
The ROracle Package
November 12, 2003

Version 0.5-3

Date 2003-11-05

Title Oracle database interface for R

Author David A. James <dj@research.bell-labs.com> Jake Luciani <jake@agere.com>

Maintainer David A. James <dj@research.bell-labs.com>

Description Oracle database interface (DBI) driver for R. This is a DBI-compliant Oracle
driver based on the ProC/C++ embedded SQL. It implements the DBI version 0.1-4
plus one extension.

Depends R (>= 1.6.0), methods, DBI (>= 0.1-4)

License LGPL version 2 or newer

URL stat.bell-labs.com/RS-DBI, www.omegahat.org

R topics documented:

DBIPreparedStatement-class . 2
OraConnection-class . 3
OraDriver-class . 4
OraObject-class . 5
OraPreparedStatement-class . 5
OraResult-class . 7
Oracle . 8
S4R . 11
dbCallProc-methods . 11
dbCommit-methods . 12
dbConnect-methods . 13
dbDataType-methods . 14
dbDriver-methods . 14
dbGetInfo-methods . 15
dbListTables-methods . 16
dbObjectId-class . 17
dbPrepareStatement-methods . 18
dbPrepareStatement . 19
dbReadTable-methods . 21
dbSendQuery-methods . 22

1

2 DBIPreparedStatement-class

dbSetDataMappings-methods . 23
fetch-methods . 23
isIdCurrent . 24
make.db.names-methods . 25
oraParseConParams . 26
oraSupport . 27
safe.write . 30
summary-methods . 31

Index 32

DBIPreparedStatement-class

Class DBIPreparedStatement

Description

Base class for all DBMS-specific prepared statement objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "DBIObject", directly. Class "DBIResult", directly.

Generator

The main generator is dbPrepareStatement.

Methods

[ROracle dbExecStatement] signature(ps = "DBIPreparedStatement", data = "data.frame"):
...

Author(s)

R-SIG-DB

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

DBI classes: DBIObject-class DBIDriver-class DBIConnection-class DBIResult-class

http://stat.bell-labs.com/RS-DBI

OraConnection-class 3

Examples

Don't run:

drv <- dbDriver("Oracle")

con <- dbConnect(drv, "user/password@dbname")

to do...

End Don't run

OraConnection-class Class OraConnection

Description

Oracle connection class.

Generators

Extends

Class "DBIConnection", directly. Class "OraObject", directly. Class "DBIObject", by
class ”DBIConnection”. Class "dbObjectId", by class ”OraObject”.

Methods

coerce signature(from = "OraConnection", to = "OraResult"): ...

dbCallProc signature(conn = "OraConnection"): ...

dbCommit signature(conn = "OraConnection"): ...

dbConnect signature(drv = "OraConnection"): ...

dbDisconnect signature(conn = "OraConnection"): ...

dbExistsTable signature(conn = "OraConnection", name = "character"): ...

dbGetException signature(conn = "OraConnection"): ...

dbGetInfo signature(dbObj = "OraConnection"): ...

dbGetQuery signature(conn = "OraConnection", statement = "character"): ...

dbListFields signature(conn = "OraConnection", name = "character"): ...

dbListResults signature(conn = "OraConnection"): ...

dbListTables signature(conn = "OraConnection"): ...

dbReadTable signature(conn = "OraConnection", name = "character"): ...

dbRemoveTable signature(conn = "OraConnection", name = "character"): ...

dbRollback signature(conn = "OraConnection"): ...

dbSendQuery signature(conn = "OraConnection", statement = "character"): ...

dbWriteTable signature(conn = "OraConnection", name = "character", value = "data.frame"):
...

summary signature(object = "OraConnection"): ...

4 OraDriver-class

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

DBI classes: OraObject-class OraDriver-class OraConnection-class OraResult-class

Examples

Don't run:

ora <- dbDriver("Oracle")

con <- dbConnect(ora, "user/password@dbname")

End Don't run

OraDriver-class Class OraDriver

Description

An Oracle driver implementing the R/S-Plus database (DBI) API.

Generators

The main generators are dbDriver and Oracle.

Extends

Class "DBIDriver", directly. Class "OraObject", directly. Class "DBIObject", by class
”DBIDriver”. Class "dbObjectId", by class ”OraObject”.

Methods

coerce signature(from = "OraObject", to = "OraDriver"): ...

dbConnect signature(drv = "OraDriver"): ...

dbGetInfo signature(dbObj = "OraDriver"): ...

dbListConnections signature(drv = "OraDriver"): ...

dbUnloadDriver signature(drv = "OraDriver"): ...

summary signature(object = "OraDriver"): ...

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

DBI classes: OraObject-class OraDriver-class OraConnection-class OraResult-class

http://stat.bell-labs.com/RS-DBI
http://stat.bell-labs.com/RS-DBI

OraObject-class 5

Examples

Don't run:

ora <- dbDriver("Oracle")

con <- dbConnect(ora, "user/password@dbname")

End Don't run

OraObject-class Class OraObject

Description

Base class for all Oracle-specific DBI classes

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "DBIObject", directly. Class "dbObjectId", directly.

Methods

coerce signature(from = "OraObject", to = "OraDriver"): ...

dbDataType signature(dbObj = "OraObject"): ...

isSQLKeyword signature(dbObj = "OraObject", name = "character"): ...

make.db.names signature(dbObj = "OraObject", snames = "character"): ...

SQLKeywords signature(dbObj = "OraObject"): ...

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

DBI classes: OraObject-class OraDriver-class OraConnection-class OraResult-class

Examples

Don't run:

ora <- dbDriver("Oracle")

con <- dbConnect(ora, "user/password@dbname")

End Don't run

http://stat.bell-labs.com/RS-DBI

6 OraPreparedStatement-class

OraPreparedStatement-class

Oracle Prepared Statement

Description

A class that encapsulates the information on an Oracle prepared statement

Objects from the Class

Use the method dbPrepareStatement to create an Oracle prepared statement and dbEx-
ecStatement to re-bind new data and execute the cached statement.

Slots

Id: an opaque reference into the prepared statement.

Extends

Class "DBIPreparedStatement", directly. Class "OraResult", directly. Class "DBIOb-
ject", by class ”DBIPreparedStatement”. Class "DBIResult", by class ”OraResult”. Class
"OraObject", by class ”OraResult”. Class "dbObjectId", by class ”OraResult”.

Methods

dbExecStatement signature(ps = "OraPreparedStatement", data = "data.frame"):
executes a prepared statement re-binding new data to it.

dbGetInfo signature(dbObj = "OraPreparedStatement"): returns a list of metadata
associated with the prepared statement.

summary signature(object = "OraPreparedStatement"): writes a brief summary of
the status of the prepared statement.

Background

Oracle’s prepared statements (like other RDBMS’) are SQL statements that are parsed and
cached to increase performance when the SQL code is to be executed repeatedly but with
different data; for instance when inserting the rows of a data.frame into a table the SQL
for each row is exactly the same, only the row data changes.

The function dbPrepareStatement creates objects that extend the base class DBIPrepared-
Statement. These objects are simple references into C structures that store the various
aspects (the text of the SQL statement, sets of buffers for transferring data back and forth,
etc).

The function dbExecStatement takes a prepared statement object and a data.frame and
binds one or more of its columns to the RDBMS table or object according to the specification
in the prepared statement.

Note

As of the DBI version 0.1-5 prepared statements are not part of the R/S Database Interface
definition (DBI).

OraResult-class 7

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

DBI classes: OraObject-class OraDriver-class OraConnection-class OraResult-class
OraPreparedStatement-class

Examples

Don't run:

ora <- dbDriver("Oracle")

con <- dbConnection(ora, "user/password")

ps <- dbPrepareStatement(con,

"INSERT into QUAKES (lat, long_1) VALUES (:1, :2)",

bind = c("numeric", "numeric"))

dbExecStatement(ps, quakes)

dbCommit(con)

End Don't run

OraResult-class Class OraResult

Description

Oracle’s query results class. This classes encapsulates the result of an SQL statement (either
select or not).

Generators

The main generator is dbSendQuery.

Extends

Class "DBIResult", directly. Class "OraObject", directly. Class "DBIObject", by class
”DBIResult”. Class "dbObjectId", by class ”OraObject”.

Methods

coerce signature(from = "OraConnection", to = "OraResult"): ...

dbClearResult signature(res = "OraResult"): ...

dbColumnInfo signature(res = "OraResult"): ...

dbGetException signature(conn = "OraResult"): ...

dbGetInfo signature(dbObj = "OraResult"): ...

dbGetRowCount signature(res = "OraResult"): ...

dbGetRowsAffected signature(res = "OraResult"): ...

dbGetStatement signature(res = "OraResult"): ...

dbHasCompleted signature(res = "OraResult"): ...

dbListFields signature(conn = "OraResult", name = "missing"): ...

http://stat.bell-labs.com/RS-DBI

8 Oracle

fetch signature(res = "OraResult", n = "numeric"): ...

fetch signature(res = "OraResult", n = "missing"): ...

summary signature(object = "OraResult"): ...

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

DBI classes: OraObject-class OraDriver-class OraConnection-class OraResult-class

Examples

Don't run:

ora <- dbDriver("Oracle")

con <- dbConnect(ora, "user/password@dbname")

End Don't run

Oracle Instantiate an Oracle client from the current R/S-Plus session

Description

This function creates and initializes an Oracle client from the current R/S-Plus session. It
returns an object that allows you to connect to one or several Oracle servers.

Usage

Oracle(max.con = 10, fetch.default.rec = 500, force.reload = F)

Arguments

max.con maximum number of connections that we intend to have open. This can
be up to 10, a limit hard-coded in the current implementation.

fetch.default.rec

number of records to fetch at one time from the database. (The fetch
method uses this number as a default.)

force.reload should we reload (reinitialize) the client code? Setting this to TRUE allows
you to change default settings. Notice that all connections should be
closed before re-loading.

Details

This object is a singleton, that is, on subsequent invocations it returns the same initialized
object.

This implementation allows you to connect to multiple host servers and run multiple con-
nections on each server simultaneously.

http://stat.bell-labs.com/RS-DBI

Oracle 9

Value

An object OraDriver whose class extends DBIDriver and the mixin (helper) class dbObjectId.
This object is used to create connections, using the function dbConnect, to one or several
Oracle database engines.

Side Effects

The R/S-Plus client part of the database communication is initialized, but note that con-
necting to the database engine needs to be done through calls to dbConnect.

Oracle user authentication

In order to establish a connection to an Oracle server users need to provide a user name,
a password, and possibly an “Oracle SID” (i.e., a database name); by default the Oracle
SID is taken from the environment variable $ORACLE_SID. The function dbConnect allows
authentication strings similar to the Oracle monitor SQL*Plus, namely, a string of any of
the following forms:

1. "user/passsword"

2. "user/password@dbname"

3. "/" (provided the Oracle server is set up to use the underlying operating system users
and passwords);

Prepared statements and data.frame bindings

As of version 0.5-0, ROracle implements R/S-Plus data binding to prepared SQL state-
ments. This is done in two stages with the functions dbPrepareStatement and dbExecStatement.

In the first stage of preparing a statement column numbers are embedded inside the SQL
statement, e.g., "insert into my_table (id, name, val) VALUES (:1, :3, :2)" and
the S class of those columns are specified in the bind= argument to dbPrepareStatement

In the second stage dbExecStatement binds the pre-specified columns from a supplied data=
data frame to the SQL statement and the SQL statement is executed once for each row in
the input data frame. This step can be repeated with new data as many times as needed.

It is very important to note that typically a prepared statement implicitly will define a
new transaction which needs to be explicitly committed with dbCommit or rolled back with
dbRollback.

The current implementation allows only primitive types c("numeric", "integer", "logical",
"character") for binding.

Transactions

The current implementation directly supports transaction commits and rollbacks on a
connection-wide basis through calls to dbCommit and dbRollback. Save points are not yet
directly implemented, but you may be able to define them and rollback to them through
calls to dynamic SQL with dbGetQuery.

Notice that Oracle (and ANSI/ISO compliant DBMS) transactions are implicitly started
when data definition SQL are executed (create table, etc.), which helper functions like
dbWriteTable may execute behind the scenes. You may want or need to commit or roll
back your work before issuing any of these helper functions.

10 Oracle

References

For more details on the R/S-Plus database interface see the PDF file DBI.pdf under the
doc directory of this package, http://stat.bell-labs/RS-DBI, and the Omega Project
for Statistical Computing at http://www.omegahat.org.

See the documentation at the Oracle Web site http://www.oracle.com for details.

Author(s)

David A. James

See Also

On database managers:

dbDriver Oracle dbUnloadDriver

On connections:

dbConnect dbDisconnect

On queries, prepared statements, and result objects:

dbSendQuery fetch dbGetQuery dbClearResult dbPrepareStatement dbExecStatement

On transaction management:

dbCommit dbRollback

On meta-data:

dbGetInfo summary dbListTables dbListFields dbListConnections dbListResults dbGetException
dbGetStatement dbHasCompleted dbGetRowCount dbGetAffectedRows

Examples

Don't run:

create a Oracle instance and create one connection.

ora <- Oracle() ## or dbDriver("Oracle")

con <- dbConnect(ora, user = "opto", password="pure-light", db="oras")

you can also use Oracle's user/password@dbname convention

con2 <- dbConnect(ora, user = "opto/pure-light@oras")

or if you have defined the ORACLE_SID shell variable

con3 <- dbConnect(ora, user = "opto", password = "pure-light")

clone an existing connection

w <- dbConnect(con)

execute a statement and fetch its output in chunks of no more

than 5000 rows at a time

rs <- dbSendQuery(con, "select * from HTTP_ACCESS where IP_ADDRESS='127.0.0.1'")

while(!dbHasCompleted(rs)){

df <- fetch(rs, n = 5000)

process(df)

}

dbHasCompleted(rs)

[1] TRUE

dbClearResult(rs) ## done with this query

http://stat.bell-labs/RS-DBI
http://www.omegahat.org
http://www.oracle.com

S4R 11

[1] TRUE

prepare and bind columns 2, 3, and 7 to the Oracle table

fields "cell", "erlangs", "blocking"

ps <- dbPrepareStatement(con,

"INSERT into my_table (cell, erlangs, blocking) VALUE (:2,:3,:7)",

bind = my.data.frame)

execute one sql INSERT per row using columns 2, 3 and 7

ps <- dbExecStatement(ps, my.data.frame)

ps <- dbExecStatement(ps, more.data)

dbCommit(con) ## ok, everything looks fine

a concise description of the driver

summary(ora)

<OraDriver:(24694)>

Driver name: Oracle (ProC/C++)

Max connections: 10

Conn. processed: 9

Default records per fetch: 500

Open connections: 2

a full description of the ora connection

summary(con, verbose = T)

<OraConnection:(25272,0)>

User: opto

Dbname: oras

Oracle Server version:

Oracle8 Enterprise Edition Release 8.0.4.0.0 - Production

PL/SQL Release 8.0.4.0.0 - Production

CORE Version 4.0.4.0.0 - Production

TNS for Solaris: Version 8.0.4.0.0 - Production

NLSRTL Version 3.3.1.0.0 - Production

dbDisconnect(con) ## done with this connection

[1] TRUE

End Don't run

S4R R compatibility with S version 4/S-Plus 5+ support functions

Description

These objects ease the task of porting functions into R from S Version 4 and S-Plus 5.0
and later. See the documentation of the lower-case functions there. May be obsolete in the
future.

Usage

usingR(major, minor)

12 dbCommit-methods

dbCallProc-methods Call an SQL stored procedure

Description

Not yet implemented.

Methods

conn a OraConnection object.

. . . additional arguments are passed to the implementing method.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbReadTable.

dbCommit-methods DBMS Transaction Management

Description

Commits or roll backs the current transaction in an Oracle connection

Methods

conn a OraConnection object, as produced by the function dbConnect.

. . . currently unused.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbReadTable.

http://stat.bell-labs.com/RS-DBI
http://stat.bell-labs.com/RS-DBI

dbConnect-methods 13

Examples

Don't run:

drv <- dbDriver("Oracle")

con <- dbConnect(drv, "user/password@SID")

rs <- dbSendQuery(con,

"delete * from PURGE as p where p.wavelength<0.03")

if(dbGetInfo(rs, what = "rowsAffected") > 250){

warning("dubious deletion -- rolling back transaction")

dbRollback(con)

}

End Don't run

dbConnect-methods Create a connection object to an Oracle DBMS

Description

These methods are straight-forward implementations of the corresponding generic functions.

Methods

drv an object of class OraDriver, or the character string ”Oracle” or an OraConnection.

conn an OraConnection object as produced by dbConnect.

username string of the Oracle login name.

password string with the Oracle password.

dbname string with the Oracle SID, System Identification (database name). The default
takes this fromt the environment variable ORACLE_SID.

. . . Must specify user, password and optionally dbname. Also you may specify an Oracle
connection string, e.g., ”user/password@SID”.

Side Effects

A connection between R/S-Plus and an Oracle server is established. The current imple-
mentation supports up to 10 simultaneous connections.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbReadTable.

http://stat.bell-labs.com/RS-DBI

14 dbDataType-methods

Examples

Don't run:

create an Oracle instance and create one connection.

drv <- dbDriver("Oracle")

open the connection using user, passsword, etc., as

con <- dbConnect(drv, "user/password@dbname")

Run an SQL statement by creating first a resultSet object

rs <- dbSendQuery(con, statement = paste(

"SELECT w.laser_id, w.wavelength, p.cut_off",

"FROM WL w, PURGE P",

"WHERE w.laser_id = p.laser_id",

"SORT BY w.laser_id")

we now fetch records from the resultSet into a data.frame

data <- fetch(rs, n = -1) # extract all rows

dim(data)

End Don't run

dbDataType-methods Determine the SQL Data Type of an S object

Description

This method is a straight-forward implementation of the corresponding generic function.

Methods

dbObj a OraDriver object, e.g., ODBCDriver, OracleDriver.

obj R/S-Plus object whose SQL type we want to determine.

. . . any other parameters that individual methods may need.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

isSQLKeyword make.db.names

Examples

Don't run:

data(quakes)

drv <- dbDriver("Oracle")

sql.type <- dbDataType(drv, quakes)

End Don't run

http://stat.bell-labs.com/RS-DBI

dbDriver-methods 15

dbDriver-methods Oracle implementation of the Database Interface (DBI) classes
and drivers

Description

Oracle driver initialization and closing

Methods

drvName character name of the driver to instantiate.

drv an object that inherits from OraDriver as created by dbDriver.

... any other arguments are passed to the driver drvName.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo, dbListTables,
dbReadTable.

Examples

Don't run:

create an Oracle instance and set 10000 of rows per fetch.

m <- dbDriver("Oracle", fetch.default.records=10000)

con <- dbConnect(m, username="usr", password = "pwd",

dbname = "iptraffic")

rs <- dbSubmitQuery(con,

"select * from HTTP_ACCESS where IP_ADDRESS = '127.0.0.1'")

df <- fetch(rs, n = 50)

df2 <- fetch(rs, n = -1)

dbClearResult(rs)

pcon <- dbConnect(p, "user", "password", "dbname")

dbListTables(pcon)

End Don't run

dbGetInfo-methods Database interface meta-data

Description

These methods are straight-forward implementations of the corresponding generic functions.

http://stat.bell-labs.com/RS-DBI

16 dbListTables-methods

Methods

dbObj any object that implements some functionality in the R/S-Plus interface to databases
(a driver, a connection or a result set).

res an OraResult.

. . . currently not being used.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbDriver, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo,
dbListTables, dbReadTable.

Examples

Don't run:

drv <- dbDriver("Oracle")

con <- dbConnect(drv, "user/passwd@dbname")

dbListTables(con)

rs <- dbSendQuery(con, query.sql)

dbGetStatement(rs)

dbHasCompleted(rs)

info <- dbGetInfo(rs)

names(dbGetInfo(drv))

DBIConnection info

names(dbGetInfo(con))

DBIResult info

names(dbGetInfo(rs))

End Don't run

dbListTables-methods List items from an Oracle DBMS and from objects

Description

These methods are straight-forward implementations of the corresponding generic functions.

Methods

drv an OraDriver.

conn an OraConnection.

name a character string with the table name.

. . . currently not used.

http://stat.bell-labs.com/RS-DBI

dbObjectId-class 17

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbGetInfo, dbColumnInfo, dbDriver, dbConnect, dbSendQuery

Examples

Don't run:

drv <- dbDriver("Oracle")

after working awhile...

for(con in dbListConnections(drv)){

dbGetStatement(dbListResults(con))

}

End Don't run

dbObjectId-class Class dbObjectId

Description

A helper (mixin) class to provide external references in an R/S-Plus portable way.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

Id: Object of class "integer" this is an integer vector holding an opaque reference into a
C struct (may or may not be a C pointer, may or may not have length one).

Methods

coerce signature(from = "dbObjectId", to = "integer"): ...

coerce signature(from = "dbObjectId", to = "numeric"): ...

coerce signature(from = "dbObjectId", to = "character"): ...

format signature(x = "dbObjectId"): ...

print signature(x = "dbObjectId"): ...

show signature(object = "dbObjectId"): ...

Note

A cleaner mechanism would use external references, but historically this class has existed
mainly for R/S-Plus portability.

http://stat.bell-labs.com/RS-DBI

18 dbPrepareStatement-methods

Examples

Don't run:

pg <- dbDriver("PostgreSQL")

con <- dbConnect(pg, "user", "password")

is(pg, "dbObjectId") ## True

is(con, "dbObjectId") ## True

isIdCurrent(con) ## True

q("yes")

\$ R

isIdCurrent(con) ## False

End Don't run

dbPrepareStatement-methods

Create a prepared SQL statement for repeated execution

Description

These methods parse and cache SQL statements and binds R data for repeated execution.

Details

Prepared statements are SQL statements that are parsed and cached to increase perfor-
mance when the SQL code is to be executed repeatedly but with different data.

There are three distinct operations involved with prepared statements: parsing and caching
the SQL statement, binding data.frame columns to the SQL, and executing the code
(possibly repeatedly).

The function dbPrepareStatement takes a connection where to parse and cache the SQL
code. Part of this operation is to embed references to data.frame column numbers in the
SQL code and to specify their classes through the bind= argument. The ROracle package
uses :n inside the SQL statement to bind the n′th column, but other RDBMSs use the
question mark to signal a place holder, e.g., ?n.

The object that dbPrepareStatement produces is then used together with a data.frame
(which should agree with the bound specification) in calls to dbExecStatement to be exe-
cuted for each row of the data.frame. This can be repeated with new data.

Embedding column names, instead of column numbers, is not supported, since some valid
S names are not legal SQL names (e.g., S names with dots "." in them).

Value

An object whose class extends DBIPreparedStatement.

In the current ROracle implementation the OraPreparedStatement class specializes (ex-
tends) OraResultSet, thus prepared statment objects inherit all result set methods, e.g.,
fetch, dbClearResult, dbGetStatement, dbGetRowsAffected.

dbPrepareStatement 19

Methods

conn a database connection

statement a string with an SQL statement, possibly with embedded column number spec-
ifications of the form :columnNum (e.g., :1,:2,:6) for binding those columns in the
data argument to dbExecStatement.

bind a character vector parallel to the column specifications describing their S classes (e.g.,
"character", "numeric"). You may supply a data.frame, in which case bind= is set
to sapply(data, class).

ps a prepared statement object as produced by dbPrepareStatement.

data a data.frame whose columns are to be bound to the SQL statement.

. . . other arguments are passed to the driver implementation. For instance, the argument
ora.buf.size is used to specify the size of Oracle’s internal binding buffers (ROracle
sets these to 500 elements by default).

Note

These functions are ROracle extensions to the DBI as of version 0.1-7.

See Also

DBIPreparedStatement-class OraPreparedStatement-class OraResult-class dbSendQuery
dbGetQuery dbGetInfo summary

Examples

Don't run:

con <- dbConnection("Oracle", "user/password")

ps <- dbPrepareStatement(con,

"INSERT into QUAKES (lat, long1, mag) VALUES (:1, :2, :4)",

bind = c("numeric", "numeric", "numeric"))

dbExecStatement(ps, data = quakes)

dbExecStatement(ps, data = more.quakes)

...

dbExecStatement(ps, data = yet.more.quakes)

how many rows have we (tentatively) inserted?

summary(ps)

everything looks fine, so let's commit and wrap up

dbCommit(con)

dbClearResult(ps)

End Don't run

dbPrepareStatement Create a prepared SQL statement for repeated execution

Description

These functions parse and cache SQL statements and binds S data for repeated execution.

20 dbPrepareStatement

Usage

dbPrepareStatement(conn, statement, bind, ...)
dbExecStatement(ps, data, ...)

Arguments

conn a database connection
statement a string with an SQL statement, possibly with embedded column number

specifications of the form :columnNum (e.g., :1,:2,:6) for binding those
columns in the data argument to dbExecStatement.

bind a character vector parallel to the column specifications describing their S
classes (e.g., "character", "numeric"). You may supply a data.frame,
in which case bind= is set to sapply(data, class).

ps a prepared statement object as produced by dbPrepareStatement.
data a data.frame whose columns are to be bound to the SQL statement.
... other arguments are passed to the driver implementation. For instance,

the argument ora.buf.size is used to specify the size of Oracle’s internal
binding buffers (ROracle sets these to 500 elements by default).

Details

Prepared statements are SQL statements that are parsed and cached to increase perfor-
mance when the SQL code is to be executed repeatedly but with different data.

There are three distinct operations involved with prepared statements: parsing and caching
the SQL statement, binding data.frame columns to the SQL, and executing the code
(possibly repeatedly).

The function dbPrepareStatement takes a connection where to parse and cache the SQL
code. Part of this operation is to embed references to data.frame column numbers in the
SQL code and to specify their classes through the bind= argument. The ROracle package
uses :n inside the SQL statement to bind the n′th column, but other RDBMSs use the
question mark to signal a place holder, e.g., ?n.

The object that dbPrepareStatement produces is then used together with a data.frame
(which should agree with the bound specification) in calls to dbExecStatement to be exe-
cuted for each row of the data.frame. This can be repeated with new data.

Embedding column names, instead of column numbers, is not supported, since some valid
S names are not legal SQL names (e.g., S names with dots "." in them).

Value

An object whose class extends DBIPreparedStatement.

In the current ROracle implementation the OraPreparedStatement class specializes (ex-
tends) OraResultSet, thus prepared statment objects inherit all result set methods, e.g.,
fetch, dbClearResult, dbGetStatement, dbGetRowsAffected.

Note

These functions are ROracle extensions to the DBI as of version 0.1-7.

See Also

OraPreparedStatement-class OraResult-class dbSendQuery dbGetQuery dbGetInfo summary

dbReadTable-methods 21

Examples

Don't run:

con <- dbConnection("Oracle", "user/password")

ps <- dbPrepareStatement(con,

"INSERT into QUAKES (lat, long1, mag) VALUES (:1, :2, :4)",

bind = c("numeric", "numeric", "numeric"))

dbExecStatement(ps, data = quakes)

dbExecStatement(ps, data = more.quakes)

...

dbExecStatement(ps, data = yet.more.quakes)

how many rows have we (tentatively) inserted?

summary(ps)

everything looks fine, so let's commit and wrap up

dbCommit(con)

dbClearResult(ps)

End Don't run

dbReadTable-methods Convenience functions for Importing/Exporting DBMS tables

Description

These functions mimic their R/S-Plus counterpart get, assign, exists, remove, and
objects, except that they generate code that gets remotely executed in a database en-
gine.

Value

A data.frame in the case of dbReadTable; otherwise a logical indicating whether the oper-
ation was successful.

Methods

conn an OraConnection database connection object.
name a character string specifying a table name.
value a data.frame (or coercible to data.frame).
row.names in the case of dbReadTable, this argument can be a string or an index specify-

ing the column in the DBMS table to be used as row.names in the output data.frame
(a NULL, "", or 0 specifies that no column should be used as row.names in the output).
In the case of dbWriteTable, this argument should be a logical specifying whether the
row.names should be output to the output DBMS table; if TRUE, an extra field whose
name will be whatever the R/S-Plus identifier "row.names" maps to the DBMS (see
make.db.names).

overwrite a logical specifying whether to overwrite an existing table or not. Its default is
FALSE.

append a logical specifying whether to append to an existing table in the DBMS. Its
default is FALSE.

. . . any optional arguments.

22 dbSendQuery-methods

Note

Note that the data.frame returned by dbReadTable only has primitive data, e.g., it does
not coerce character data to factors.

Oracle table names are not case sensitive, e.g., table names ABC and abc are considered
equal.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbDriver, dbConnect, dbSendQuery, dbGetQuery, fetch, dbCommit, dbGetInfo,
dbListTables, dbReadTable.

Examples

Don't run:

conn <- dbConnect("Oracle", "user/password@SID")

if(dbExistsTable(con, "fuel_frame")){

dbRemoveTable(conn, "fuel_frame")

dbWriteTable(conn, "fuel_frame", fuel.frame)

}

if(dbExistsTable(conn, "RESULTS")){

dbWriteTable(conn, "RESULTS", results2000, append = T)

else

dbWriteTable(conn, "RESULTS", results2000)

}

End Don't run

dbSendQuery-methods Execute a statement on a given database connection

Description

These methods are straight-forward implementations of the corresponding generic functions.

Methods

conn an OraConnection object.

statement a character vector of length 1 with the SQL statement.

res an OraResult object.

. . . additional parameters.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

http://stat.bell-labs.com/RS-DBI
http://stat.bell-labs.com/RS-DBI

dbSetDataMappings-methods 23

See Also

Oracle, dbDriver, dbConnect, fetch, dbCommit, dbGetInfo, dbReadTable.

Examples

Don't run:

drv <- dbDriver("Oracle")

con <- dbConnect(drv, "usr", "password", "sid")

res <- dbSendQuery(con, "SELECT * from liv25")

data <- fetch(res, n = -1)

End Don't run

dbSetDataMappings-methods

Set data mappings between Oracle and R/S-Plus

Description

Not yet implemented

Methods

res a OraResult object as returned by dbSendQuery.

flds a data.frame with field descriptions as returned by dbColumnInfo.

. . . any additional arguments are passed to the implementing method.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbSendQuery, fetch, dbColumnInfo.

Examples

Don't run:

makeImage <- function(x) {

.C("make_Image", as.integer(x), length(x))

}

res <- dbSendQuery(con, statement)

flds <- dbColumnInfo(res)

flds[3, "Sclass"] <- makeImage

dbSetDataMappings(rs, flds)

im <- fetch(rs, n = -1)

End Don't run

http://stat.bell-labs.com/RS-DBI

24 fetch-methods

fetch-methods Fetch records from a previously executed query

Description

This method is a straight-forward implementation of the corresponding generic function.

Details

The ROracle implementations retrieves only n records, and if n is missing it only returns
up to fetch.default.rec as specified in the call to Oracle (500 by default).

Methods

res an OraResult object.

n maximum number of records to retrieve per fetch. Use n = -1 to retrieve all pending
records; use a value of n = 0 for fetching the default number of rows fetch.default.rec
defined in the Oracle initialization invocation.

. . . currently not used.

References

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbConnect, dbSendQuery, dbGetQuery, dbClearResult, dbCommit, dbGetInfo,
dbReadTable.

Examples

Don't run:

drv <- dbDriver("Oracle")

con <- dbConnect(drv, "user/password@SID")

res <- dbSendQuery(con, statement = paste(

"SELECT w.laser_id, w.wavelength, p.cut_off",

"FROM WL w, PURGE P",

"WHERE w.laser_id = p.laser_id",

"ORDER BY w.laser_id"))

we now fetch the first 100 records from the resultSet into a data.frame

data1 <- fetch(res, n = 100)

dim(data1)

dbHasCompleted(res)

let's get all remaining records

data2 <- fetch(res, n = -1)

End Don't run

http://stat.bell-labs.com/RS-DBI

isIdCurrent 25

isIdCurrent Check whether an dbObjectId handle object is valid or not

Description

Support function that verifies that an dbObjectId holding a reference to a foreign object is
still valid for communicating with the RDBMS

Usage

isIdCurrent(obj)

Arguments

obj any dbObjectId (e.g., dbDriver, dbConnection, dbResult).

Details

dbObjectId are R/S-Plus remote references to foreign (C code) objects. This introduces
differences to the object’s semantics such as persistence (e.g., connections may be closed
unexpectedly), thus this function provides a minimal verification to ensure that the foreign
object being referenced can be contacted.

Value

a logical scalar.

See Also

dbDriver dbConnect dbSendQuery dbGetQuery fetch

Examples

Don't run:

cursor <- dbSendQuery(con, sql.statement)

isIdCurrent(cursor)

End Don't run

make.db.names-methods

Make R/S-Plus identifiers into legal SQL identifiers

Description

These methods are straight-forward implementations of the corresponding generic functions.

26 make.db.names-methods

Methods

dbObj any Oracle object (e.g., OraDriver).

snames a character vector of R/S-Plus identifiers (symbols) from which we need to make
SQL identifiers.

name a character vector of SQL identifiers we want to check against keywords from the
DBMS.

unique logical describing whether the resulting set of SQL names should be unique. Its
default is TRUE. Following the SQL 92 standard, uniqueness of SQL identifiers is de-
termined regardless of whether letters are upper or lower case.

allow.keywords logical describing whether SQL keywords should be allowed in the re-
sulting set of SQL names. Its default is TRUE

keywords a character vector with SQL keywords, namely .SQL92Keywords defined in the
DBI package.

case a character string specifying whether to make the comparison as lower case, upper
case, or any of the two. it defaults to any.

. . . currently not used.

References

The set of SQL keywords is stored in the character vector .SQL92Keywords and reflects
the SQL ANSI/ISO standard as documented in ”X/Open SQL and RDA”, 1994, ISBN
1-872630-68-8. Users can easily override or update this vector.

Oracle does add some keywords to the SQL 92 standard, they are listed in the .OraKeywords
object.

See the Database Interface definition document DBI.pdf in the base directory of this package
or http://stat.bell-labs.com/RS-DBI.

See Also

Oracle, dbReadTable, dbWriteTable, dbExistsTable, dbRemoveTable, dbListTables.

Examples

Don't run:

This example shows how we could export a bunch of data.frames

into tables on a remote database.

con <- dbConnect("Oracle", "user", "password")

export <- c("trantime.email", "trantime.print", "round.trip.time.email")

tabs <- make.db.names(export, unique = T, allow.keywords = T)

for(i in seq(along = export))

dbWriteTable(con, name = tabs[i], get(export[i]))

End Don't run

http://stat.bell-labs.com/RS-DBI

oraParseConParams 27

oraParseConParams Parse an Oracle connection string

Description

Parse an oracle connections string of the form ”user/password@dbname” to determine the
three Oracle’s connection parameters ”username”, ”passwd” and ”dbname”.

Usage

oraParseConParams(username="", password="", dbname=ifelse(usingR(), Sys.getenv("ORACLE_SID"), getenv("ORACLE_SID")))

Arguments

username a character string of the form ”username/passwd@dbname”. Default is ””.

password an optional password. If non-empty and there’s also a password in the
connection string username, this password overrides the one in username.
Default is ””.

dbname an optional database name (Oracle SID). If non-empty and there’s also
a database name in the connection string username, this database name
overrides the one in username.

Details

Both username and password may be emtpy, in which case the username is set to ”/”; this
instructs Oracle to use the operating system user/password authentication (Oracle needs
to be set up to do this.)

Value

A 3-element character vector with the username, passwd, and dbname suitable for a call to
dbConnect.

References

http://stat.bell-labs.com/RS-DBI

See Also

dbConnect, Oracle

Examples

Don't run:

conParams <- parse.OraConParams("user/pwd@dbname")

End Don't run

28 oraSupport

oraSupport Support Functions

Description

These functions are the workhorse behind the ROracle package, but users need not invoke
these directly.

Usage

OraDriver-related
oraInitDriver(max.con=10, fetch.default.rec = 500, force.reload=FALSE)
oraDriverInfo(obj, what)
oraDescribeDriver(obj, verbose = FALSE, ...)
oraCloseDriver(drv, ...)

OraConnection-related
oraNewConnection(drv, username="", password="",

dbname = if(usingR()) Sys.getenv("ORACLE_SID") else getenv("ORACLE_SID"),
max.results = 1)

oraCloneConnection(drv, ...)
oraConnectionInfo(obj, what)
oraDescribeConnection(obj, verbose = FALSE, ...)
oraCloseConnection(con, ..., force = FALSE)
ora9.workaround(con)

OraResult-related
oraExecStatement(ps, data = NULL, ora.buf.size = -1)
oraFetch(res, n=0, ..., ora.buf.size)
oraQuickSQL(con, statement, ...)
oraExecDirect(con, statement, ora.buf.size = 500)
oraResultInfo(obj, what)
oraDescribeResult(obj, verbose = FALSE, ...)
oraCloseResult(res, ...)

OraPreparedStatement-related
oraPrepareStatement(con, statement, bind)
oraExecStatement(ps, data, ora.buf.size)
oraDescribePreparedStatement(obj, verbose, ...)
oraPreparedStatementInfo(obj, what, ...)
oraBoundParamsInfo(obj)

transactions
oraCommit(conn, ...)
oraRollback(conn, ...)

data mappings and convenience functions
oraDataType(obj, ...)
oraReadTable(con, name, row.names = "row.names", check.names = TRUE, ...)
oraWriteTable(con, name, value, field.oraTypes, row.names = TRUE,

overwrite=FALSE, append=FALSE, ...)

oraSupport 29

oraTableFields(con, name, ...)

Arguments

max.con positive integer specifying maximum number of open connections. The
current default of 10 is hardcoded in the C code.

fetch.default.rec

default number of rows to fetch (move to R/S-Plus). This default is used
in oraFetch. The default is 500.

force.reload logical indicating whether to re-initialize the driver. This may be useful
if you want to change the defaults (e.g., fetch.default.rec). Note that
the driver is a singleton (subsequent inits just returned the previously
initialized driver, thus this argument).

obj any of the Oracle DBI objects (e.g., OraConnection, OraResult).
what character vector of metadata to extract, e.g., ”version”, ”statement”, ”isS-

elect”.
verbose logical controlling how much information to display. Defaults to FALSE.
drv an OraDriver object as produced by oraInit.
con an OraConnection object as produced by oraNewConnection and oraCloneConnection.
conn an OraConnection object as produced by oraNewConnection and oraCloneConnection.
res an OraResult, for instance as produced by oraExecDirect.
ps an OraPreparedStatement object as produce by oraPrepareStatement.
data a data.frame whose columns are to be bound to a prepared statement.
bind a characte vector with the classes of the bound data.frame columns.
ora.buf.size an integer less than or equal to RS_ORA_MAX_BUFFER_SIZE (initially set to

4096) specifying how many rows per fetch should Oracle move at a time.
The ProC/C++ Oracle implementation limits the size of these buffers to
65767/sizeof(field) per column, thus the somewhat low maximum of
4096 rows.

username a character string with the Oracle’s user name. It can also be any of the
Oracle-recognize login strings, e.g., ”user/password”or ”user/password@dbname”.

password character string with the Oracle’s password.
dbname character string with the Oracle System Identification (SID).
max.results positive integer indicating the maximum number of results that Oracle

connections will hold open. The current default of 1 is hardcoded in the
C code.

force logical indicating whether to close a connection that has open result sets.
The default is FALSE.

statement character string holding one (and only one) SQL statement.
n number of rows to fetch from the given result set. A value of -1 indicates

to retrieve all the rows. The default of 0 specifies to extract whatever the
fetch.default.rec was specified during driver initialization oraInit.

name character vector of names (table names, fields, keywords).
value a data.frame.
field.oraTypes

a list specifying the mapping from R/S-Plus fields in the data.frame value
to SQL data types. The default is sapply(value,SQLDataType), see
OraSQLType.

30 oraSupport

row.names a logical specifying whether to prepend the value data.frame row names
or not. The default is TRUE.

check.names a logical specifying whether to convert DBMS field names into legal S
names. Default is TRUE.

overwrite logical indicating whether to replace the table name with the contents of
the data.frame value. The defauls is FALSE.

append logical indicating whether to append value to the existing table name.

... placeholder for future use.

Value

oraInitDriver returns an OraDriver object.

oraDriverInfo returns a list of name-value metadata pairs.

oraDescribeDriver returns NULL (displays the object’s metadata).

oraCloseDriver returns a logical indicating whether the operation succeeded or not.

oraNewConnection returns an OraConnection object.

oraCloneConnection returns an OraConnection object.

oraConnectionInforeturns a list of name-value metadata pairs.

oraDescribeConnection returns NULL (displays the object’s metadata).

oraCloseConnection returns a logical indicating whether the operation succeeded or not.

oraExecStatement returns an OraResult object.

oraFetch returns a data.frame.

oraQuickSQL returns either a data.frame if the statement is a select-like or NULL oth-
erwise.

oraDescribeResult returns NULL (displays the object’s metadata).

oraCloseResult returns a logical indicating whether the operation succeeded or not.

oraPrepareStatement returns a prepared statement.

oraExecStatement executes (and optionally binds new data) a prepared statement.

oraExecDirect executes a simple (no binding) SQL statement.

oraPreparedStatementInfo list of prepared statement metadata.

oraDescribePreparedStatement a simple print out of the prepared statement status

oraBoundParamsInfo data frame with as many rows as bound parameters with the columns
number and class for the data.frame bindings.

oraReadTable returns a data.frame with the contents of the DBMS table.

oraWriteTable returns a logical indicating whether the operation succeeded or not.

oraTableFields returns a character vector with the table name field names.

oraDataType retuns a character string with the closest

oraResultInfo returns a list of name-value metadata pairs.

oraCommit commits the current transaction in the connection.

oraRollback roll backs the current transaction in the connection.

safe.write 31

Constants

.OraPkgName (currently "ROracle"), .OraPkgVersion (the R package version), .OraPkgRCS
(the RCS revision), .Oracle.NA.string (character that Oracle uses to denote NULL on
input), .OraSQLKeywords (a lot!) .conflicts.OK.

safe.write Write a data.frame avoiding exceeding memory limits

Description

This function batches calls to write.table to avoid exceeding memory limits for very large
data.frames.

Usage

safe.write(value, file, batch, ...)

Arguments

value a data.frame;

file a file object (connection, file name, etc).

batch maximum number of rows to write at a time.

... any other arguments are passed to write.table.

Details

The function has a while loop invoking write.table for subsets of batch rows of value.
Since this is a helper function for oraWriteTable has hardcoded other arguments to
write.table.

Value

NULL, invisibly.

Note

No error checking whatsoever is done.

See Also

write.table

Examples

Don't run:

ctr.file <- file("dump.sqloader", "w")

safe.write(big.data, file = ctr.file, batch = 25000)

End Don't run

32 summary-methods

summary-methods Summarize an Oracle object

Description

These methods are straight-forward implementations of the corresponding generic functions.

Methods

object = ”DBIObject” Provides relevant metadata information on object, for instance,
the Oracle server file, the SQL statement associated with a result set, etc.

from object to be coerced

to coercion class

x object to format or print or show

Index

∗Topic classes
DBIPreparedStatement-class, 1
dbObjectId-class, 16
dbPrepareStatement, 18
dbPrepareStatement-methods, 17
OraConnection-class, 2
OraDriver-class, 3
OraObject-class, 4
OraPreparedStatement-class, 5
OraResult-class, 6

∗Topic database
dbCallProc-methods, 11
dbCommit-methods, 11
dbConnect-methods, 12
dbDataType-methods, 13
dbDriver-methods, 14
dbGetInfo-methods, 14
DBIPreparedStatement-class, 1
dbListTables-methods, 15
dbPrepareStatement, 18
dbPrepareStatement-methods, 17
dbReadTable-methods, 20
dbSendQuery-methods, 21
dbSetDataMappings-methods, 22
fetch-methods, 23
isIdCurrent, 24
make.db.names-methods, 24
Oracle, 7
OraConnection-class, 2
OraDriver-class, 3
OraObject-class, 4
oraParseConParams, 26
OraPreparedStatement-class, 5
OraResult-class, 6
oraSupport, 27
summary-methods, 31

∗Topic datasets
oraSupport, 27

∗Topic interface
dbCallProc-methods, 11
dbCommit-methods, 11
dbConnect-methods, 12
dbDataType-methods, 13

dbDriver-methods, 14
dbGetInfo-methods, 14
DBIPreparedStatement-class, 1
dbListTables-methods, 15
dbPrepareStatement, 18
dbPrepareStatement-methods, 17
dbReadTable-methods, 20
dbSendQuery-methods, 21
dbSetDataMappings-methods, 22
fetch-methods, 23
isIdCurrent, 24
make.db.names-methods, 24
Oracle, 7
OraConnection-class, 2
OraDriver-class, 3
OraObject-class, 4
OraPreparedStatement-class, 5
OraResult-class, 6
oraSupport, 27
summary-methods, 31

∗Topic internal
S4R, 10
safe.write, 30

∗Topic methods
summary-methods, 31

.OraPkgName (oraSupport), 27

.OraPkgRCS (oraSupport), 27

.OraPkgVersion (oraSupport), 27

.OraSQLKeywords (oraSupport), 27

.Oracle.NA.string (oraSupport), 27

.conflicts.OK (oraSupport), 27
[, 2

coerce,dbObjectId,character-method
(summary-methods), 31

coerce,dbObjectId,integer-method
(summary-methods), 31

coerce,dbObjectId,numeric-method
(summary-methods), 31

coerce,OraConnection,OraDriver-method
(summary-methods), 31

coerce,OraConnection,OraResult-method
(summary-methods), 31

33

34 INDEX

coerce,OraObject,OraDriver-method
(summary-methods), 31

coerce,OraResult,OraConnection-method
(summary-methods), 31

coerce-methods (summary-methods), 31

dbCallProc,OraConnection-method
(dbCallProc-methods), 11

dbCallProc-methods, 11
dbClearResult, 9, 17, 19, 23
dbClearResult,OraResult-method

(dbSendQuery-methods), 21
dbClearResult-methods

(dbSendQuery-methods), 21
dbColumnInfo, 16, 22
dbColumnInfo,OraResult-method

(dbGetInfo-methods), 14
dbColumnInfo-methods

(dbGetInfo-methods), 14
dbCommit, 8, 9, 11, 12, 14, 15, 21–23
dbCommit,OraConnection-method

(dbCommit-methods), 11
dbCommit-methods, 11
dbConnect, 8, 9, 11, 12, 14–16, 21–24, 26
dbConnect,character-method

(dbConnect-methods), 12
dbConnect,OraConnection-method

(dbConnect-methods), 12
dbConnect,OraDriver-method

(dbConnect-methods), 12
dbConnect-methods, 12
dbDataType,OraObject-method

(dbDataType-methods), 13
dbDataType-methods, 13
dbDisconnect, 9
dbDisconnect,OraConnection-method

(dbConnect-methods), 12
dbDisconnect-methods

(dbConnect-methods), 12
dbDriver, 3, 9, 15, 16, 21, 22, 24
dbDriver,character-method

(dbDriver-methods), 14
dbDriver-methods, 14
dbExecStatement, 5, 8, 9
dbExecStatement (dbPrepareStatement),

18
dbExecStatement,OraPreparedStatement,data.frame-method

(dbPrepareStatement-methods),
17

dbExecStatement-methods
(dbPrepareStatement-methods),
17

dbExistsTable, 25

dbExistsTable,OraConnection,character-method
(dbReadTable-methods), 20

dbExistsTable-methods
(dbReadTable-methods), 20

dbGetAffectedRows, 9
dbGetDBIVersion-methods

(dbGetInfo-methods), 14
dbGetException, 9
dbGetException,OraConnection-method

(dbSendQuery-methods), 21
dbGetException,OraResult-method

(dbSendQuery-methods), 21
dbGetException-methods

(dbSendQuery-methods), 21
dbGetInfo, 9, 11, 12, 14–16, 18, 19, 21–23
dbGetInfo (dbGetInfo-methods), 14
dbGetInfo,OraConnection-method

(dbGetInfo-methods), 14
dbGetInfo,OraDriver-method

(dbGetInfo-methods), 14
dbGetInfo,OraObject-method

(dbGetInfo-methods), 14
dbGetInfo,OraPreparedStatement-method

(dbGetInfo-methods), 14
dbGetInfo,OraResult-method

(dbGetInfo-methods), 14
dbGetInfo-methods, 14
dbGetQuery, 8, 9, 11, 12, 14, 15, 18, 19,

21, 23, 24
dbGetQuery,OraConnection,character-method

(dbSendQuery-methods), 21
dbGetQuery-methods

(dbSendQuery-methods), 21
dbGetRowCount, 9
dbGetRowCount,OraResult-method

(dbGetInfo-methods), 14
dbGetRowCount-methods

(dbGetInfo-methods), 14
dbGetRowsAffected, 17, 19
dbGetRowsAffected,OraResult-method

(dbGetInfo-methods), 14
dbGetRowsAffected-methods

(dbGetInfo-methods), 14
dbGetStatement, 9, 17, 19
dbGetStatement,OraResult-method

(dbGetInfo-methods), 14
dbGetStatement-methods

(dbGetInfo-methods), 14
dbHasCompleted, 9
dbHasCompleted,OraResult-method

(dbGetInfo-methods), 14
dbHasCompleted-methods

INDEX 35

(dbGetInfo-methods), 14
DBIConnection-class, 2
DBIDriver-class, 2
DBIObject-class, 2
DBIPreparedStatement-class, 18
DBIPreparedStatement-class, 1
DBIResult-class, 2
dbListConnections, 9
dbListConnections,OraDriver-method

(dbListTables-methods), 15
dbListConnections-methods

(dbListTables-methods), 15
dbListFields, 9
dbListFields,OraConnection,character-method

(dbListTables-methods), 15
dbListFields,OraResult,missing-method

(dbListTables-methods), 15
dbListFields-methods

(dbListTables-methods), 15
dbListResults, 9
dbListResults,OraConnection-method

(dbListTables-methods), 15
dbListResults-methods

(dbListTables-methods), 15
dbListTables, 9, 14, 15, 21, 25
dbListTables,OraConnection-method

(dbListTables-methods), 15
dbListTables-methods, 15
dbObjectId-class, 16
dbPrepareStatement, 1, 5, 8, 9, 18
dbPrepareStatement,OraConnection,character,character-method

(dbPrepareStatement-methods),
17

dbPrepareStatement,OraConnection,character,data.frame-method
(dbPrepareStatement-methods),
17

dbPrepareStatement-methods, 17
dbReadTable, 11, 12, 14, 15, 21–23, 25
dbReadTable,OraConnection,character-method

(dbReadTable-methods), 20
dbReadTable-methods, 20
dbRemoveTable, 25
dbRemoveTable,OraConnection,character-method

(dbReadTable-methods), 20
dbRemoveTable-methods

(dbReadTable-methods), 20
dbRollback, 8, 9
dbRollback,OraConnection-method

(dbCommit-methods), 11
dbRollback-methods

(dbCommit-methods), 11
dbSendQuery, 6, 9, 11, 12, 14–16, 18, 19,

21–24
dbSendQuery,OraConnection,character-method

(dbSendQuery-methods), 21
dbSendQuery-methods, 21
dbSetDataMappings,OraResult,data.frame-method

(dbSetDataMappings-methods),
22

dbSetDataMappings-methods, 22
dbUnloadDriver, 9
dbUnloadDriver,OraDriver-method

(dbDriver-methods), 14
dbUnloadDriver-methods

(dbDriver-methods), 14
dbWriteTable, 8, 25
dbWriteTable,OraConnection,character,data.frame-method

(dbReadTable-methods), 20
dbWriteTable-methods

(dbReadTable-methods), 20

ErrorClass (S4R), 10

fetch, 9, 11, 12, 14, 15, 17, 19, 21, 22, 24
fetch,OraResult,missing-method

(fetch-methods), 23
fetch,OraResult,numeric-method

(fetch-methods), 23
fetch-methods, 23
format,dbObjectId-method

(summary-methods), 31
format-methods (summary-methods), 31

isIdCurrent, 24
isSQLKeyword, 13
isSQLKeyword,OraObject,character-method

(make.db.names-methods), 24
isSQLKeyword-methods

(make.db.names-methods), 24

last.warning (oraSupport), 27

make.db.names, 13, 20
make.db.names,OraObject,character-method

(make.db.names-methods), 24
make.db.names-methods, 24

ora9.workaround (oraSupport), 27
oraBoundParamsInfo (oraSupport), 27
Oracle, 3, 7, 9, 11, 12, 14–16, 21–23, 25,

26
oraCloneConnection (oraSupport), 27
oraCloseConnection (oraSupport), 27
oraCloseDriver (oraSupport), 27
oraCloseResult (oraSupport), 27
oraCommit (oraSupport), 27

36 INDEX

OraConnection-class, 3, 4, 6, 7
OraConnection-class, 2
oraConnectionInfo (oraSupport), 27
oraDataType (oraSupport), 27
oraDescribeConnection (oraSupport),

27
oraDescribeDriver (oraSupport), 27
oraDescribePreparedStatement

(oraSupport), 27
oraDescribeResult (oraSupport), 27
OraDriver-class, 3, 4, 6, 7
OraDriver-class, 3
oraDriverInfo (oraSupport), 27
oraExecDirect (oraSupport), 27
oraExecStatement (oraSupport), 27
oraFetch (oraSupport), 27
oraInitDriver (oraSupport), 27
oraNewConnection (oraSupport), 27
OraObject-class, 3, 4, 6, 7
OraObject-class, 4
oraParseConParams, 26
OraPreparedStatement-class, 6, 18, 19
OraPreparedStatement-class, 5
oraPreparedStatementInfo

(oraSupport), 27
oraPrepareStatement (oraSupport), 27
oraQuickSQL (oraSupport), 27
oraReadTable (oraSupport), 27
OraResult-class, 3, 4, 6, 7, 18, 19
OraResult-class, 6
oraResultInfo (oraSupport), 27
oraRollback (oraSupport), 27
oraSupport, 27
oraTableFields (oraSupport), 27
oraWriteTable, 30
oraWriteTable (oraSupport), 27

print,dbObjectId-method
(summary-methods), 31

S4R, 10
safe.write, 30
show,dbObjectId-method

(summary-methods), 31
show-methods (summary-methods), 31
SQLKeywords,missing-method

(make.db.names-methods), 24
SQLKeywords,OraObject-method

(make.db.names-methods), 24
SQLKeywords-methods

(make.db.names-methods), 24
summary, 9, 18, 19

summary,OraConnection-method
(summary-methods), 31

summary,OraDriver-method
(summary-methods), 31

summary,OraObject-method
(summary-methods), 31

summary,OraPreparedStatement-method
(summary-methods), 31

summary,OraResult-method
(summary-methods), 31

summary-methods, 31

usingR (S4R), 10

write.table, 30

	DBIPreparedStatement-class
	OraConnection-class
	OraDriver-class
	OraObject-class
	OraPreparedStatement-class
	OraResult-class
	Oracle
	S4R
	dbCallProc-methods
	dbCommit-methods
	dbConnect-methods
	dbDataType-methods
	dbDriver-methods
	dbGetInfo-methods
	dbListTables-methods
	dbObjectId-class
	dbPrepareStatement-methods
	dbPrepareStatement
	dbReadTable-methods
	dbSendQuery-methods
	dbSetDataMappings-methods
	fetch-methods
	isIdCurrent
	make.db.names-methods
	oraParseConParams
	oraSupport
	safe.write
	summary-methods
	Index

