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1 Introduction

Firms maximize profits and consumers maximize preferences. This is the core of microeconomics,
and under conventional assumptions about decreasing returns it is an application of convex program-
ming. The paradigm of convex optimization, however, runs even deeper through economic analysis.
The idea that competitive markets perform well, which dates back at least to Adam Smith, has been
interpreted since the neoclassical revolution as a variety of conjugate duality for the primal optimiza-
tion problem of finding Pareto-optimal allocations. The purpose of this entry and the companion entry
on DUALITY is (in part) to explain this sentence. This entry surveys without proof the basic mathemat-
ics of convex sets and convex optimization with an eye towards their application to microeconomic
and general equilibrium theory, some of which can be found under DUALITY.

Unfortunately there is no accessible discussion of concave and convex optimization outside
textbooks and monographs of convex analysis such as Rockafellar (1970,1974). Rather than just
listing theorems, then, this entry attempts to provide a sketch of the main ideas. It is certainly no
substitute for the sources. This entry covers only convex optimization in finite-dimensional vector
spaces. While many of these ideas carry over to infinite-dimensional vector spaces and to important
applications in infinite horizon economies and economies with non-trivial uncertainty, the mathemati-
cal subtleties of infinite-dimensional topological vector spaces raise issues which cannot reasonably
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be treated here. The reader looking only for a statement of the Kuhn-Tucker Theorem is advised to
read backwards from the end, to find the Theorem and notation.

A word of warning: This entry is written from the perspective of constrained maximization
of concave functions because this is the canonical problem in microeconomics. Mathematics texts
typically discuss the constrained minimization of convex functions, so textbook treatments will look
slightly different.

2 Convex Sets

A subset C of a Euclidean space is convex if it contains the line segment connecting any two of
its members. That is, if x and y are vectors in C and t is a number between 0 and 1, the vector
tx + (1− t)y is also in C. A linear combination with non-negative weights which sum to 1 is a convex
combination of elements of C; a set C is convex if it contains all convex combinations of its elements.

The key fact about convex sets is the famous separation theorem. A linear function p from
V to R, and a real number a define a hyperplane, the solutions to the equation p · x = a. Every
hyperplane divides V into two half-spaces; the upper (closed) half-space, containing those vectors x
for which p · x ≥ a, and the lower (closed) half-space, containing those vectors x for which p · x ≤ a.
The separation theorem uses linear functionals to describe closed convex sets. If a given vector is
not in a closed convex set, then there is a hyperplane such that the set lies strictly inside the upper
half-space while the vector lies strictly inside the lower half-space:

Separation Theorem: If C is a closed convex set and x is not in C, then there is a linear functional
p ∈ V∗ and a real number a such that p · y > a for all y ∈ C, and p · x < a.

This theorem implies that every closed convex set is the intersection of the half-spaces containing it.
This half-space description is a dual description of closed convex sets, since it describes them with
elements of the dual space. From the separation theorem the existence of a supporting hyperplane
can also be deduced. If x is on the boundary of a closed convex set C, then there is a (non-zero)
linear functional p such that p · y ≥ p · x for all y ∈ C; p is the hyperplane that supports C at x.

The origin of the term ‘duality’ lies in the mathematical construct of the dual to a vector space.
The dual space of a vector space V is the collection of all linear functionals, that is, real-valued linear
functions, defined on V. The distinction between vector spaces and their duals is obscured in finite
dimensional spaces because each such space is its own dual. If an n-dimensional Euclidean vector
space is represented by column vectors of length n, the linear functionals are 1 × n matrices; that
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is the dual to R
n is R

n. (This justifies the notation used above.) Self-duality (called reflexivity in
the literature) is not generally true in infinite-dimensional spaces, which is reason enough to avoid
discussing them here. Nonetheless, although V will be R

n throughout this entry, the usual notation
V∗ will be used to refer to the dual space of V simply because it is important to know when we are
discussing a vector in V and when we are discussing a member of its dual, a linear functional on V.

If the weights in a linear combination sum to 1 but are not constrained to be non-negative, then
the linear combination is called an affine combination. Just as a convex set is a set which contains
all convex combinations of its elements, an affine set in a vector space V is a set which contains all
affine combinations of its elements. The set containing all affine combinations of elements in a given
set C is an affine set, A(C). The purpose of all this is to define the relative interior of a convex set
C, ri C. The relative interior of a convex set C is the interior of C relative to A(C). A line segment in
R

2 has no interior, but it’s relative interior is everything on the segment but its endpoints.

3 Concave Functions

The neoclassical assumptions of producer theory imply that production functions are concave and
cost functions are convex. The quasi-concave functions which arise in consumer theory share much
in common with concave functions, and quasi-concave programming has a rich duality theory.

In convex programming it is convenient to allow concave functions to take on the value −∞

and convex functions to take on the value +∞. A function f defined on some R
n with range [−∞, ∞)

is concave if the set {(x, a) : a ∈ R, a ≤ f (x)} is convex. This set, a subset of R
n+1, is called

the hypograph of f and is denoted hypo f . Geometrically, it is the set of points in R
n+1 that lie on

or below the graph of f . Similarly, the epigraph of f is the set of points in R
n+1 that lie on or above

the graph of f : epi f = {(x, a) : a ∈ R, a ≥ f (x)}. A function f with range (−∞, ∞] is convex
− f is concave, and convexity of f is equivalent to convexity of the set epi f . Finally, the effective
domain of a concave function is the set dom f = {x ∈ R

n : f (x) > −∞}, and similarly for a convex
function. Those familiar with the literature will note that attention here is restricted to proper concave
and convex functions. Functions that are everywhere +∞ will also be considered concave, and those
everywhere −∞ will be assumed convex when Lagrangeans are discussed below.

Convex optimization does not require that functions be differentiable or even continuous. Our
main tool is the separation theorem, and for that closed convex sets are needed. A concave function f
is upper semi-continuous (usc) if its hypograph is closed; a convex function is lower semi-continuous
(lsc) if its epigraph is closed. Upper and lower semi-continuity apply to any functions, but these
concepts interact nicely conveniently with convex and concave functions. In particular, usc concave
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and lsc convex functions are continuous on the relative interiors of their domain. A famous example
of a usc concave function that fails to be continuous is f (x, y) = −y2/2x for x > 0, 0 at the origin
and −∞ otherwise. Along the curve y =

√
αx, y → 0 as x → 0, but f is constant at −α/2, so f is

not continuous at (0, 0), but it is usc because the supremum of the limits at the origin is 0.

It is useful to know that if f is concave and usc, then f (x) = inf q(x) = a · x + b where the
infimum is taken over all affine functions that are everywhere at least as big as f . This is another way
of saying that, since hypo f is closed, it is the intersection of all halfspaces containing it.

4 The Fenchel Transform

The concave Fenchel transform associates with each usc function on a Euclidean space V, not
necessarily concave, a usc concave function on its dual space V∗ (which, we recall, happens to be V
since its dimension is finite). The adjective concave is applied because a similar transform is defined
slightly differently for convex functions. Henceforth we shall transform only concave functions, and
misplace the adjective. The concave Fenchel transform of f is

f ∗(p) = inf
x∈V

{p · x − f (x)}.

which is often called the conjugate of f . (From here on out we will drop the braces.) The conjugate
f ∗ of f is concave because, for fixed x, p · x − f (x) is linear, hence concave, in p, and the pointwise
infimum of concave functions is concave. The textbooks all prove that if hypo f is closed, so is
hypo f ∗, that is, upper semi-continuity is preserved by conjugation. So what is this transformation
doing, and why is it interesting?

The conjugate f ∗ of a concave function f describes all the non-vertical half-spaces containing
hypo f . This should be checked. A half-space in R

n+1 can be represented by the inequality (p, q) ·
(x, y) ≥ a where q is a real number (as is a) and p ∈ V∗. The half-space is non-vertical if p∗ 6= 0. In
R

2 this means geometrically that the line defining the boundary of the half-space is not vertical. So
choose a linear functional p 6= 0 in V∗. For any (x, z) ∈ hypo f , and any p ∈ V∗,

p · x − z ≥ p · x − f (x)

≥ inf
x∈V

p · x − f (x)

= f ∗(p).

In other words, the upper half-space (p,−1) · (x, z) ≥ f ∗(p) contains hypo f . It actually supports
hypo f because of the infimum operation: If a > f ∗(p), there is an (x, z) ∈ hypo f such that
p · x − z < a, so the upper half-space fails to contain hypo f .
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Before seeing what the Fenchel transform is good for, we must answer an obvious question.
If it is good to transform once, why not do it again? Define

f ∗∗(x) = inf
p∈V∗

p · x − f ∗(p),

the double dual of f . The fundamental fact about the Fenchel transform is the following theorem,
which is the function version of the dual descriptions of closed convex sets.

Conjugate Duality Theorem: If f is usc and concave, then f ∗∗ = f .

This is important enough to explain. Notice that just as p is a linear functional acting on
x, so x is a linear functional acting on p. Suppose that f is concave and usc. For all x and p,
p · x − f (x) ≥ f ∗(p), and so p · x − f ∗(p) ≥ f (x). Taking the infimum on the left, f ∗∗(x) ≥ f (x).

On the other hand, take a p ∈ V∗ and a real number b such that the half-space (p,−1) ·
(x, z) ≥ b in R

n+1 contains the hypograph of f . This is true if and only if p · x − b ≥ f (x) for all x
and because f is usc, f (x) is the infimum of p · x − b over all such p and b. Since p · x − f (x) ≥ b
for all x, take the infimum on the left to conclude that f ∗(p) ≥ b. Thus p · x − b ≥ p · x − f ∗(p), and
taking the infimum now on the right, p · x − b ≥ f ∗∗(x). Taking the infimum on the left over all the p
and b such that the half-space contains hypo f , f (x) ≥ f ∗∗(x).

It is worthwhile to compute an example to get the feel of the concave Fenchel transform. If
C is a closed convex set, the concave indicator function of C is φ(x) which is 0 for x in C, and
−∞ otherwise. This is a good example to see the value of allowing infinite values. The Fenchel
transform of C is φ∗(p) = infx∈Rn p · x − φ(x). Clearly the infimum cannot be reached at any
x /∈ C, for the value of φ at such an x is −∞, and so the value of p · x − φ(x) is +∞. Consequently
φ∗(p) = infx∈C p · x. This function has the enticing property of positive homogeneity: If t is a positive
scalar, then φ∗(tp) = tφ∗(p).

Compute the double dual, first for x /∈ C. The separating hyperplane theorem claims the
existence of some p in V∗ and a real number a such that p · x < a ≤ p · y for all y ∈ C. Take the
infimum on the right to conclude that p · x < φ∗(p), which is to say that p · x − φ∗(p) < 0. Then,
multiply both sides by an arbitrary positive scalar t to conclude that tp · x − φ∗(tp) can be made
arbitrarily negative. Hence φ∗∗(x) = −∞ if x /∈ C. And if x is in C? Then p · x − 0 ≥ φ∗(p) for all p
(recall φ(x) = 0). So p · x − φ∗(p) ≥ 0. But φ∗(0) = 0, so φ∗∗(x), the infimum of the left hand side
over all possible p functionals, is 0, and so the Fenchel transform of φ∗ recovers φ.

A particularly interesting version of this problem is to suppose that C is an ‘at least as good as’
set for level u of some upper semi-continuous and quasi-concave utility function (or, more generally,
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a convex preference relation with closed weak upper contour sets). Then φ∗(p) is just the minimum
expenditure necessary to achieve utility u at price p. See DUALITY for more discussion. Another
interesting exercise is to apply the Fenchel transform to concave functions which are not usc, and to
non-concave functions. These constructions have important applications in optimization theory which
we will not pursue.

The theory of convex functions is exactly the same if, rather than the concave Fenchel Trans-
form, the convex Fenchel transform is employed: supx∈Rn p · x − f (x). This transform maps convex
lsc functions on V into convex lsc functions on V∗. Both the concave and convex Fenchel transforms
will be important in what follows.

5 The Subdifferential

The separation theorem applied to hypo f implies that usc concave functions have tangent lines:
For every x ∈ ri dom f there is a linear functional px such that f (y) ≤ f (x) + px · (y − x). This
inequality is called the subgradient inequality, and px is a subgradient of f ; px defines a tangent line
for the graph of f , and the graph lies on or underneath it. The set of subgradients of f at x ∈ dom f
is denoted ∂ f (x), and is called the subdifferential of f at x. Subdifferentials share many of the
derivative’s properties. For instance, if 0 ∈ ∂ f (x), then x is a global maximum of f . In fact, if ∂ f (x)
contains only one subgradient px , then f is differentiable at x and D f (x) = px. The set ∂ f (x) need
not be single-value, however, because f may have kinks. The graph of the function f defined on the
real line such that f (x) = −∞ for x < 0 and f (x) =

√
x for x ≥ 0 illustrates why the subdifferential

may be empty at the boundary of the effective domain. At 0, a subgradient would be infinitely steep.

There is a corresponding subgradient inequality for convex f : f (y) ≥ f (x) + px · (y − x).
With these definitions, ∂(− f )(x) = −∂ f (x). Note that some texts refer to superdifferentials for
concave functions and subdifferentials for convex functions. Others do not multiply the required
terminology, and we follow them.

The multivalued map x 7→ ∂ f (x), is called the subdifferential correspondence of f . An im-
portant property of subdifferential correspondences is monotonicity. From the subgradient inequality,
if p ∈ ∂ f (x) and q ∈ ∂ f (y), then f (y) ≤ f (x) + p · (y − x) and f (x) ≤ f (y) + q · (x − y), and it
follows that (p − q) · (x − y) ≤ 0. For convex f the inequality is reversed.

The Fenchel transforms establish a clear relationship between the subdifferential correspon-
dences of concave functions and their duals. If f is concave, then the subdifferential inequality says
that p ∈ ∂ f (x) if and only if for all z ∈ X, p · x − f (x) ≤ p · z − f (z). The the map z 7→ p · z − f (z)
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is minimized at z = x, and so p is in ∂ f (x) if and only if f ∗(p) = p · x − f (x). If f is usc, then
f ∗∗ ≡ f , and so f ∗∗(x) = f (x) = p · x − f ∗(x). That is, p ∈ ∂ f (x) if and only if x ∈ ∂ f ∗(p).

6 Optimization and Duality

Economics most often presents us with constrained maximization problems. Within the class of
problems with concave objective functions, there is no formal difference between constrained and
unconstrained maximization. The constrained problem of maximizing concave and usc f on a closed
convex set C is the same as the unconstrained problem of maximizing f (x) + IC(x) on R

n, where
IC(x) is the concave indicator function of C.

The general idea of duality schemes in optimization theory is to represent maximization (or
minimization) problems as half of a minimax problem which has a saddle value. There are several
reasons why such a seemingly odd construction can be useful. In economics it often turns out that
the other half of the minimax problem, the dual problem, sheds additional light on properties and
interpretations of the primal problem. This is the source of the ’shadow price’ concept: The shadow
price is the value of relaxing a constraint. Perhaps the most famous example of this is the Second
Theorem of welfare economics.

6.1 Lagrangeans

The primal problem (problem P) is to maximize f (x) on a Euclidean space V. Suppose there is a
function L : V × V∗ → R such that f (x) = infp∈V∗ L(x, p). Define g(p) = supx∈V L(x, p), and
consider the problems of maximizing f (x) on V and minimizing g(p) on V∗. The first problem is the
primal problem, and the second is the dual problem. For all x and p it is clear that f (x) ≤ L(x, p) ≤
g(p), and thus that

sup
x

inf
p

L(x, p) = sup
x

f (x) ≤ inf
p

g(p) = inf
p

sup
x

L(x, p).

If the inequality is tight, that is, it holds with equality, then the common value is called a saddle value
of L. In particular, a saddle value exists if there is a saddle point of L, a pair (x∗, p∗) such that for all
x ∈ V and p ∈ V∗, L(x, p∗) ≤ L(x∗, p∗) ≤ L(x∗, p). A pair (x∗, p∗) is a saddle point if and only if
x∗ solves the primal, p∗ solves the dual, and a saddle value exists. The function L is the Lagrangean,
which is familiar from the analysis of smooth constrained optimization problems. Here it receives a
different foundation.
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The art of duality schemes is to identify an interesting L, and here is where the Fenchel
transforms come in. Interesting Lagrangeans can be generated by embedding the problem max f in
a parametric class of concave maximization problems. Suppose that there is a (Euclidean) parameter
space P, and a usc and concave function F : V ×Y → R such that f (x) = F(x, 0), and consider all
the problems maxx∈V F(x, y). A particularly interesting object of study is the value function φ(y) =
supx F(x, y), which is the indirect utility function in consumer theory, and the cost function in the
theory of the firm (with concave replaced by convex and max by min). The map y 7→ −F(x, y) is
closed and convex for each x, so define on V × V∗

L(x, p) = sup
y

p · y + F(x, y),

its (convex) Fenchel transform. The map p 7→ L(x, p) is closed and convex on V∗. Transform again
to see that F(x, y) = infp∈V∗ L(x, p) − p · y. In particular, f (x) = infp L(x, p).

An example of this scheme is provided by the usual concave optimization problem given by
a concave objective function f , K concave constraints gk(x) ≥ 0, and an implicit constraint x ∈ C:
maxx f (x) subject to the constraints gk(x) ≥ 0 for all k and x ∈ C. Introduce parameters y so that
gk(x) ≥ yk, and define F(x, y) to be f (x) if all the constraints are satisfied and −∞ otherwise. The
supremum defining the Lagrangean cannot be realized for y such that x is infeasible, and so

L(x, p) =











f (x) + ∑k pkgk(x) if x ∈ C and p ∈ R
K
+,

+∞ if x ∈ C and p /∈ R
K
+,

−∞ if x /∈ C.

(1)

If there are no feasible x, then F(x, y) is everywhere −∞, and so L(x, p) ≡ −∞.

Here, in summary, are the properties of the Lagrangean for the problems discussed here:

Lagrangean Theorem:If F(x, y) is lsc and concave then (1) the Lagrangean L is lsc and convex in
p for each x ∈ V, (2) L is concave in x for each p ∈ V∗, and (3) f (x) = infp L(x, p).

Following the original scheme, the objective for the dual problem is g(p) = supx L(x, p), and the
dual problem (problem D) is to maximize g on V∗. Perhaps the central fact of this dual scheme
is the relationship between the dual objective function g and the value function φ. The function
φ is easily seen to be concave, and simply by writing out the definitions, one sees that g(p) =
supy ·(p · y + φ(y)}, the convex Fenchel transform of the convex function −φ. So g(p) is lsc and

convex, g(p) = (−φ)∗(p) and whenever φ is usc, infp g(p) = φ(0).
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To make the duality scheme complete, the min problem should be embedded in a parametric
class of problems in a complementary way. Take G(p, q) = supx∈V L(x, p) − q · x, so that g(p) =
G(p, 0). With this definition, −G(p, q) = infx∈V q · x − L(x, p), the concave Fenchel transform
of x 7→ L(x, p). The value function for the parametric class of minimization problems is γ(q) =
infp G(p, q). The relationship between F and G is computed by combining the definitions:

G(p, q) = sup
x,y

F(x, y) − q · x + p · y = − inf
x,y

q · x − p · y − F(x, y) = −F∗(q,−y)

and so

F(x, y) = inf
p,q

G(p, q) + q · x − p · y

where the F∗ is the concave Fenchel transform of the map (x, y) 7→ F(x, y). Computing from the
definitions, f (x) = infp,q q · x + G(p, q) = infq q · x + γ(q), so f = (−γ)∗, and whenever γ is lsc,
supx f (x) = γ(0).

In summary, if F(x, y) is concave in its arguments, and usc, then we have constructed a
Lagrangean and a dual problem of minimizing a concave and lsc G(p, q) over p. If the value functions
φ(y) and γ(q) are usc and lsc, respectively, then supx F(x, 0) = γ(0) and infp G(p, 0) = φ(0), so
a saddle value exists. Upper and lower semicontinuity of the value functions can be an issue. The
hypograph of φ is the set of all pairs (y, a) such that supx F(x, y) ≥ a, and this is the projection onto
y and a of the set of all triples (x, y, a) such that F(x, y) ≥ a, that is, hypo F. Unfortunately, even
if hypo F is closed, its projection may not be, so upper semi-continuity of φ does not follow from the
upper semi-continuity of F.

In the constrained optimization problem with Lagrangean (1), the parametric class of dual
minimization problems is to minimize G(p, q) = supx∈C f (x) + ∑k pkgk(x) − q · x if y ∈ R

K
+ and

+∞ otherwise. Specialize this still further by considering linear programming. The canonical linear
program is to max a · x subject to the explicit constraints bk · x ≤ ck and the implicit constraint x ≥ 0.
Rewrite the constraints as −bk · x + ck ≥ 0 to be consistent with the formulation of (1). Then

G(p, q) = sup
x≥0

a · x − ∑
k

pk(bk · x − ck) − q · x = ∑
k

ck pk + sup
x≥0

(a − ∑
k

pkbk − q) · x

for p ∈ R
K
+ and +∞ otherwise. The dual problem is to minimize this over p. The sup term in G will

be +∞ unless the vector in parentheses is non-positive, in which case the sup will be 0. So the dual
problem, taking q = 0, is to minimize ∑k ckpk over p subject to the constraints that ∑k pkbk ≥ a and
p ∈ R

K
+. If the primal constraints are infeasible, φ(0) = −∞. If the dual is infeasible, γ(0) = +∞,
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and this serves as an example of how the dual scheme can fail over lack of continuity. For linear
programs there is no problem with the hypographs of φ and γ, because these are polyhedral convex
sets, the intersection of a finite number of closed half-spaces, and projections of closed polyhedral
convex sets are closed.

6.2 Solutions

Subdifferentials act like partial derivatives, particularly with respect to identifying maxima and minima:
x∗ in V solves problem P if and only if 0 ∈ ∂ f (x∗). When f is identically −∞, there are no solutions
which satisfy the constraints. Thus dom f is the set of feasible solutions to the primal problem P.
Similarly, p∗ ∈ V∗ solves the dual problem D if and only if ∂g(p∗) = 0, and here dom g is the set of
dual-feasible solutions. Saddle points of the Lagrangean also have a subdifferential characterization.
Adapting the obvious partial differential notion and notation, (x∗, p∗) is a saddle point for L if and only
if 0 ∈ ∂xL(x∗, p∗) and 0 ∈ ∂pL(x∗, p∗) (these are different 0’s since they live in different spaces),
which we write (0, 0) ∈ ∂L(x∗, p∗). This condition is often called the Kuhn-Tucker condition. The
discussion so far can be summarized in the following theorem, which is less general than can be
found in the sources:

Kuhn-Tucker Theorem: Suppose that F(x, y) is concave and usc. Then the following are equiva-
lent:

1. sup f = inf g,

2. φ is usc and concave,

3. the saddle value of the Lagrangean L exists,

4. γ is lsc and convex.

In addition, the following are equivalent:

5. x∗ solves P, p∗ solves D, and the saddle value of the Lagrangean exists.

6. (x∗, p∗) satisfy the Kuhn-Tucker condition.

For economists, the most interesting feature of the dual is that it often describes how the value
of the primal problem will vary with parameters. This follows from properties of the subdifferential and
the key relation between the primal value function and the dual objective function, g = (−φ)∗:
−∂φ(0) = ∂(−φ)(0), and this equals the set {p : (−φ)∗(p) = p · 0 − (−φ)(0)}, and this is
precisely the set {p : g(p) = supx f (x)}. In words, if p is a solution to the dual problem D, then
−p is in the subgradient of the primal value function. When ∂φ(0) is a singleton, there is a unique
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solution to the dual, and it is the derivative of the value function with respect to the parameters. More
generally, from the subdifferential of a convex function one can construct directional derivatives for
particular changes in parameter values. Similarly, −∂γ(0) = {x : f (x) = infp g(p)}, with an
identical interpretation. In summary, add to the Kuhn Tucker theorem the following equivalence:

7. −p∗ ∈ ∂φ(0) and −x∗ ∈ ∂γ(0).

The remaining question is, when is any one of these conditions satisfied? A condition guaranteeing
that the subdifferentials are non-empty is that 0 ∈ ri dom φ, since concave functions always have
subdifferentials on the relative interior of their effective domain. In the constrained optimization prob-
lem whose Lagrangean is described in equation (1), an old condition guaranteeing the existence of
saddlepoints is the Slater condition, that there is an x ∈ ri C such that for all k, gk(x) > 0. This
condition implies that 0 ∈ ri dom φ, because there is an open neighborhood around 0 such that for
y in the neighborhood and for all k, gk(x) > yk. Thus φ(y) ≥ F(x, y) > −∞ for all y in the neigh-
borhood. Conditions like this are called constraint qualifications. In the standard calculus approach
to constrained optimization, they give conditions under which derivatives sufficiently characterize the
constraint set for calculus approximations to work. See Arrow, Hurwicz and Uzawa (1961).

Finally, it is worth noting that infinite dimensional constrained optimization problems, such
as those arising in dynamic economic models and the study of uncertainty, can be addressed with
extensions of the methods discussed here. The main difficulty is that most infinite dimensional vector
spaces are not like R

n. There is no ’natural’ vector space topology, and which topology one chooses
has implications for demonstrating the existence of optima. The existence of separating hyperplanes
is also a difficulty in infinite dimensional spaces. These and other problems are discussed in Mas-
Colell and Zame (1991). Nonetheless, much of the preceding development does go through. See
Rockafellar (1974).
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