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1. Introduction

This paper fragment describes the beginning of an attempt to understand the relationship
between several different binary social interaction models found in the literature. These
include the mean field models of Brock and Durlauf (1997), conventional Nash equilibrium,
that which we call a Gibbs equilibrium, of which Glaeser, Sacerdote and Scheinkman (1997)
is an example, and stationary distributions of the dynamic strategy revision models of
Blume (1993), Young (1993) and Kandori, Mailath and Robb (1993). One principle finding
is that while the mean-field, Nash and dynamic equilibria always exist, Gibbs equilibria
typically do not. Their existence depends on a great deal of agent homogeneity. Another
finding is that, as the interaction radius grows, the mean-field and Gibbs equilibria (when
they exist) converge. Also, when Gibbs equilibria exist, they are dynamic equilibria. The
relationship between dynamic equilibria and mean-field equilibria when Gibbs equilibria do
not exist is unknown as of this writing. However it is known that the short-run dynamics
of strategy revision models with global interaction is well approximated over finite time
horizons by the solution path to a differential equation suggested by the Brock-Durlauf
mean field model when the population is large. This suggests that the invariant distribution
for the dynamic model converges to mass on one or more of the mean-field equilibria as
the population size grows.

2. The structure of interactions-based models

2.1. interdependent decisionmaking

The underlying logic of interaction models is straightforward. The object of the exercise is
to understand the behavior of a population of economic actors rather than that of a single
actor. The focus of the analysis is the externalities across actors. These externalities are the
source of the social interactions. They are taken to be direct. The decision problem of any
one actor takes as parameters the decisions of other actors. Hence the interactions approach
treats aggregate social behavior as a statistical regularity of the individual interactions. A
second feature of these models is that individual behavior is not as tightly modeled as it is
in traditional economic equilibrium models. Individual choice is guided by payoffs, but has
a random component. This randomness can be attributed to individual-specific variables
not observed by the modeler, or to some form of bounded rationality.

Random choice has been significant both theoretically and empirically, and external-
ities are certainly not new, but the combination of the two along with an focus analytical
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focus on population behavior gives rise to new and interesting economic phenomena. These
systems are highly non-linear and have multiple steady states. The system response to
shocks can be quite complex.

Interaction models typically specify explicitly a probability density characterizing in-
dividual behavior conditional on exogenous characteristics which can be both global and
individual-specific, and an interaction structure, a specification of who affects whom. To fix
ideas, consider first a population of actors facing identical choices in which no externalities
are present. Conditional on the exogenous characteristics Xi, the contemporaneous be-
havior of each actor is independent of the behavior of the rest of the population. Thus the
joint conditional probability distribution characterizing population choices can be factored
so that

Prob(ω1, . . . , ωI |X1, . . . ,XI) =
I∏

i=1

Prob(ωi|Xi) (1)

where ωi is actor i’s choice, Xi is her vector of individual characteristics. Conditional
independence allows one to characterize aggregate behavior of the population through
laws of large numbers. For example, when the probability distributions on the right hand
side are identical, average behavior of the population is described by mean individual
behavior. That is,

1

I

I∑

i=1

ωi ≈
1

I

I∑

i−1

E(ωi|Xi)

for large I.

When individual decisions are contemporaneously interdependent, however, the fac-
torization in equation (1) may fail to exist. The presence of the cross-actor externality
introduces a strategic element into decisionmaking which needs to be incorporated into
the specification of the model. One modelling strategy which generalizes equation (1) in a
straightforward fashion is to explicitly model the externality in the factorization:

Prob(ω1, . . . , ωI |X1, . . . ,XI , Z1, . . . , ZI) =
I∏

i=1

Prob(ωi|Xi;Zi), (2)

Zi = Prob(ω−i|Ii) (3)

where Ii is player i’s information. One example of this formulation is Nash equilib-
rium. Suppose that there is no variation in the variables Xi or, alternatively, that
Ii = (X1, . . . , XI). The strategies available to player i are ωi ∈ Ωi, and

Prob(ωi|Zi) = 0 if ωi ∈ argmaxE(ui(ωi, ω−i)|Ii).
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This extends to games of incomplete information where Xi is player i’s private signal.
But this general framework also encompasses other choice models, some of which we now
describe.

2.2. A general model

To see how interactions-based methods work we will discuss some examples based on
ideas in Brock (1993), Blume (1993, 1997), Brock and Durlauf (1997) and Durlauf (1997),
which study binary choice decisions in the presence of social interactions. These examples
illustrate hos a choiced-based model with standard economic assumptions can naturally
produce an interactive environment. The general framework introduced below has been
used to study out-of-wedlock births and high school dropout rates, decisions in which
individuals are more likely to conform to the behavior of their “reference group”.2

Formally, consider a population of I individuals. Suppose that each individual chooses
one of two actions, labeled −1 and +1. Suppose that each individual’s utility is quadratic
in her action and the action of others. Each individual has knowledge of the mean of the
average action. That is, Z is given by equation (3). Then conditional upon her information,
actor i’s expected utility can be written (after renormalization) as

V (ωi,Xi, Zi) = h(Xi, )ωi − E
(∑

j

Ji,j(Xi,Xj)(ωi − ωj)2|Xi;Zi
)

+ ε(ωi)

This specification can be decomposed into a private component, h(Xi)ωi + ε(ωi), and the
interaction effect, E

(∑
j Ji,j(Xi,Xj)(ωi − ωj)

2|Xi;Zi
)
. The private component can be

further decomposed (without loss of generality) into its mean, h(Xi)ωi, and the stochastic
deviation ε(ω). The terms Ji,j(Xi, Xj) is a a measure of the disutility of non-conformance.
When the Ji,j are all positive there is an incentive to conform. The presence of positive
conformity effects gives rise to multiple equilibria and interesting dynamics. The random
terms are independent, and assumed to be distributed according to the extreme value
distribution with parameter β(Xi). That is,

Prob
(
ε(−1)− ε(1) < z

)
=

1

1 + exp(−β(Xi)z)
, β( · ) ≥ 0

This model reduces to a particular instance of the standard binary choice framework when
there are no interaction effects, when Ji,j ≡ 0.

From this distribution the individual choice probabilities can be computed.

Prob(ωi = 1|Xi, Z) =
1

1 + exp−2β

(
h(Xi) +

∑
j E
(
Jij(Xi, Xj)ωj |Xi;Zi

)) (4)

2 REFERENCES?
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The conditionals can be multiplied to construct the joint distribution of play conditional
upon Z and the vector X of actors’ characteristics. The distribution is of the form

Prob(ω) ∼
∏

i

exp
(
h(Xi) + β(Xi)

∑

j

E
(
Ji,j(Xi,Xj)ωiωj |Xi;Zi

)
(5)

Finally, equilibrium requires equation (3), that actors know the correct mean population
play.

2.3. The Game-Theoretic Limit

As the parameter β becomes large, the probability distribution on player i’s choices puts
converges to point mass on the set of best responses. In some cases the limit joint action
distribution can be interpreted as a Nash equilibrium. Fix a vector X of characteristics,
and suppose that Ii = X. Suppose that for this X, Jij = Jji and hi = hj = h, and that
there is a number J such that Jij = J or Jij = 0. The strategic situation is as follows.
if Jij 6= 0, then players i and j are involved in a symmetric strategic interaction. The
return to player i from choosing ωi is the sum of the expected payoffs across all strategic
interactions in which i is a partner. That is, V (ωi, Xi, Zi) − ε(ωi) is the expected utility
to playing ωi when the other members of the population are playing according to the
distributions Zj . Note that the payoffs to every two-person game can be written as we do
by identifying one strategy with +1 one with −1, and then writing the payoffs as in the
non-random component of V . When the β = ∞ limit has a solution that is concentrated
on a single strategy profile, that strategy profile is a pure strategy equilibrium of the
population game we have just described. In fact, for generic parameter values (h and J),
if the population game has a symmetric pure strategy Nash equilibrium, then for β large
enough there is a solution µβ to equation (5) such that the µβ converge to point mass on
that Nash equilibrium strategy profile.

That being said, we are more interested in the specifications β <∞, and in situations
of stratategic interaction that do not necessarily set up neatly as population games. For-
tunately this model can be solved directly for a moderately rich class of specifications of
the the private valuations, conformity and error distribution.

2.4. The general model with limited information

In the remainder of this section and in those to follow, we will assume that Ii = X.
Thus uncertainty due to incomplete information about the characteristics of others will be
ignored. Consequently the parameters Xi will be suppressed in the presentation.

2.4.1 Uniform global interactions

One solvable class of models is studied in Brock and Durlauf (1997). Suppose that all
actors are homogeneous. There are no individual characteristics. Suppose too that each



5

actor interacts with every other actor, so that

Ji,j =

{
J/(I − 1) if i 6= j;
0 if i = j.

The I in this expression makes the marginal rate of substitution between the private and
social components of preference independent of population size.

It is clear in this specification that, to the extent actors wish to conform, they attempt
to match the average of choice in the population. If the population mean were m, equation
(5) would be

ProbI,β,h,J (ω;m) ∼ exp{−βHI,h,J (ω;m)}
where

HI,h,J (ω;m) =
∑

i

hωi + βJωim

Because of homogeneity of the actors, the equilibrium condition (3) requires that

m = E(ωi)

where the expectation is taken with respect to the distribution ProbI,β,h,J (ω;m). A com-
putation from equation (4) shows that m is any solution to

m = tanhβ(h+ Jm) (6)

Equation (6) is well-known in the world of statistical physics. This special case has an
important physical interpretation, and is known as the Curie-Weiss model of magnetization.
The following characterization of the solutions to (6) is well-known:

Theorem: Multiple versus unique solutions.

i. If βJ ≤ 1 and h = 0, m = 0 is the unique solution to (6).

ii. If βJ > 1 and h = 0 there are three solutions: m = 0 and m = ±m∗(βJ). Further-
more, limβJ→∞m

∗(βJ) = 1.

iii. If h 6= 0 and J > 0 there is a threshold C(h) > 0 ( = +∞ if h ≥ J) such that

a. for βh < C(h), there is a unique solution, which agrees with h in sign; and

b. for βh > C(h) there are three solutions, only one of which agrees with h in sign.
Furthermore, as β becomes large the extreme solutions converge to ±1.

iv. If J < 0 there is a unique solution which agrees with h in sign.

This theorem illustrates both the nonlinearities and the multiple steady states which
are the hallmarks of interacting systems. The model is nonlinear with respect to a change
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in h, the private component of preference, on the mean behavior m of the population.
Indeed, the effect of a change in h may be to increase the number of equilibria, which will
exceed one when the strength of interactions is great enough.

The parameter m is of interest to the modeler as well as to the actors. Because this
model preserves the factorization of the joint distribution of choices into the product of
the distribution of individual choices, a strong law guarantees that m is approximately the
(sample) average choice when I is large.

The underlying strategic situation corresponds to a coordination game played by a
population of opponents. The strategy choice +1 (−1) is risk-dominant if h ≥ 0 (h ≤ 0).
As β becones large, the two extreme solutions converge to the pure strategy Nash equilibria.

2.4.2 Uniform local interaction

An alternative to global interaction models are models with a spatial structure. Actors
have an address, and care about the behavior of only their neighbors. Schelling (1969,
1983) explored racial clustering in neighborhoods in a model of this type. He analyzed
the consequences of families having even a slight preference for immediate neighbors like
themselves. The consequences of individuals caring only about the identity of their im-
mediate neighbors is a global pattern of racial segregation in housing. Local interaction
models have achieved some popularity in evolutionary game theory in the work of Blume
(1993), Ellison (1993), Binmore Samuelson Vaughn (199?) among others. Glaeser, Sacer-
dote and Scheinkman (1996) have taken local interaction models to data, and Glaeser and
Scheinkman are reporting on that work here. Local interaction can be introduced to the
Brock-Durlauf model by locating the actors on a graph and letting Ji,j = 0 if actors i and
j are not neighbors.

Suppose again that all I actors have identical values of β and h. They are the vertices
of a connected graph. Let ni denote the number of edges with one endpoint at i; that is,
ni is the number of neighbors of i. Let Ji,j = J/ni if j is a neighbor of i, and 0 otherwise.
Then from (4)

mi = tanhβ

(
h+

J

ni

∑

j

mj)

)
i = 1, . . . , I (7)

In a symmetric equilibrium, mi = mj and equations (7) reduce to equation (6), so the
Theorem on multiple versus unique solutions holds for this model if the word solution is
replaced with the phrase symmetric solution. However, there may also be asymmetric
equilibria. For example, suppose there are five actors on a line and J = 1. For β >

√
2

there are equilibria where m1 = −m5, m2 = −m4, m3 = 0 and the means are negative
to the left of actor 3. To see this, suppose that m3 = 0. Then m2 = tanhβm1/2 and
m1 = tanhβm2. Consequently, m1 must solve

m1 = tanh
(
β tanh(βm1/2)

)
.
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The right hand side maps [−1, 1] into itself, is strictly increasing, and m1 = 0 is a solution
for all β. Furthermore, the derivative of the right hand side with respect to m1 at m1 = 0
is β2/2. For β >

√
2 this slope exceeds 1, and so there must be two more solutions.

Symmetry around 0 implies one is the negative of the other. Set m1 equal to the negative
solution. Now solve for m2. Since m2 is the hyperbolic tangent of a negative number, it is
negative. Let m5 = −m1. We can see from the symmetry of the equations that m4 = −m2.
Finally, m3 = tanh

(
β(m2 +m4)/2

)
= tanh 0 which equals 0. For instance, when β = 2

√
2,

m1 = −0.987 and m2 = −0.884. Some graphs allow only symmetric solutions, such as a
circle and the completely connected graph.

2.4.3 Actor heterogeneity — private valuations

Our examples so far all assume actors are homogeneous. The next example reintroducesXi.
Suppose that each actor’s private effect on utility is characteristic dependent. Specifically,
suppose that the hi are mean-0 i.i.d. random variables taking on the values ±1. Assume
global interaction as in the first example. From equation (4) we can compute that the
conditional mean of ωi is3

E(ωi|hi) = tanhβ(hi + Jm)

where m is the unconditional mean of each actor. Consequently, in equilibrium

mi = tanhβ(hi + Jm) for i = 1, 2.

m = m1 +m2 .

To solve this model, aggregate the two mi-equations to get

m =
1

2
tanhβ(1 + Jm) +

1

2
tanhβ(−1 + Jm) . (8)

Any equilibrium solves (8). Conversely, if m solves (8), let mi = tanhβ(hi + Jm). Both
of these numbers are between −1 and 1, and by definition m = (m1 + m2)/2, so m1 and
m2 solve the model. Consequently, to find equilibria it suffices to solve just (8).

Again the right had side maps [−1, 1] into itself, is increasing, and symmetric. Conse-
quently m = 0 is a solution. The following can be shown: There are two critical values of
J , J1 < J2. For all J < J1 the solution is unique. For all J1 < J < J2 there is a constant
βJ such that for β < βJ there is a unique solution while for β > βJ there are five solutions.
For J2 < J there are constants 0 < bJ < BJ such that for β < bJ the solution is unique,
for bJ < β < BJ there are three solutions, and for BJ < β there are five solutions. As β
diverges, the non-zero solutions converge to ±1 when there are three solutions, and when
there are five solutions the two additional solutions converge to ±1/J .

When additional values of h are possible, the picture gets more complicated. If h can
take on n possible values, then there can be anywhere between 1 and 2n+ 1 equilibria.

3 Here we study only symmetric equilibria, where all actors have the same map fromhi to !i. We have not investigated
the possibility of non-symmetric equilibria.
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2.4.4 Actor heterogeneity — social valuations

When the conformity effect varies across the population the model can look quite differ-
ent. Suppose that the interaction coefficient J can take on two values: J1 < 0 < J2.
Furthermore, assume h > 0. then for each actor,

E(ωi|Ji) = tanhβ(h+ Jim)

where m is the population mean. Suppose fraction pi of the population has interaction
coefficient Ji for i = 1, 2. Then equilibrium occurs where

mi = tanhβ(h+ Jim) for i = 1, 2.

m = p1m1 + p2m2 .

Just as in the previous example, it suffices to solve the aggregate equation

m = p1 tanhβ(h+ J1m) + p2 tanhβ(h+ J2m) . (9)

One of several different cases occurs, depending upon the relative values of the Ji and h.
The most interesting cases occur when for both i, |J |i > h. The example is best understood
by examining the right hand side when β is large. The interval [−1, 1] divides into three
parts: [−1,−h/J2], [−h/J2,−h/J1] and [−h/J1, 1]. On the lowest interval, h + J1m > 0
and h + J2m < 0, so for large β the value of the right hand side of (9 is approximately
p1 − p2. In the middle interval both terms are positive, so for large β the right hand side
is approximately p1 + p2 = 1. Finally, in the upper interval h+J1m < 0 and h+J2m > 0,
so the value of the right hand side is approximately p2 − p1. Suppose J1 = −J2. When
p1 = p2 there is only one steady state m∗ > 0. But when p1 is sufficiently small, so the the
population is very biased towards positive conformity effects, two negative steady states
emerge.

2.5. A general model with observable actions

In the last subsection we examined a variety of models in which actors had no information
about the actions of others on which to condition their beliefs. Equilibrium in that system
is the requirement that beliefs be rational, that is, that equilibrium beliefs be correct.
We can also describe systems in which each actor has information about the realization of
others’ decisions. That is, Ii = (Xi, ω−i). Choice probabilities for actor i now depend upon
the choice of actor j. The specification of the model now describes conditional probabilities
of the form

Prob(ωi|X,ω−i).

Any joint probability distribution consistent with these conditional distributions and the
marginal distribution of the Xi’s is an admissible characterization of the entire system. In
other words, the models make assumptions about the nature of conditional distributions of
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a vector of random variables. Equilibrium in these models is a joint distribution consistent
with the given conditional distributions.

An example of such a model is the Glaeser, Sacerdote and Scheinkman (1997) model of
crime. The empirical models these issues present are discussed in Glaeser and Scheinkman
(1998, this volume).

Suppose, for instance, that individuals can see the realization of choices in some subset
Ni of the population. Equation (4) becomes

Prob(ωi = 1|Xi, ω−i) =

(10)

1

1 + exp−2β

(
h(Xi) +

∑
j∈Ni

E
(
Jij(Xi,Xj)ωiωj |Xi, ω−i

))

In the model of the previous section joint distributions given a value of Z were given by
(5), and the equilibrium condition (3) — finding the right joint distribution of the ωi’s
— was a matter of choosing the right value of Z. In this model the joint distribution no
longer factors into an expression like equation (5), and one must search directly for the
joint distribution.

Definition 2.1: A Gibbs equilibrium is a conditional distribution µ(ω1, . . . , ωI |X1, . . . , XI)
such that the conditional distribution µ(ωi|Xi, ω−i) is given by (10)

Notice to that the factorization of the joint distribution of choice into the product of
the distributions of individual choice is lost because each individual choice depends upon
the realization of the choices of others — rather than some estimate of the choices of others,
as was the case previously. This model falls into a well-studied class of probabilistic systems
called random fields. Random fields describe the joint distribution of a large set of random
variables. Given are distributions for the realization of each random variable conditional
on the others. The object of the study is to demonstrate the existence and characterize
the joint distribution through the specification of the conditionals. The joint distributions
are sometimes known as Gibbs measures due to their importance and historical origins in
statistical mechanics — thus the name above, which we hope will not become conventional.
The existence problem for Gibbs measures is straightforward for finite populations, but
the large population asymptotic behavior is difficult. Below we will give some examples in
which equilibrium fails to exist. See Georgii (1988).

Again for expositional and computational simplicity, we will assume for the remain-
der of this section that there is no uncertainty due to lack of knowledge about actors’
characteristics. That is, for all i, Ii = (X,ω−i).
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2.5.1 Uniform global interaction

Suppose that actors are homogeneous (no X ′is) and

Ji,j =

{
J/(I − 1) if i 6= j,
0 if i = j.

Equation (10) becomes

Prob(ωi|ω−i) =
1

1 + exp−2β
(
hωi + J

I−1

∑
j 6=i ωiωj

) (10)

=
expβ

(
hωi + J

I−1

∑
j 6=i ωiωj

)

expβ
(
hωi + J

I−1

∑
j 6=i ωiωj

)
+ exp−β

(
hωi + J

I−1

∑
j 6=i ωiωj

)

A computation verifies that the Gibbs equilibrium distribution is

Prob(ω) ∼ expβ

(∑

i

hωi +
∑

i,j

J

2(I − 1)
ωiωj

)
(12)

The function

H(ω) =
∑

i

hωi +
∑

i,j

J

2(I − 1)
ωiωj

is known as the potential function, and it characterizes equilibrium.4 Equation (12) is
simply written as Prob(ω) ∼ expβH(ω). As the parameter β diverges, the equilibrium
probability distribution concentrates its mass on the maxima of H. For instance, when
J > 0, the distribution will concentrate on ωi ≡ 1, ωi ≡ 0 or probability (1/2) on each if
h is positive, negative or 0, respectively.

It is interesting to compare the large β behavior of this example to that of section
1.2.1 when h = 0. In that example there were three solutions: 0 and ±mβ , and mβ → 1
as β → ∞. In the example of this section, the mean is always 0, but the distribution
is concentrating on the two configurations in which all players agree. The probability of
agreement converges to 1 as β diverges. The configurations in which mean play is 0, are
of minimal probability for all β, and that probability goes to 0 rapidly as β grows. So the
m = 0 solution really does not appear here.

4 In physical models, the potential is taken to be−H, and “maxima” below is replaced with “minima”. Our sign
convention is consistent with game theorists’ discussion of potential games. Connections will be drawn below.
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2.5.2 Uniform local interaction

The local interaction described in section 1.2.2 above can also be modeled with observable
actions. Suppose again, as in that section, that all actors are homogeneous. Represent
them as the vertices of a connected graph and let ni denote the number of neighbors of i.
Let Ji,j = J if i and j are neighbors, and 0 otherwise. Equation (10) becomes

Prob(ωi|ω) =
1

1 + exp−2β
(
hωi + J

ni

∑
{i,j}3i ωiωj

)

=
expβ

(
hωi + J

ni

∑
{i,j}3i ωiωj

)

expβ
(
hωi + J

ni

∑
{i,j}3i ωiωj

)
+ exp−β

(
hωi + J

ni

∑
{i,j}3i ωiωj

) (12)

where the sums indexed by {i, j} are over all unordered pairs of vertices connected by an
edge in the graph.

Imagine first that the graph is a circle. Each actor has two neighbors, so ni = 2. The
equilibrium is Prob(ω) ∼ expβH(ω) where

H(ω) =
∑

i

hωi +
∑

{i,i+1}

J

2
ωiωj

where I + 1 is taken to be 1.

2.5.3 Non-existence of Gibbs equilibrium — local interaction

Next suppose that there are three actors on a line. Actors 1 and 3 have only one neighbor
while actor 2 has two neighbors. For this case no potential exists. There is no probability
distribution with conditional probabilities given by (13). To see this, suppose the contrary.
Then there is a potential function H such that Prob(ω) = expβH(ω). (It should be clear
that any completely mixed probability distribution on any finite state space can be written
this way.) Consequently

Prob(ω1 = 1|ω2, ω3) =
1

1 + expβ
(
H(−1, ω2, ω3)−H(1, ω2, ω3)

)

and similarly for the other two actors. Equation (11) has

Prob(ω1 = 1|ω2, ω3) =
1

1 + exp−2β(h+ Jω2)
.

Consequently

H(1, ω2, ω3)−H(−1, ω2, ω3) = 2(h+ Jω2).

Similarly,
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H(ω1, 1, ω3)−H(ω1,−1, ω3) = 2
(
h+

J

2
(ω1 + ω3)

)
,

H(ω1, ω2, 1)−H(ω1, ω2,−1) = 2(h+ Jω2).

The argument consists of showing that no function can have these first differences. To see
this, observe that H(1, 1,−1)−H(−1,−1,−1) can be written in two ways:

H(1, 1,−1)−H(−1,−1,−1) =H(1, 1,−1)−H(1,−1,−1)+

H(1,−1,−1)−H(−1,−1,−1)

=H(1, 1,−1)−H(−1, 1,−1)+

H(−1, 1,−1)−H(−1,−1,−1).

The value of the first path is

2h+ 2(h− J) =4h− 2J.

The value of the second path is

2(h+ J) + 2(h− J) =4h.

If and only if J = 0, the case of no interactions, are the two expressions the same. Conse-
quently an equilibrium exists if and only if J = 0.

In fact it is easy to see that in any local interaction model with choice probabilities
given by (13), equilibrium will exist if and only if for all i and j, ni = nj . Other spec-
ifications are possible. For instance, if we do not divide by ni, then an equilibrium will
exist for any graph. This has the effect, which may or may not be desirable, of assuming
that people with more neighbors put more weight on conforming than those with fewer
neighbors.

Notice that although no Gibbs equilibrium exists for this example, there is an equi-
librium in the sense of section 2.2.

2.5.4 Non-existence of Gibbs equilibrium — global interaction

Generally speaking, the model of equation (10) can allow for a moderate degree of hetero-
geneity. Suppose that each actor has her own βi, hi and Jij parameters, so that equation
(10) is

Prob(ωi|ω−i) =
1

1 + exp 2βi(hiωi +
∑
j∈Ni

Jijωiωj)

A computation shows that equilibrium exists if and only if βiJij = βjJji. The equilibrium
distribution has

ρ(ω) ∼ exp
∑

i

βi

(
hiωi +

1

2

∑

j

Jijωiωj

)
.

In general, the existence of equilibrium requires a certain symmetry of the interaction
effects in order to guarantee the path independence illustrated in the example.
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A special case of this calculation covers heterogeneous preferences and global interac-
tion. In this case Ni = {1, . . . , I}/{i}, βi = βj , and for each i there is a Ji such that for
all j, Jij ≡ Ji. The existence of Gibbs equilibria rests entirely on the social interaction
effects, the Ji. Gibbs equilibria exist if and only if all actors are identical in the social
interaction component of their preferences. This suggests that Gibbs equilibria is not a
particularly useful equilibrium concept.

2.6. dynamics

The models of section 2.2 are game theoretic. Actors have beliefs about the choice of
others, and they respond to their beliefs. The only difference between the equilibrium
models of section 2.2 and conventional Nash equilibrium is the model of individual choice.
Section 2.2 replaces expected utility optimization with random utility models in the spirit
of Block and Marschak (1960).5 On the other hand, conditioning directly on the value of
observables as we do in section 2.3 is more in the spirit of rational expectations equilib-
rium. In REE models no actor is strategic with respect to the information revealed by her
choice, presumably because of the large number of market participants and the smallness
of each individual actor. But when actors are strategic existence issues arise. With deter-
ministic choice we might easily see no equilibrium because of best-response cycles. If we
see Gibbs equilibrium only because we have fuzzed up choice enough, these models would
be rather unsatisfactory. But as unnatural as these models seem from the point of view
of conventional models of strategic interaction, they are important objects of empirical
study because they describe the stationary distributions of interesting and well-motivated
dynamical processes in which, at random moments, actors playing a game with each other
revise their current choices based on the current actions of their neighbors. These models
were introduced by Blume (1993), Kandori, Mailath and Robb (1993) and Young (1993).
The discussion here follows Blume (1993, 1994).

2.6.1 Uniform global interaction

Consider a population of I actors interacting with one another. At the beginning of
time each actor is assigned an action. This assignment is the initial configuration of the
system. Each actor has a rate-1 Poisson alarm clock independent of all others. When
her alarm clock rings, she has an opportunity to revise her strategy. Put formally, each
actor i is endowed with a collection of random variables {τ in}∞n=1 such that each τ in− τ in−1

is exponentially distributed with mean 1, and all such differences are independent of all
others, hers and the other actors’. When actor i has an opportunity to revise her action,
her choice is described by the probability distribution (11). So actors respond myopically
to the current behavior of the population.6 The choices of the population matter for actor
i only through the sample average I−1

∑
j 6=i ωj . At a revision opportunity for actor i, the

5 For a discussion of this view, see Blume, Holt and Salant (1989) and Blume (1993).

6 For an example of non-myopic choice, see Blume (TK).
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sample average of everyone but her can be recovered from knowledge of her choice and the
aggregate choice of the population.

Let {St} denote the the stochastic process whose value at time t is St =
∑
j ωit. This

process changes state whenever an actor changes her choice. If an actor changes from a
−1 to a +1 St increases by 2, and it decreases by 2 whenever an actor changes in the
opposite direction. The transition rates can be computed from the conditional probability
distribution (11). Suppose the system is in state S. It transits to state S + 2 only when a
revision opportunity comes to one of the (S− I)/2 actors currently choosing −1, and that
actor chooses +1.7 The probability of a −1 actor making this choice is

1

1 + exp−2β
(
h+ J

I−1 (S + 1)
) .

Consequently transition rate from S to S + 2 is

λS =
I − S

2

1

1 + exp−2β
(
h+ J

I−1 (S + 1)
) .

A similar computation gives the transition rate in the other direction. To transit from
S + 2 back to S requires that one of the (S + 2 + I)/2 actors choosing +1 switches to −1.
The transition rate is

µS+2 =
I + S + 2

2

1

1 + exp 2β
(
h+ J

I−1 (S − 1)
) .

The process of sums is an example of a birth-death process. The states are {−I,−I +
2, . . . , I − 2, I}, and the invariant distribution is characterized by the conditions

Prob(S)λS = Prob(S + 2)µS+2 .

Consequently

Prob(S + 2)

Prob(S)
=

λS

µS+2

=
I − S

I + S + 2

expβ
(
h+ J

I−1 (S + 1)
)

exp−β
(
h+ J

I−1 (S + 1)
)

= exp 2β
(
h+

J

I − 1
(S + 1)

)
.

Consequently,

7 There are other imaginable transitions, such as where two−1 actors switch to +1 and one +1 actor switches to−1,
but these transitions all involve the simultaneous arrival of revision opportunities to more than one actor, and is thus
a 0-probability transition.
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Prob(S) ∼
(

I
S+I

2

)
expβ

(
hS +

J

2(I − 1)
S2
)

All configurations summing to the same total S are equally likely, and their number is
given by the binary coefficient in the equation, so for any given configuration (ω1, . . . , ωI):

Prob(ω1, . . . , ωI) ∼ expβ

(
h
∑

i

ωi +
J

2(I − 1)

∑

{i,j}

ωiωj

)
. (14)

The point of this exercise is that (14) and (12) are identical. The stationary distri-
bution for the process (14) is the same as the Gibbs equilibrium (12). So even though the
distribution described by (12) may not be appealing as a static equilibrium, it arises quite
naturally as a description of long-run behavior of the process.

The short run behavior of the process {St}t≥0 from any given state m and time t can
be estimated by looking at the evolution of the conditional means E(Sτ |St = S). This
estimate is a very good approximation of the path of the process over any finite time
interval [t, t+ T ] for large population sizes.

Let st = St/I. The process {st}t≥0 records averages. Suppose the process is in state
s at time t. Let f denote any function of the state variable s. The expected value of f(s)
at time t+ τ can be computed from the transition rules. It is a solution to the differential
equation

dE
(
f(st+τ )|st = s

)

dt
=
I(1− s)

2

1

1 + exp−2β(h+ J I
I−1s−

J
I−1 )

(
f
(
s+

2

I

)
− f(s)

)
+

I(1 + s)

2

1

1 + exp 2β(h+ J I
I−1s−

J
I−1 )

(
f
(
s− 2

I

)
− f(s)

)

=
I(1− s)

2

1

1 + exp−2β(h+ J I
I−1s−

J
I−1 )

f ′(s)
2

I
−

I(1 + s)

2

1

1 + exp 2β(h+ J I
I−1s−

J
I−1 )

f ′(s)
2

I
+ Io(I)

I→∞−→
(
tanhβ(h+ Js)− s)f ′(s) .

The first equation holds for any continuous function of the state, the second for differen-
tiable functions, and the third follows from letting I become large. Applying this to the
function f(s) = s gives, for large I,

ṁ = tanhβ(h+ Jm)−m (15)
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The importance of equation (15) is that if I is large enough, the solution to (15) is a good
approximation to the behavior of the stochastic process of averages.

Theorem: Let {sIt }t≥0 refer to the average process with population size I, and suppose
s0 = m0. Then for every t ≥ 0,

lim
I→∞

sup
τ≤t
|sIτ −mτ | = 0 a.s.

This Theorem is a standard result in the theory of density dependent population processes.
(An elementary proof is too long to be given here. A quick high-tech proof can be found
in Chapter 11.2 of Ethier and Kurtz, 1986.)

The steady states of this equation are the equilibria of the Brock-Durlauf uniform
global interaction model (see equation (6)). When there is a unique equilibrium, it is a
stable rest point of equation (15). When there are three equilibria, the center equilibrium
is unstable and the two extreme equilibria are stable. But while the Brock-Durlauf model
gives a good picture of the short-run behavior of the average process, it does not give sharp
predictions of the asymptotic analysis. So long as |h/J | < 1 the differential equation will
have (for large β) two sinks, which are convergingto ±1. But as β becomes large, the sta-
tionary distribution puts most of its mass on the global maximum of the potential function
H(ω), which is ωi ≡ +1 if h > 0 and ωi ≡ −1 if h is negative. As β grows the probability
of a revision opportunity resulting in a non-optimal choice goes to 0. Consequently, for
h 6= 0 one of the sinks, ωi ≡ sgn(h), gets mass converging to 1 as β becomes large. This
state is said to be stochastically stable.

2.6.2 Uniform local interaction

In the previous example we could have computed equilibrium in a different way. For
a general continuous time Markov chain on a finite state space E, suppose the rate of
transition from state e to state f is given by q(e, f). A probability distribution ρ on E is
a stationary distribution if it satisfies the balance conditions if for all e,

∑

f

ρ(f)q(f, e) =
∑

f

ρ(e)q(e, f)

It satisfies the detailed balance conditions if for all e and f ,

ρ(f)q(f, e) = ρ(e)q(e, f).

Clearly any solution to the detailed balance conditions is stationary. And for the processes
we study, a distribution ρ solves the detailed balance conditions if and only if it is an
equilibrium distribution.

For instance, suppose again that all actors have homogeneous preferences and live on
the vertices of a connected graph. Suppose too that each actor has an indentical number
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n of neighbors. Equation (4) becomes:

Prob(ωi|ω−i) =
1

1 + exp 2β(hωi + J
n

∑
j∈Ni

ωiωj)

For a given configuration ω let ωi denote the configuration such that:

ωij =

{
−ωi if j = 1,
ωj otherwise.

Assuming independent rate 1 Poisson alarm clocks, the transition rates are:

q(ω, ω′) =

{
Prob(−ωi|ω−i) if for some i, ω′ = ωi,
0 otherwise.

Consequently the detailed balance conditions are that for all i and ω:

ρ(ωi)q(ωi, ω) = ρ(ω)q(ω, ωi)

The solution is:

ρ(ω) ∼ expβ

(
h
∑

i

ωi +
J

2n

∑

i

∑

j∈Ni

ωiωj

)

2.6.3 Actor heterogeneity — social valuations

When agents are homogeneous, Gibbs equilibria exist and are the stationary distributions
of the Markov processes which describe population behavior. This need not be the case
if actors differ in their characteristics. Consider the following global interaction model.
There are N actors, Each actor is of one of two types. These types differ only with respect
to the weight they put on the choices of others, J1 or J2.

Suppose that actors 1, . . . , I1 are of type 1 and actors I1 + 1, . . . , I1 + I2 are of type 2.
Let {S1t, S2t}t≥0 denote the stochastic process whose value at time t is S1t =

∑I1

i=1 ωit

and S2t =
∑I2

i=I1+1 ωit. The transition rules are defined in a manner analogous to that
for the uniform global interaction process of section 2.4.1. The possible transitions from
(S1, S2) are to (S1± 2, S2) or (S1, S2± 2). The transition rates can be computed from the
conditional probability distribution (11).

Just as with uniform local interaction (sec. 2.4.1) the short run behavior for large I can
be described by a differential equation — in this case, a pair of them. Let skt equal (1/I)
times the sum of the ωi over the type k actors. Thus skt is related to the conditional mean
mkt by the relationship skt = pkmkt where pk is the fraction of the population consisting of
type k individuals. Then for large I, the behavior of the system is approximately described
by the equation system

ṡkt = pk tanhβ
(
h+ Jk(s1 + s2)

)
− skt (16)
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Let {sI1t, sI2t}t≥0 refer to the process of the skt variables with population size I.

Theorem: Suppose sIk0 = sk0 for all I and k = 1, 2. Let skt denote a solution to (16)
with initial conditions sk0. Then for every t ≥ 0,

lim
I→∞

sup
τ≤t
|sIkτ − skτ | = 0 a.s.

Again notice that the steady states are precisely the equilibria in the model of section 2.2.4.

Because this model has no hamiltonian, the detailed balance conditions have no solu-
tion. Invariant distributions are the solutions to the more general balance conditions. We
hope that an examination of the balance conditions will clarify the relationships between
the stationary distribution of the dynamic models and the equilibria of the Brock-Durlauf
model.

2.7. Remarks

2.7.1 Empirical implications

The existence of an equilibrium distribution has two empirical consequences. The first
is observable at the micro level. This is the absence of long range dependence. In the
empirical distribution constructed from time-series observations on the local interaction
model of section 2.4.2, we would see for large sample sizes that:

pr(ωi|ω−i) ≈ pr(ωi|ωNi
)

where ωNi
is the projection of ω onto those coefficients which are in the set Ni. The long

run behavior of actor i is independent of the choices of actors j /∈ Ni. The appearance of
long-range effects in the empirical distribution of a local interaction model is inconsistent
with the existence of an equilibrium. In global interaction models, non-uniformities in
the specification of the random utility model are reflected in the empirical distribution of
states — for instance, if Jij is some function of |i − j|, this relationship can be recovered
from the empirical distribution.

The second empirical consequence is more subtle, but indicates the special nature of
these processes. Suppose that {ωt}t≥0 is a stationary process of configurations. Choose
a t0 and 0 < k < t0. Then the processes {ωt}t0−k<t<t0+k and {ω−t}t0−k<t<t0+k have
the same joint distributions. This property is called reversibility , and is equivalent to the
stationary distribution solving the detailed balance conditions rather than just the balance
conditions. So, for instance, all stationary single-type birth-death processes are reversible.

2.7.2 Equilibrium, dynamics and game theory

The parameter β governs the sensitivity of choice to payoffs. If β is large each actor will
best respond at a revision opportunity with high probability. The effect of large β on the
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stationary distribution is to concentrate most mass on the global maxima of the potential
function. To understand the significance of this fact, suppose the social interaction in this
system were to be modeled as a game. For the purposes of this discussion, suppose we are
considering uniform global interaction. Each player has two strategies, +1 and −1, and
the payoff of any configuration to player i is

hωi +
J

I − 1

∑

j

ωiωj (17)

If J > 0 this is a model of a coordination game in which each player has a preference for
strategy +1. One interpretation of this model has been offered by Kandori, Mailath and
Robb (1993) and Young (1993). Players are repeatedly matched randomly (and uniformly
so) against other players in the population for pairwise interactions. In other words, players
are randomly matched to play a symmetric two-person game. Equation (17) represents
the return against a randomly drawn opponent.8 In this case the two-person game is a
coordination game if J > 0, and h > 0 if and only if the strategy +1 is risk-dominant.
If |h| is not too large, this game will have three equilibria: All play down, all play up,
and all mix such that the expected value of Jωj = −h. These three equilibria correspond
to the critical points of the potential function. The two pure strategy equilibria are local
maxima, while the mixed strategy is the global minimum.

The dynamic process of section 2.4 can be thought of as a process of playing the
game. At random moments individuals have an opportunity to revise their strategy. Their
payoffs are given by (17). But individuals are boundedly rational, and occasionally make
mistakes, so the revision process is in fact stochastic with strategy selection probabilities
given by (11). Long run play of the game is described by the invariant distribution.
Much has been made of the behavior of this system for large β. Kandori, Mailath and
Robb (1993) and Young (1993), and Blume (1993) for local interaction, observe that the
distribution will concentrate around ωi ≡ +1 or ωi ≡ −1 depending upon the sign of h.
In the language of Foster and Young (TK), the risk-dominant equilibrium is stochastically
stable.

As we mentioned above, the model of section 2.2 also has a game theory interpretation.
It is the natural extension to a random utility choice framework of the conventional ex-
pected utility maximization paradigm with the payoff function (14). Models like this have
been investigated by Blume, Holt and Salant (1989) and McKelvey and Palfrey (1996).
Notice that for coordination games, as β grows the equilibria of the random choice models
converge to the Nash equilibrium set. Upper hemi-continuity at the β → +∞ limit, but
it is probable that lower hemi-continuity fails in games with Nash equilibria in weakly
dominated strategies.

8 They did not put the model this way. The equivalence of the two can be seen by rewriting the payoff matrix as in
Blume (1993). They also used a different random utility model. We discuss this below.



20

Of course this analysis applies to a much larger class of games than two-by-two co-
ordination games. The general class of I-person interactions to which this method (with
extreme-value random utility choice) applies is the class of I-player potential games, which
were introduced by Monderer and Shapley (1996). Briefly, a potential is a function H on
the space of configurations such that H(s, ω−i)−H(s′, ω−i) gives the payoff gain to player
i of switching fromstrategy s to strategy s′. Any local maximum of the potential func-
tion is a Nash equilibrium. When the game is extended to mixed strategies, any interior
critical point is also a Nash equilibrium. The class of potential games is mathematically
small but economically important. Monderer and Shapley suggest that, in selecting among
equilibria, a privileged place might go to the global maximum of the potential function.
The dynamic analysis provides a justification for this equilibrium refinement. For games
without a potential in the sense of Monderer and Shapley, the equilibria of section 2.3 will
fail to exist.

2.7.3 Other random utility models

Despite the strangeness of the extreme value distribution, the specifications (4) and (10) for
individual choice behavior are quite natural. They say simply that the log-odds of choos-
ing +1 over −1 is proportional to their payoff difference — a natural logit specification.
Kandori, Mailath and Robb (1993) and Young (1993) use a different model of randomness
in choice. They assume that agents best respond with some probability 1− ε, and make a
mistake with probability ε. Blume (1994) and Maruta (1996) have studied the extent to
which this analysis can be carried out with uniform global interaction. Blume considered
stochastic binary choice in which the log-odds of choosing +1 over −1 is proportional to
a function g of the payoff difference ∆, and showed that all g skew-symmetric functions g
generate stationary distributions with the same large β behavior. This include the Kan-
dori, Mailath and Robb and Young choice models, where g(∆) = sgn(∆). Among other
things, Maruta (1996) demonstrated that skew-symmetry was necessary as well as suffi-
cient to ensure that the risk-dominant configuration is stochastically stable in all games.
Thus skew-symmetry characterizes the degree to which the large β behavior of equilibrium
is robust to the specification of choice probabilities. Blume (1994) also gives a necessary
and sufficient condition on the distribution of ε in equation (4′) for the same character-
ization to work — namely, that conditional upon being in the tails of the distribution,
neither the upper nor the lower tail is infinitely more likely than the other. These results
to not generalize to local interaction models. With the “mistakes” model, the equilibrium
of section 2.3 will fail to exist and the set of stochastically stable states need not be that
of the extreme value rule.


