymorphism data, it is not easy
to estimate AF-IBD, as the status of IBD is not directly ob-
servable. Although there exist various methods to estimate
IBD-based statistics from sequence or SNP data (McPeek and
Strahs 1999; Browning and Browning 2011), these methods
are too computationally intensive to apply to genome-wide
data. We, therefore, use AF-IBS to replace AF-IBD. Other than
IBD, IBS can also result from recombination among homolo-
gous haplotypes or back mutation, or simply lack of polymor-
phic sites (Innan and Nordborg 2003). When the SNP density
is high, in theory the length of IBS should be mainly accounted
for by IBD. Therefore, we test whether AF-IBS has similar
sensitivity as AF-IBD toward ancient population size changes.

We simulated sequence data from the same models as for
AF-IBD (see model cartoons in supplementary fig. S2, Supple-
mentary Material online). For the sequence simulation, sets of
100 haplotypes of length 2 Mb were simulated for 1,000 rep-
licates for each set of demographic parameters. Simple ascer-
tainment schemes were applied in which only sites variable
within a parallel discovery panel of 5, 7, 10, or 15 haplotypes
were kept to compose the polymorphism data and used to
calculate AF-IBS. Throughout these simulations, the mutation
rate and recombination rate for sequence data were assumed
to be 2.5� 10�8 and 1.3� 10�8 gen�1 site�1, respectively,
which are the reported genome averages (Human Genome
Sequencing Consortium 2001; Yu et al. 2001). Results for

different demographic models were then contrasted to a
constant size model of Ne = 10,000 to examine whether
AF-IBS shows similar demographic sensitivity.

We then examined how different AF-IBD and AF-IBS are
for the same demographic history. We introduce the ratio
between AF-IBS and AF-IBD (hereafter referred to as SD ratio)
for the same demographic model. The SD ratio is defined as a
vector of index j where SD ratioj = AF-IBSn,j/AF-IBDn,j for each
frequency j.

Parameter Estimation with AF-IBS Using ABC

We established an ABC method using AF-IBS to estimate
demographic parameters and evaluated its performance in
the simulated scenarios.

The accuracy and performance of this AF-IBS–ABC ap-
proach were similarly evaluated as already described for the
AF-IBD–ABC approach (table 2). We simulated 300 random
data sets for each of three different models, which have one,
three, and five parameters, respectively. The 1-parameter
model is similar to the previous constant size model. The
3-parameter model is a sudden-growth model in which an
ancestral population size increases instantly by a factor of � at
time T1. The 5-parameter model assumes a population size
reduction from an ancestral size at time T2 by a factor of �2

and a population expansion at time T1 by a factor of �1 to a
current size of Ne. For all models, we sampled the
pseudoempirical parameters from a uniform prior on each
parameter space. For each simulation, 250 10-Mb segments,
each composed of 42 haplotypes, were generated with maCS
(Chen et al. 2009). For all analyses of AF-IBS–ABC, we used
the software recosim (Schaffner et al. 2005) to simulate a
random map of variable recombination rates across 10-Mb
regions. We used the same recombination parameters as in
the “best fit” model of Schaffner et al. (2005), and the basal
recombination rate is set according to the autosomal
deCODE distribution (Kong et al. 2002). We generated 250
of such 10-Mb maps covering the whole genome, and each
simulation takes one of them.

A simple ascertainment scheme was applied to match the
SNP densities of all allele frequencies to that of the empirical
data, as similarly applied before (Schaffner et al. 2005). Briefly,
the empirical allele frequency spectrum was determined for
both Yoruba and French, and then the simulated SNPs of a
certain derived allele frequency (DAF) were repeatedly re-
moved until the SNP densities in simulations equaled that
of the empirical data. AF-IBS was then calculated for the
simulated SNP data.

Theoretically, the ABC method based on AF-IBS can be
done by randomly generating large amounts of SNP data and
calculating their AF-IBS as described earlier. However, this is
computationally nonfeasible as the SNP data simulation at
genome scale is very time consuming, and the required
number of samplings in ABC is usually very large, for example,
106. Here we developed a new ABC approach to solve this
problem. We note that the simulation of AF-IBD is very effi-
cient as only coalescent trees are sampled. If we calculate
AF-IBS from AF-IBD, then the AF-IBS values can be efficiently
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obtained by tree simulations. Noting that AF-IBS and AF-IBD
are closely related, and their SD ratios are relatively robust
against changes in demographic parameters (supported by
our analysis, shown in the Results section), we constructed a
SD ratio grid on which AF-IBD can be efficiently converted to
the corresponding AF-IBS. The SD ratio grid approach is im-
plemented as follows: First the ratios of AF-IBS/AF-IBD were
obtained for a predefined grid of parameter values, by simu-
lating both coalescent trees and SNP data. SD ratios for any
arbitrary parameter sets are then imputed based on this grid
assuming local linearity along the parameter values (details
about the construction of the SD ratio grid and the SD ratio
imputation method can be found in the supplementary ma-
terial part III, Supplementary Material online). Based on this,
the ABC method using AF-IBS is briefly summarized as fol-
lows: first, 106 random parameters sets are sampled from the
priors; second, AF-IBD is calculated for each parameter set;
third, the AF-IBS/AF-IBD ratio is imputed from the SD ratio
grid, and AF-IBS is calculated from AF-IBD; and fourth, the
simulated AF-IBS is compared with the empirical AF-IBS to
give the best-fitting model.

Model Misspecification

The real populations may have hidden population structures
that are not represented by our simple models. It is, therefore,
important to evaluate whether such hidden population struc-
ture will influence the AF-IBS calculation. We analyzed the

AF-IBS behavior under certain model misspecifications.
To see the effects of potential hidden population structure,
we simulated an ancestral population of size Ne = 10,000 that
split into two populations, 200, 500, and 1,000 generations ago
(constant size demography). We analyzed the effect on AF-IBS
of the two daughter populations having sizes 50/50 or 30/
70 percent of the ancestral population, respectively (50 sam-
ples each). After that, we additionally simulated gene flow
(0.1% and 0.5% per generation) between the two populations.

Empirical data are usually obtained as unphased genotype
data, which is subject to an additional statistical calculation of
phase reconstruction to infer the haplotype composition. As
AF-IBS essentially measures how long a homologous segment
extends, it may be sensitive to switching errors during the
phase reconstruction. We, therefore, evaluated the effect of
errors in the phase reconstruction on our AF-IBS calculations.
We applied the program fastPHASE (Scheet and Stephens
2006) to various SNP data sets, simulated under different
demographic scenarios (1-, 3-, and 5-parameter models
with different parameter sets). The parameter values for the
demographic models were chosen to cover a broad range of
possible scenarios, with ancestral Ne ranging between 5,000
and 30,000; recent Ne ranging between 5,000 and 40,000; and
times of expansion or bottleneck events ranging between 50
and 2,000 generations ago. The parameters for fastPHASE
were set to the same values used for the phasing of the em-
pirical data. We then analyzed the ratio of AF-IBS before and
after the phasing. The ratios indicate that the phasing errors
do have an impact on the AF-IBS calculation, especially for the
lower DAFs (supplementary fig. S3, Supplementary Material
online). As the effects are similar for different demographic
scenarios, we calculated the average ratios across all the sim-
ulations. The AF-IBS values calculated for the empirical data
were then corrected by multiplying the inverses of these av-
erage ratios, for the lower DAFs 2–12. AF-IBS values for higher

Table 2. Measures of Accuracy for AF-IBS–ABC Parameter Estimation.

Model Parameters Uniform Prior RMSE MAE 95% Coverage 50% Coverage

1 parameter Ne 1,000–20,000 0.080 0.0714 0.96 0.69

3 parameter T1 100–2,000 0.195 0.131 0.94 0.57
b 0.01–0.9 0.179 0.171 0.94 0.52
Ne 5,000–40,000 0.153 0.131 0.93 0.61

5 parameter Ne 15,000–50,000 0.257 0.213 0.93 0.59
T1 50–2,000 0.391 0.314 0.92 0.49
b1 0.01–0.5 0.516 0.467 0.90 0.52
T2 10–510 0.314 0.201 0.91 0.48
b2 0.1–0.4 0.402 0.357 0.89 0.46

Table 1. Measures of Accuracy for AF-IBD–ABC Parameter Estimation.

Model Parameters Uniform Prior RMSE MAE 95% Coverage 50% Coverage

Constant Ne 1,000–10,000 0.0498 0.0425 0.97 0.72

Sudden growth T1 200–800 0.192 0.1392 0.94 0.68
b 2–10 0.0851 0.0624 0.97 0.63

Bottleneck T1 200–800 0.6761 0.4457 0.93 0.61
T2 200–800 0.5412 0.4414 0.95 0.55
b 0.01–0.3 0.4311 0.3259 0.94 0.54

Table 3. Power of Our Approach to Recover the True Model.

1-Parameter
Model

3-Parameter
Model

5-Parameter
Model

1-parameter model 0.84 0.13 0.03

3-parameter model 0.09 0.78 0.13

5-parameter model 0.06 0.20 0.74
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DAFs do not seem to be affected by the phase errors and are,
therefore, not corrected.

Parameter Estimation for Empirical Data

We applied the ABC method using AF-IBS to the empirical
SNP data. The genome-wide SNP data from the CEPH-HGDP
panel was used (Li et al. 2008). The data were phased with the
fastPHASE program and then corrected for the effects of
phasing error, as described before. Statistics were calculated
for 42 randomly chosen chromosomes from each population.
For the calculation of AF-IBS, we considered only sites at least
5 Mb away from the chromosome ends, which resulted in
AF-IBS values for�490,000 sites, covering a genomic length of
�2.2 billion bp. We tested the same three models as for the
pseudoempirical SNP data described earlier. To decide which
model performs the best, we performed a model selection
using a Bayes factor analysis (Jeffreys 1935; Bertorelle et al.
2010). The same number of simulations was chosen for
each model, so that they were a priori equally likely, and we
computed the ratio of acceptance rates for each pairwise
model comparison. The posterior probability of a given
model is then approximated by the proportion of accepted
simulations given this model. The approach we used is im-
plemented in the R package “abc” (http://cran.r-project.org/
web/packages/abc/index.html, last accessed July 23, 2012). We
additionally performed a test based on a logistic regression
method (Fagundes et al. 2007), where a multinomial logistic
regression is fit with the model being the categorical depen-
dent variable. The regression is local around the observed
summary statistics vector (as in the parameter estimation).
Finally, the model probability is assessed at the point corre-
sponding to the observed vector of summary statistics. For
this method, we used the “calmod” function written by
Beaumont MA (available from the “popabc” package at
http://code.google.com/p/popabc/, last accessed July 23,
2012). Model selection was based on 1 million simulations
for each model.

On the basis of this model choice approach, we addition-
ally analyzed the power of this procedure to accurately re-
cover the true model using the AF-IBS–ABC approach,
following previous methods (Fagundes et al. 2007). We
used the 300 simulated ascertained and phase-corrected
data sets from the prior distribution for each model consid-
ered (1-, 3-, and 5 parameters) and analyzed them using the
same simulations and pipeline as for the empirical data. Each
of the 300 data sets then refers to one of the three models
with the highest posterior probability. We then counted how
many times our approach was able to identify the true model.

Results

Properties of AF-IBD

When AF-IBD is plotted against the allele frequency, it can be
seen that AF-IBD decreases monotonically with increasing
allele frequency (fig. 2A and supplementary fig. S1A, Supple-
mentary Material online). This is easily understood, as variants
of higher allele frequencies are on average older, and their
intra-allelic IBD, therefore, has decreased more over time.

When AF-IBD values are compared between constant size
models of different population size, we found that the ratio is
constant across different allele frequencies, and it is the in-
verse of the ratio of population size (fig. 2B). This is expected
given that coalescent rescales with population size.

AF-IBD is essentially contrasting two different measure-
ments of allele age. Each allele frequency defines a time
range on the coalescent time scale, for example, in the unit
of inverse of effective population size (supplementary
equation 1, Supplementary Material online). For the same
time range in coalescent scale, when the effective population
size is big, then the absolute time span is long, resulting in
shorter average IBD length; otherwise, the average IBD length
becomes longer. This suggests that smaller AF-IBD indicates a
bigger effective population size and vice versa; therefore, the
AF-IBD curve along the allele frequency spectrum reflects the
details of population changes.

The observations from simulations are consistent with the
above statements. We contrasted AF-IBD values for different
demographic models with that of a constant size model of
Ne = 10,000 (see Materials and Methods). Figure 2C shows the
comparisons among four bottleneck models. All ratio curves
are elevated above 1, with a single peak at different allele
frequencies and magnitudes. The most recent bottleneck
has a peak around allele frequency 10 with the highest ratio
approximately 2.1; the intermediate-aged bottleneck is shifted
to the right to around frequency 15 with a peak height of 1.6;
and even the relatively ancient bottleneck event, starting
1,000 generations ago, also resulted in elevated ratios
around the frequency 20–30. It is obvious that AF-IBD has
higher sensitivity to more recent events than older ones of the
same magnitude. On the other hand, strong ancient events
can also induce big changes in the relative AF-IBD curve. This
can be clearly seen in the fourth model, where the duration of
the size reduction was increased to three times that of the
third model (fig. 2C).

For the scenarios of expansion, figure 2D shows that the
ratios of AF-IBD started from 0.3–0.4 at the lower allele fre-
quency range, much lower than the value of 1 expected under
a constant population size. The ratio curve recovers quickly
back to close to 1 for the recent expansion. The increase of
the ratios along the allele frequency is progressively slower
and to a lower maximum when the expansion starts earlier in
time (fig. 2D). Finally, the AF-IBD ratio is also sensitive to
complex models where multiple events shaped the popula-
tion size trajectory. Figure 2E shows the AF-IBD ratios for two
complex models, one defined by a recent weaker bottleneck
(200–210 generations ago, 100 times size reduction) following
an old strong bottleneck (1,000–1,100 generations ago,
100 times size reduction; colored in black), and the other
defined by a recent expansion (population size from 10,000
to 100,000, starting at 500 generations ago) after an
intermediate-aged bottleneck (1,000–1,100 generations ago,
100 times size reduction, colored in red). The two curves
clearly differ from each other: for the case of two bottlenecks,
the ratio starts above 1 and increases to a first turning point
around frequency 10, then rises to the second turning point
around frequency 40. For the case of expansion following
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FIG. 2. AF-IBD calculated for several simulated demographic models. AF-IBD was calculated from data sets simulated as coalescent genealogies under
various demographic models of interest (see subfigure cartoons) and for a constant size reference model. (A) AF-IBD curve calculated from a constant
size population of Ne = 10,000. (B) AF-IBD ratios between two different models of constant population size (Ne = 5,000, Ne = 10,000) and one constant
Ne = 1,000. (C) AF-IBD ratios between various bottleneck models and one constant population size model of Ne = 10,000. Parameters given in the legend
represent the start and end of the bottleneck in generations before present, as well as the reduction factor during the bottleneck. (D) AF-IBD ratios
between various exponential growth models and one constant population size model of Ne = 10,000. (E) AF-IBD ratios between a two-bottleneck model
and one constant size model of Ne = 10,000, and between a complex bottleneck followed by sudden-growth model and a constant size model of
Ne = 10,000. Parameters given in the legend represent the number of generations for each period of growth lasting to the present day as well as the
ancient and present day population sizes. As explained in the main text, different demographic histories have distinct effects on the outcome of AF-IBD,
which clearly shows the sensitivity of this statistic to population size changes.
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bottleneck, the ratio starts from below 1 as expected for large
population size and keeps ascending above 1 until reaching a
maximum at the highest frequency. The increase in the
AF-IBD ratio is clearly due to the bottleneck.

AF-IBD–ABC

We first tested an ABC framework assuming that AF-IBD can
be directly observed. The purpose was to first analyze how
accurate underlying demographic parameters, connected to
population size changes, can be estimated in the absence of
any complications introduced by the type of empirical data
(e.g., ascertainment bias). In table 1, we show several calcu-
lated measures of precision, which represent the differences
between preset parameter values and estimated parameter
values. We calculated the RMSE; the MAE, and the 95% and
50% coverage (see Materials and Methods). Results from
table 1 show that this method of inference is highly precise
for the single parameter constant size model. This can be
explained by the underlying mathematical features of
AF-IBD. As shown in figure 2B, the reverse ratio of AF-IBD
for different constant size models coincides with the popula-
tion sizes. The estimation for the 2- and 3-parameter models,
although slightly less accurate, still provides estimates that are
sufficiently close to the true values. The reduced accuracy is
expected, as the same AF-IBD curve might result from differ-
ent but equivalent demographic histories. For example, the
general effect of a strong but short bottleneck can be very
similar to that of a weaker but longer bottleneck. However, in
most cases, we could estimate the true underlying parameter
values with a high level of accuracy (table 1), demonstrating
the validity of the AF-IBD-based ABC approach.

Properties of AF-IBS

We show the comparisons between AF-IBS and AF-IBD for
models of three different scenarios: constant size, expansion,
and bottleneck. Specifically AF-IBD and AF-IBS of the bottle-
neck and expansion models were contrasted against those of
the constant size model, and the ratios were plotted together
(supplementary fig. S2A and S2B, Supplementary Material
online). It can be seen that the ratio curve of AF-IBS is close
to that of AF-IBD. In the bottleneck scenario, the AF-IBS ratios
are shifted slightly below the AF-IBD ratios, but the position of
the peak is well conserved. For the expansion scenario, AF-IBS
curves are slightly above the AF-IBD curve although the gen-
eral shape is unchanged. Comparisons for additional popula-
tion size change models are shown in supplementary figure
S1B, Supplementary Material online. Overall, AF-IBS curves for
different ascertainment schemes are very similar to each
other, which suggest that the AF-IBS ratio is generally
robust to the ascertainment bias schemes implemented here.

The IBS/IBD Ratio

We showed in the previous section that the relative AF-IBD
curve is very similar to the relative AF-IBS curve for the same
demography, despite different ascertainment schemes. This
suggests that AF-IBS is related to AF-IBD in a way that is not
affected by the changes in population size. We checked the

robustness of the SD ratio between AF-IBS and AF-IBD in
various demographic scenarios including constant size, bot-
tleneck, and expansion. Supplementary figure S2C, Supple-
mentary Material online, shows the SD ratio curves for
AF-IBS. In supplementary figure S2C, Supplementary
Material online, the SD ratio starts at a low level and rises
steeply above 1.0 for the first few frequency bins. This is an
artifact due to the fact that the maximum length of AF-IBS is
0.5 Mb (see Materials and Methods), whereas AF-IBD estima-
tion from tree simulation theoretically can be infinitely long.
The subsequent values range between 1.5 and 3, and the
curves for the two different models have a similar shape. In
fact, we found that the SD ratio curve distributes within a
rather defined interval, across a large parameter space, and
the values for each bin in general are in a roughly linear rela-
tionship with the parameters (data not shown).

AF-IBS–ABC

We constructed a fast ABC pipeline that applies to the ob-
served AF-IBS values. We first checked whether correct esti-
mations can be obtained for simulated pseudo-observed SNP
data. Three models—constant size, sudden growth, and ex-
pansion—after bottleneck were tested, which contain one,
three, and five parameters, respectively. The entire workflow
of ABC for AF-IBS is shown in supplementary figure S4,
Supplementary Material online.

Figure 3 shows the estimated posterior distributions for
some parameters of interest from the 1-, 3-, and 5-parameter
models. As presented in table 2, inference based on
AF-IBS–ABC is relatively accurate and precise for the 1- and
3-parameter models and still reliable for the most complex
5-parameter model. We also analyzed the power to correctly
recover the true model based on the logistic regression pro-
cedure. As described earlier, we counted how many times we
correctly assigned the true model in a set of 300 simulated
data sets from the prior distributions of each model. As pre-
sented in table 3, data sets are properly assigned in most of
the cases. However, the more complex the model, the less
power our approach has. Also, the inferred empirical Bayes
factors (see Results) are in good agreement with the ones we
simulated.

Application to Genome-Wide Data from the
CEPH-HGDP Panel

We then applied our approach to the genome-wide data set
of the CEPH-HGDP panel (Li et al. 2008). Figure 4A shows
AF-IBS for the first 34 DAF bins calculated from 42 randomly
chosen chromosomes from each of 11 worldwide popula-
tions. As high DAF values reflect old mutations and low
DAF values reflect more recent mutations, variation in
AF-IBS values indicates population size changes at different
times in the past. The AF-IBS values for higher DAF for African
populations are clearly smaller than for all non-African pop-
ulations, indicating much reduced ancient population sizes
for non-Africans compared with Africans. Furthermore, pop-
ulations show continental or areal clustering, which suggests
similar demographic histories for populations within the
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FIG. 3. Approximate Bayesian Computation estimation results for pseudo-observed AF-IBS. The posterior densities from ABC parameter estimation for
1-, 3-, and 5-parameter models are shown. Simulated polymorphism data were used as pseudo-observed data. Vertical red lines represent the true
underlying parameter values. For each panel, a cartoon of the underlying model with all parameters that were estimated is shown. (A) Results for the
single constant size model parameter Ne. (B) Results for three parameters of a demographic model of sudden growth. (C) Results for five parameters of a
model of an ancient bottleneck followed by more recent sudden growth. Prior ranges for each uniformly distributed prior are equivalent to the x-axis
ranges.
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same cluster. All non-African populations show higher vari-
ability in the tails of the curves. This is due to the fact that
fewer sites with high DAF are present in these populations,
probably because of severe bottlenecks. We then analyzed
two representative populations in more detail: Yoruba from
Africa and French from Europe.

Model Misspecification

We calculated AF-IBS for a standard constant size model and
the models assuming different population structure and mi-
gration. The ratios of AF-IBS between the standard model and
the models with complete population structures were
approximately 1, ranging from 0.96 to 1.14, indicating that
hidden population structure does not significantly influence
our results. Adding migration between the daughter popula-
tions further reduces the difference between the standard
and alternative models (supplementary fig. S3, Supplemen-
tary Material online).

On the other hand, the phase reconstruction error seems
to have an impact on the AF-IBS calculation. We contrasted
the AF-IBS values of different scenarios both before and after
phasing (supplementary fig. S3, Supplementary Material
online). The ratios are rather consistent among different sce-
narios, starting at approximately 0.8 for the DAF = 1 and re-
covering back to 1 after DAF = 12. This suggests that we might
underestimate AF-IBS for the lower DAFs, due to the phasing
errors. We correct such bias by multiplying the empirical
AF-IBS values with the phasing error correction ratios (see
Materials and Methods).

ABC Analysis for Yoruba

Table 4 lists the results for the estimated demographic models
for Yoruba. The logistic regression analysis was done before
the actual ABC analysis. Among all model comparisons, the
3-parameter model of sudden expansion was the best fitting
model (Bayes factor 4.1 and probability of 0.63), followed

FIG. 4. AF-IBS calculated for several CEPH-HGDP populations. (A) AF-IBS calculated for various populations from the CEPH-HGDP panel. (B) Two ratios
between the observed Yoruba AF-IBS and the AF-IBS of the best constant size model simulation and the ratio between AF-IBS from the best
3-parameter simulation and the best constant size model simulation. (C) Ratio between the observed French AF-IBS and the AF-IBS of the best
constant size model simulation and the ratio between AF-IBS from the best 5-parameter simulation and the best constant size model simulation.
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by the 5- and 1-parameter models. The most likely constant
population size was estimated to be approximately 8,850. The
inferred parameter ranges for the 3-parameter model suggest
a constant recent population size of approximately 22,915
(95% CI: 21,706–24,110) followed by a population-size de-
crease (backward in time) to approximately 0.57 of the
recent Ne (95% CI: 0.53–0.62) to an ancestral size of 13,061
at 806 (95% CI: 685–1,030) generations ago. The 5-parameter
model had a probability of 0.25. The inferred parameter
ranges suggest a recent population size of approximately
28,000 followed by a bottleneck between 1,005 and 1,302
generations ago, with an ancestral size of approximately
18,600 and a bottleneck size of approximately 8,000. Results
from figure 4B show that the ratio between the observed
AF-IBS and the best 1 parameter model simulations AF-IBS
(black line) is approximately 1 for most DAF, which supports
a relatively stable ancient population size, followed by a more
recent expansion (ratio below 1 for the first bins). We, there-
fore, conclude that the 3-parameter model of a simple expan-
sion seems to best explain our data.

ABC Analysis for French

To analyze the French data, only the first 2–36 AF-IBS values
for 42 randomly chosen chromosomes were used, as there are
not enough high-frequency DAF cases to get a reliable
genome-wide average for their AF-IBS values. Among all
model comparisons, the 5-parameter model of a bottleneck
followed by sudden expansion was the best fitting (Bayes
factor 3.9 and probability of 0.71), followed by the 3- and
the 1-parameter models. Table 4 presents that the most
likely constant population size was estimated to be approx-
imately 6,300, which is smaller than for the Yoruba popula-
tion. Again, note that this estimate cannot directly be
compared with usual measurements of Ne. Trying to fit a 3-
parameter model of sudden growth did not yield any reliable
parameter estimates. As listed in table 2, Euclidian distances of
>20 for the best fitting simulations indicated an insufficient

fit of our observed data. We also analyzed the 5-parameter
model with ABC (table 4). The results suggest a recent pop-
ulation size of approximately 18,300 (95% CI: 16,115–22,082).
The ancestral population size was estimated to be 10,065
(95% CI: 5,856–12,444). The timing of the bottleneck was es-
timated to be between 1,580 and 1,300 (95% CI: 1,410–1,805;
987–1,520) generations ago with a population size of approx-
imately 3,300 (95% CI: 2,562–4,575) during that time.
Importantly, the CIs of the parameters seem to be rather
narrow compared with the priors, except for the two time
parameters. The ratio curve of the best 5-parameter simula-
tion against the best constant size simulation also matches
closely with that of the empirical data against the best con-
stant size simulation (fig. 4C). We, therefore, conclude that
the 5-parameter model of a bottleneck with an expansion is
the best fitting model for the French.

Discussion
Using genetic data to make inferences concerning the demog-
raphy of populations (especially population size changes) has
long been of interest (Griffiths and Tavare 1994; Kuhner et al.
1995). As genome-wide SNP and full sequence data are be-
coming increasingly abundant for human populations and
other species, it is of great interest to make efficient use of
such data to infer ancestral demographic history with high
accuracy. In this work, we introduce two potentially very
useful statistics, AF-IBD and AF-IBS, which make use of hap-
lotype configuration changes resulting from both mutation
and recombination events. We showed that both have some
desirable mathematical properties, which determine their
high sensitivity to population size changes even for complex
demographic histories over a wide time range.

The high sensitivity of AF-IBD and AF-IBS toward ancient
population size changes results from contrasting two types of
age estimators: the intra-allelic LD inferring the absolute age
and the derived allele frequency surrogating the coalescent
scale age. In this study, we use the ABC approach to estimate

Table 4. ABC Estimation Results for Empirical Data for Yoruba and French.

Population Model Parameters Uniform Prior Regression Estimate 95% CI

Yoruba Constant size Ne 1,000–41,000 8,850 7,825–13,617
Sudden growth Ne 5,000–40,000 22,915 21,706–24,110

T1 100–2,000 806 685–1,030
b 0.01–0.9 0.57 0.52–0.63

Bottleneck + sudden growth Ne 15,000–50,000 28,310 27,081–32,506
T1 50–2,000 1,005 780–1,436
b1 0.01–0.5 0.28 0.12–0.35
T2 60–2,500 1,302 895–1,498
b2 0.11–0.9 0.81 0.73–0.85

French Constant size Ne 1,000–41,000 6,311 4,753–8,623
Sudden growth Ne 5,000–40,000 5,043* *

T1 100–2,000 351* *
b 0.01–0.9 0.21* *

Bottleneck + sudden growth Ne 15,000–50,000 18,300 16,116–22,082
T1 50–2,000 1,300 987–1,520
b1 0.01–0.5 0.18 0.14–0.25
T2 60–2,500 1,580 1,410–1,805
b2 0.11–0.9 0.55 0.32–0.68

*For this model, we were not able to reliably infer parameter values from the Fench data.
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the trajectory of population size, by minimizing the distance
between the summary statistics calculated from simulated
and observed data. On the other hand, if a closed form equa-
tion can be found that defines the AF-IBD/AF-IBS as a func-
tion, say G(j,N(�)) (assuming a one-to-one map between N
and G), of allele frequency j and N(�), it is possible to analyt-
ically derive N(t) by solving the reverse function G�1. In the
perspective of the coalescent, the AF-IBD/IBS statistics are
similar to AFS: they are all conditioned on the derived allele
frequency. Although the AFS measures the length of the root
edge of a j-node subtree (corresponding to the green edge in
fig. 1) by counting the number of mutations, the AF-IBD/IBS
measures the total subtree length (the red subtree in fig. 1). In
principle, the subtrees should be more informative about the
population size changes than their root edges. This is because
the subtrees of the same DAF coalesce in the same time
interval and are responsive to the same population size
changes. The root edges on the other hand do not necessarily
overlap in time for a given DAF and thus are less responsive to
a particular population size change. Lohmueller et al. (2009)
proposed the HCN statistics, which also make use of the
haplotype distributions. By summarizing the local haplotype
frequency distribution, the HCN essentially makes use of both
recombination and mutation events to reflect the properties
of the coalescent trees within windows of fixed recombina-
tion size. Our statistics are similar to HCN in the use of both
mutation and recombination information, but AF-IBD/IBS
focus explicitly on the tree defined by the central SNP. The
recently proposed PSMC method directly estimates the time
of most recent common ancestor (TMRCA) on a pair of
genome sequences (Li and Durbin 2011). By evaluating the
coalescent density over the stepwise time intervals, this
method revealed many details of the population size trajec-
tories. However, the pairwise comparison by design provides
less information on very recent history and is sensitive to
recent population structure. The AF-IBD/AF-IBS statistics
are based on multiple haplotype comparisons and, therefore,
may help complement the PSMC for recent history.

In this work, we associate AF-IBS to the AF-IBD statistic by a
correction ratio. In fact, it might be possible to express AF-IBS
as functions of AF-IBD in explicit mathematical form. The
greater AF-IBS than AF-IBD values at higher frequencies are
mainly due to the undetected recombination events (supple-
mentary fig. S2, Supplementary Material online). We intro-
duced the SD ratio as one potential way of transforming
AF-IBD to AF-IBS. However, we note that this is an approxi-
mate way of solving this issue, and there is room for improve-
ment. Nonetheless, the ABC estimation based on AF-IBS
already shows promising accuracy on the pseudo-observed
SNP data. Our ABC parameter estimation results show that
even for quite complicated models such as the 5-parameter
model, we can accurately estimate parameters of interest.

Our results show that the AF-IBS ratios are relatively robust
against very different ascertainment schemes (supplementary
fig. S2, Supplementary Material online). This suggests that
possible misspecifications of the ascertainment scheme
should not affect our inference very much. Some SNP data
are censored for the lower minor allele frequencies. This will

certainly cause losses of information for very recent or ancient
demographic events. On the other hand, the switching errors
during the phase reconstruction from the empirical genotype
data do seem to cause a slight underestimation of AF-IBS for
lower DAFs. This is not difficult to understand: phasing errors
can be seen as a low level of artificial recombination. When
this fraction of recombination rate, say �phase is added to the
term TJ, s �+�ð Þ in equation (1), it tends to reduce AF-IBD/
AF-IBS when TJ, s is small, which corresponds to lower DAFs.
However, the effect of �phase can be negligible when TJ, s or
DAF is big. This problem can be minimized by using phase
certain SNP data, such as those genotyped on trio samples.

In the application of the AF-IBS statistic to the CEPH-
HGDP Yoruba and French data, we found that neither of
the two data sets can be fully explained by the constant
size model. The three parameter model with a recent popu-
lation expansion provides a slightly better fit to the Yoruba
data than the more complex 5-parameter model. For the
French, we found that the 5-parameter model featuring
both a bottleneck and an expansion is needed to explain
the observed data. This result is in general agreement with
previous studies. Most of the existing studies showed that a
simple expansion is sufficient to account for the African de-
mography (Adams and Hudson 2004; Marth et al. 2004;
Voight et al. 2005; Keinan et al. 2007), whereas Schaffner
et al. suggested a minor bottleneck for the Yoruba
(F = 0.008, [Schaffner et al. 2005]), and Li et al. showed
a mild reduction between 20,000 and 100,000 years ago (Li
and Durbin 2011). Moreover, all studies infer that European
populations had at least one bottleneck before the recent
expansion (Adams and Hudson 2004; Marth et al. 2004;
Schaffner et al. 2005; Voight et al. 2005; Keinan et al. 2007;
Lohmueller et al. 2009; Wall et al. 2009). For the specific pa-
rameter estimation, we summarize the comparisons among
different studies in tables 5 and 6. Our result shows that the
Yoruba had an ancient population size (Nanc) of �13,000
recovering to a present size (Ncur) of �22,900. This is in
good agreement with previous studies (Nanc 9,069–12,500;
Ncur 16,233–31,000, tables 5 and 6). The time of expansion
Texp varies considerably among different studies. Although
our estimate of 806 generations (�20 thousand years ago
[kya]) is close to previous estimates of 27 kya (Adams and
Hudson 2004) and 25 kya (Voight et al. 2005), other studies
gave much older estimates (186–425 kya, tables 5 and 6).
Results from Li et al. revealed two waves of expansions (or
bottlenecks depending on the perspectives), one earlier (200–
600 kya) and one later (�20 kya) (Li and Durbin 2011). This
suggests that different methods may have captured either of
the two inferred periods of growth. The more recent expan-
sion given by our result coincides with that of Li and Durbin
(2011) and the last glacial maximum.

For the European demography, our estimates of the an-
cient population size (Nanc �10,000) and current population
size (Ncur �18,300) are also similar to those from previous
studies of Nanc 8,000–10,065 and Ncur 10,000–20,000 (tables 5
and 6).The time when the bottleneck starts (Tbot) and the
time of recovery (Texp) are surprisingly consistent among
most studies, although these two values are usually
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considered difficult to estimate. Other than one study (Marth
et al. 2004) with older time estimates (Tbot �87.5 kya, Texp

�75 kya), the other studies estimated the Tbot to be approx-
imately 31–50 kya and Texp approximately 27.5–40 kya
(tables 5 and 6). Our estimations of 39.5 kya and 32.5 kya
fall into these two ranges. This bottleneck probably corre-
sponds to the Out of Africa dispersion. Estimates of the pop-
ulation size of the bottleneck (Nbot) vary considerably among
studies; our estimate of �3,300 is larger than many such es-
timates (tables 5 and 6). When the inbreeding coefficient F is
calculated (Keinan et al. 2007), our estimate (0.042) is close to
previous estimates of 0.085, 0.02 (Schaffner et al. 2005), and
0.032 (Wall et al. 2009), although much smaller than other
studies of 0.125–0.364 (tables 5 and 6). Li et al. showed a
much reduced population size of approximately 1,200 be-
tween 40 and 20 kya. These suggest that our method may
have underestimated the intensity of the bottleneck. The
precise reason is not clear, but the 95% lower bound of our
Nbot is approximately 2,500, suggesting a lower bottleneck size
is also possible.

We emphasize that this is a preliminary study to demon-
strate the usefulness of the AF-IBD-related statistics. There
are various ways in which we expect the inference can be
improved. For example, we use the mean AF-IBD/IBS as our
inference statistics in this study. In fact, we notice that the
distribution of each AF-IBD/IBS for a given DAF is also sensi-
tive to population size changes (data not shown). This is easy
to understand: subtrees of the same DAF span different
lengths of the coalescent time scale, therefore may be
perturbed by the fluctuating demography at different
times or intensities. The power of the inference methods
may be further improved by using the full distributions of
AF-IBD/IBS.

Moreover, our current computational approach still offers
room for improvement. Although coalescent simulators are
capable of simulating a wide range of demographic scenarios
within a rather short time, simulating full genomes with an
underlying variable recombination map is still computation-
ally quite intensive, especially when every full sequence sim-
ulation needs to be ascertained and corrected for phase
reconstruction error. Although the simulations we carried
out provide support for the overall effectiveness of our ap-
proach, further improvements (under development) should
improve the accuracy of the parameter estimates, especially
for more complex (and hence realistic) models.

In conclusion, we have shown that quite accurate esti-
mates of demographic parameters can be obtained from
ascertained genome-wide SNP data, even for complex under-
lying population histories. Improved inference may also be
achieved by applying more elaborate methods of parameter
estimation, especially when adding more parameters to un-
derlying demographic models. For example, combining the
advantages of ABC and MCMC can lead to improved esti-
mation results (Wegmann et al. 2009). Moreover, with full
sequence data sets becoming available, the limitations of SNP
data will no longer apply. With further work, it might be
possible to find the closed forms of AF-IBS and AF-IBD as
functions of population size change N(�), and nonparametric
methods could potentially be used to infer more realistic
demographic trajectories through time.

Supplementary Material
Supplementary material and figures S1–S4 are available at
Molecular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).

Table 6. Estimated European Demographic Parameters Compared among Different Studies.

Studies Nanc Nbot Ncur Tbot (gen) Tbot (kya) Texp (gen) Texp (kya) F

Marth et al. (2004) 10,000 2,000 20,000 3,500 87.5 3,000 75 0.125

Adams and Hudson (2004) 10,000 1,500 20,000 1,500 37.5 — — —

Wall et al. (2009) — 625 — 1,240 31 1,200 30 0.032

Voight et al. (2005) 10,695 1,065.9 — 2,000 50 1,600 40 0.19

Keinan et al. (2007) 8,712 — — 1,280 32 — — 0.151

Schaffner et al. (2005) 0.085, 0.02

Lohmueller et al. (2009) 8,000 550 10,000 1,500 37.5 1,100 27.5 0.36

This study 10,065 3,300 18,300 1,580 39.5 1,300 32.5 0.042

Table 5. Estimated African Demographic Parameters Compared among Different Studies.

Studies Nanc Ncur Texp (gen) Texp (kya)

Adams and Hudson (2004) 10,000 19,000/31,000 1,080 27

Marth et al. (2004) 10,000 18,000 7,500 187.5

Voight et al. (2005) 10,625 21,304 1,000 25

Keinan et al. (2007) 9,069 16,234 7,440 186

Schaffner et al. (2005) 12,500 24,000 17,000 425

Fagundes et al. (2007) 12,772 206,920 — —

This study 13,601 22,915 806 20.15
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