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ABSTRACT

This paper provides a systematic analysis of identification in linear social interactions models.
This is a theoretical and econometric exercise as the analysis is linked to a rigorously delineated
model of interdependent decisions. We develop an incomplete information game that describes
individual choices in the presence of social interactions. The equilibrium strategy profiles are
linear. Standard models in the empirical social interactions literature are shown to be exact or
approximate special cases of our general framework, which provides a basis for understanding
the microeconomic foundations of those models. We consider identification of both endogenous
(peer) and contextual social effects under alternative assumptions regarding the analyst’s a priori
knowledge of social structure or access to individual-level or aggregate data. Finally, we discuss
potential ramifications for identification of endogenous group selection.

JEL Codes: C21, C23, C31, C35, C72, Z13
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...it is said by some that men will think and act for themselves; that none will disuse spirits or any-
thing else, merely because his neighbors do; and that moral influence is not the powerful engine
contended for...Let me ask the man who would maintain this position most stiffly, what compensa-
tion he will accept to go to church some Sunday and sit during the sermon with his wife’s bonnet
upon his head? Not a trifle, I’ll venture. There would be nothing irreligious in it...Then why not? Is it
not because there would be something egregiously unfashionable about it? Then it is the influence
of fashion; and what is the influence of fashion but the influence that other people’s actions have
on our own actions, the strong inclination each of us feels to do as we see our neighbors do? Nor
is the influence of fashion confined to any particular thing or class of things. It is just as strong on
one subject as another.

Abraham Lincoln,
February 22, 1842

Address to the Washington Temperance Society of Springfield, Illinois

1. Introduction

Although the proposition that individuals are subject to social influence states the obvious, the

study of social influences on individual behavior in economics is a relatively recent phenomenon.1

In the last two decades, however, a rich theoretical, econometric, and empirical literature in so-

cial economics has emerged (see Benhabib, Bisin, and Jackson (2011a,b) for a comprehensive

overview). While each of these three dimensions — the theoretical, econometric, and empiri-

cal — has made important advances, it is fair to say that they are yet to be well integrated. By

this we mean that the theoretical models used to study social interactions are distinct from the

econometric environments in which identification is studied, while empirical work generally does

not systematically exploit the implications of theory and econometrics for the formulation of data

analyses.

The objective of this paper is to facilitate the integration of the theoretical, econometric, and

empirical sides of the social interactions literature through a systematic investigation of linear

social interactions models. Linear models are the workhorse of empirical research and have

been the primary subject of econometric work on the identification of social interactions since

1Of course there are exceptions to this claim. Becker (1974) is an example of theoretical analysis that predate the
modern literature, and Henderson, Mieszkowski, and Sauvageau (1978) and Datcher (1982) are early and seminal
contributions in the empirical study of neighborhood effects. Examples of recent empirical applications of social
interactions models include Conley and Udry (2010) on the diffusion of technology; Nakajima (2007) on smoking;
Sirakaya (2006) on crime; Rege, Telle, and Votruba (2012) on the take up of welfare programs; and Topa (2001) and
Bayer, Ross, and Topa (2008) on labor market outcomes. Another major area of social interactions work is education,
which we discuss throughout the paper.
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Manski (1993). Our analysis provides rigorous microfoundations for a broad class of linear social

interactions models.

The central, and fundamentally optimistic, message of this paper is that in most cases, linear

social interactions models are identified. We employ a theoretically grounded model to under-

stand the conditions under which social interaction effects are or are not identified. The identifi-

cation problem is shown to depend on three factors: the prior knowledge available to an analyst

on the social structure characterizing direct interactions between individuals, the type of data

available to the analyst — whether aggregated or individual level — and the implications of en-

dogenous network formation for the conditional expectations of unobserved heterogeneity given

the social structure. The onus on the empiricist lies in establishing what they know about social

interactions a priori and, conditional on this information, verifying that their social interactions

model satisfies the conditions needed for identification, many of which are provided in this pa-

per. The conditions we describe do not involve adding stronger assumptions than have appeared

in previous papers. Rather, we show that in some cases, non-identification results are artifices

of strong assumptions and in others, we establish identification under weaker assumptions than

have been previously employed.

We start by providing rigorous microfoundations that either exactly nest or approximate the

many linear econometric models that have appeared in the social interactions literature. This

is useful for empiricists because it permits a structural interpretation of regression parameter

estimates, thereby allowing particular studies to shed light on more general contexts. Further,

these microfoundations allow one to assess whether empirical formulations are sensible when

one considers them as equilibrium strategy profiles that emerge from a noncooperative game of

incomplete information.

We translate this theoretical framework into an econometric one, which we use as a basis

to study identification. The main purpose of our identification results is to provide a series of

conditions that empiricists can readily check, depending on their particular empirical application.

Identification of utility parameters obviously depends on the researcher’s a priori knowledge of
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social structures. Without any such prior knowledge, identification fails. This is the first basic

identification result we establish.

Our second set of results considers the case most commonly assumed in the applied litera-

ture, where a researcher has full prior knowledge of the social structure. We show that when

the researcher has access to individual data, structural parameters are almost always identified.

This casts non-identification results that have been at the center of much of the conventional

econometrics literature in a new light, since they pertain to a narrow class of models that have

no obvious theoretical rationale. With full prior knowledge of social structure but access to only

aggregate data, first moments do not enable identification. However, building on approaches pro-

posed by Glaeser, Sacerdote, and Scheinkman (1996, 2003) and formalized by Graham (2008),

we show that second moments do.

The assumption of full prior knowledge of social structure, although routinely imposed in em-

pirical work, may be conceptually untenable. Our third set of identification results explore how

far one can get with partial prior knowledge of social structure. These results, motivated in part

by the availability of social network data, indicate that when a priori information regarding the

intensity of social ties between individuals is absent, prior knowledge of the mere existence (or

absence) of ties between individuals enables identification. Identification for this case bears a

conceptual resemblance to classical rank and order conditions for identification in linear simulta-

neous equations models (cf. Fisher 1966), but the structure of the social interactions framework

means that there are interesting differences from the standard results. Our results indicate that

much more general models of social interactions can be employed in empirical work than has

been done previously, when individual-level data are available. At the same time, we argue that

there are limits to identification when data are comprised of individual observations and group

level averages.

Finally, we discuss the issues of endogenous network formation, and the presence of public

variables observable to those in the network but unobservable to the researcher. We treat en-

dogenous network formation as the first stage of a two-stage game in which our general linear
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social interactions model describes payoffs from choices in the second stage. We argue that the

implications for identification of endogenous network formation entirely depend on the informa-

tion available to agents at the time of network formation, so that for a number of interesting cases

endogeneity does not matter. For the case where our results no longer apply, dealing with en-

dogeneity involves constructing a variant of the control function invented in Heckman (1979) and

extended in Heckman and Robb (1986).

Two previous studies are relatively close to this one. (We discuss others in the context of our

results later on.) Bramoullé, Djebbari, and Fortin (2009) consider identification for known social

structures. We provide a generalization of their results by allowing for distinct social structures for

contextual and endogenous effects, i.e. the effect of network members’ exogenous characteris-

tics and endogenous behaviors, respectively, on individual behavior. Further, they do not study

identification when one does not know the complete social structure and when it is endogenous.

Blume et al. (2011) anticipates some of our analysis but here, we employ a more general pref-

erence structure that allows for different types of social interactions. Our results on identification

under partial knowledge of the social structure are completely new as are our results on identifica-

tion under aggregation and our discussion of endogeneity and information asymmetries between

the analyst and the agents under study.

Throughout the paper, we will employ social interactions effects between students as an exam-

ple in order to interpret assumptions and findings. The evidence for social interactions in educa-

tion is well surveyed in Epple and Romano (2011) and Sacerdote (2011). This empirical literature

is large, exploring social influences on educational and other outcomes. It includes a range of

environments that fall into the general framework we study. For example, it is common to as-

sume that individual outcomes are determined by unweighted averages of peer outcomes and/or

characteristics, with definitions of peer groups ranging from self-identified friendships (Patacchini,

Rainone, and Zenou 2012) to classmates (Graham 2008) to schoolmates (Bifulco, Fletcher, and

Ross 2011) to Zip Codes (Corcoran et al. 1992).
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In section 2 we develop a social interactions game of incomplete information whose Bayes-

Nash equilibrium produces linear strategy profiles. Section 3 introduces additional assumptions

needed to study these equilibrium strategy profiles as econometric models of individual outcomes.

Section 4 studies identification based on complete knowledge of the social structure that connects

agents in the population. Section 5 provides conditions under which identification will hold for par-

tial knowledge of social structure. Section 6 considers the implications of alternate formulations

of unobserved heterogeneity due to endogenous network formation and differences between the

information sets of agents and the analyst. Section 7 concludes.

2. Microfoundations

In this section, we set up a theoretical model from which the econometric model we subse-

quently study is directly derived. We consider a Bayesian game – a social interactions game

– in which the population of network members is a set V containing N < ∞ members. Each

individual i is described by a vector of characteristics (xi, zi), where xi ∈ R is a publicly ob-

served characteristic, and zi ∈ R is a private characteristic observable only to individual i.2 An

individual’s type is a vector (x, zi) ∈ RN+1, which details i’s observable and unobservable char-

acteristics, and the observable characteristics of everyone else. The vector of players’ types is

(x, z) ∈ T = R2N. The a priori distribution of types is an exogenous probability distribution ρ on

T . Knowledge of ρ is common to all individuals, and each individual’s beliefs about the types of

others is a conditional distribution of ρ given the individual’s type.

Utility depends on an individual’s own action and characteristics as well as network members’

actions and characteristics. Individual i chooses an action ωi ∈ R to maximize utility:

Ui(ωi, ω−i) =

(
γxi + zi + δ ∑

j
cijxj

)
ωi −

1
2

ω2
i −

φ

2

(
ωi −∑

j
aijωj

)2

.

Utility is separable into two components. The first two terms denote the private component of

utility and the last is the social component. Both the private and social components are strictly

2We restrict attention to one observable and one unobservable characteristic in order to simplify notation. All of our
results are easily extended to the case when each of these is a vector.
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concave in individual i’s action. Marginal private utility is linear in individual i’s own observable

characteristic xi and private characteristic zi. The term δ ∑j cijxj captures contextual effects

— the direct influence of others’ characteristics on i’s choices. It is a weighted average of the

characteristics of members of a contextual-effects network. The middle term captures convex

costs of action. In our model, endogenous, or peer effects, come from social pressure, that is,

social norms. This is described in the last term as the squared distance between individual i’s

behavior ωi and the average ∑j aijωj of the behaviors of his peers in an peer-effects network.

The parameter φ determines the marginal rate of substitution between the private and social

components of utility.

The matrices A and C, whose elements aij and cij determine peer- and contextual-effects,

are weighted adjacency matrices or weighted sociomatrices for the peer- and contextual-effects

network, respectively. Each has dimension N × N and the magnitudes of the matrix elements

measures the strength of social ties. The networks themselves can be described by graphs: the

peer-effects network A has vertex set V and edge set E = {(i, j) : aij > 0}. The contextual-

effects network C is defined similarly with C instead of A. Because of assumptions made in

the next section (axioms E.2 and E.3, we will be able to represent these networks by undirected

graphs. We write i ∼A j if there is an edge between i and j in the peer-effects network, and

i ∼C j if the edge exists in the contextual-effects network.

To illustrate how this model may be translated to an empirical application, consider a school.

The network is the population of N students. Each student i choses a level of effort. Observable

characteristics include indicators of socio-economic status, such as family income. Contextual

effects emerge because families with resources may contribute public goods such as school

supplies or volunteer time to the classroom. The unobserved type zi may capture individual

characteristics such as ability and family values concerning education, or common influences

such as teacher quality. The peer effect is understood here to be a pressure to conform. Peer-

and contextual-effects networks may differ, then, because the entire classroom may benefit from

such things as parent volunteers, while peer effects come only from a student’s friends.
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Our utility function nests examples in the literature such as Davezies, d’Haultfoeuille, and

Fougère (2009) and Manski and Mayshar (2003). Our model is closest to Blume et al. (2011)

but strictly nests it because we allow for distinct peer-effect and contextual-effect sociomatrices

and because we work with much weaker error restrictions than the i.i.d. assumption made by

the earlier paper. This weakening is important in moving from the theoretical to the econometric

model.

Since all actions are chosen simultaneously, an equilibrium concept is required. We see this

as an incomplete information game, and look for a Bayes-Nash equilibrium. That is, individuals

choose an action to maximize their expected utility given their type and the public types of others.

The Bayesian game formalism assumes that the description of the game 〈U, γ, δ, φ, A, C, ρ〉 is

common knowledge among individuals. Futhermore, we assume that x is common knowledge,

and each individual alone observes his private zi. Equilibrium beliefs are constructed from the

individuals’ strategy functions and the common prior belief. The following axioms ensure the

existence of a Bayes-Nash equilibrium:

T.1. φ ≥ 0. A and C are non-negative, for each i ∈ V, ∑j aij is either 0 or 1, and similarly for

C. For all i ∈ V, aii = cii = 0.

T.2. Second moments of ρ exist.

Axiom T.1 has several parts. The restrictions φ ≥ 0 and non-negative A together impose a

preference for behavioral conformity. Hence, a student is more likely to exert effort if classmates

also exert effort. The analogous restriction on C means the effect of exogenous characteristics is

proportionate to the strength of a tie. So the age of a student’s friends may matter more than that

of acquaintances and may be positive or negative, but the sign of the contextual effects will be the

same as the sign of δ. The restriction that row sums of the peer- and contextual-effects is either

0 or 1 means that individuals are either “loners", i.e. individuals who do not experience either

type of social interaction effect, or that they care about the weighted averages of actions and

characteristics of network members with whom they interact. The formulation means that loners

and others share common γ’s and φ’s, which is convenient for the derivations. The restriction

9



aii = cii = 0 ensures that the peer- and contextual-effects sociomatrices measure only the

effects of others on each individual. “Own-effects” are captured elsewhere in the model. Axiom

T.2 is necessary to ensure that expected utility is well-defined for a large class of strategies.

Formally, a strategy for individual i is a function fi : RN+1 → R that assigns a choice ωi

to each of his possible types (x, zi). Denote by F the set of all strategy profiles f (x, z) =(
f1(x, z1, . . . , fN(x, zN)

)
such that for each x and i, fi(x, · ) : zi 7→ R is in L2

ρ.3 A Bayes-

Nash equilibrium of the game is a vector of strategy profiles f (x, z) such that each fi maximizes

E(Ui(ωi, ω−i)|x, zi), where the expectation is taken with respect to the strategies f−i and the

common prior ρ.

Theorem 1. If the Bayesian game satisfies axioms T.1 and T.2, it has a unique Bayes-Nash

equilibrium. The equilibrium strategy profile can be written

f (x, z) =
1

1 + φ

(
I − φ

1 + φ
A
)−1

(γI + δC)x + µ(x, z) +
1

1 + φ
z (1)

where µi(x, z) depends only on x and zi. If z is independent of x, then µi(x, z) depends only on

zi. If the elements of the z are all pairwise independent, then µi(x, z) depends only on x. If both

are true,

µ(x, z) =
1

1 + φ

((
I − φ

1 + φ
A
)−1

− I

)
E (z) , (1a)

a constant vector.

Theorem 1 provides sufficient conditions for the existence of a unique pure strategy Bayes-

Nash equilibrium to the game, whose individual strategy profiles obey the linear structure com-

monly assumed in the empirical literature. The first term in equation (1) describes endogenous,

contextual, and direct own-effects of public types x. This is the focus of empirical research. The

third term expresses the direct effect on equilibrium behavior of individuals’ private types z. The

second term, µ(x, z), is the effect of higher-order beliefs — individuals’ expectations of others’

private types, their expectation of others’ expectations of their beliefs, etc. In general, i’s higher

3This means that the squared integral of fi(x, · ) with respect to zi exists and is finite, ensuring that preferences over
strategies for the Bayesian game are well-defined.
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order beliefs may be a function of (x, zi), others’ characteristics and i’s private type. This may be

important when network membership is endogenous and x and the zi’s are correlated. We con-

sider this case in section 6. When x and z are independent, however, µ(x, z) = µ(z), i.e. each

individual’s expectation of others’ private types depends only on his own private type. Our econo-

metric model will make this assumption (E.4 below), and we will sweep these higher-order beliefs

into the unobserved term in the regression equation.

There are, generally speaking, two kinds of endogenous social interactions models. We have

chosen to model social interactions as emerging from social norms. We model this as a con-

formity effect. Another source of social interactions comes through strategic complementarities

in production. In the education literature papers such as Epple and Romano (1998) and Calvó-

Armengol, Patacchini, and Zenou (2009) take this approach in modeling peer effects.4 The inter-

pretation of the peer effects in such papers is that the marginal cost of educational achievement

is affected by peer composition. A quadratic utility function embodying this approach is

Ui(ωi, ω−i) =

(
γxi + zi + δ ∑

j
cijxj

)
ωi + φ ∑

j
aijωiωj −

1
2

ω2
i

Here the first two terms describe a production function that maps effort to an educational out-

come. The second term is a strategic complementarity. The hard work of other students spills

over to increase the marginal product of student i’s effort. This is plausible for all kinds of reasons

(see Sacerdote 2011). The third term is the disutility of effort. The proof of theorem 1 applies to

this model too, and an equilibrium exists and is unique for 0 ≤ φ < 1. If the row sums of the so-

ciomatrix A are identical, this model is observationally equivalent to the social-interactions model;

the only difference between the two is that in the Bayes-Nash equilibrium of the complementarity

game, A is multiplied by the parameter φ rather than by φ/(1+ φ).5 This renders moot the issue

4Epple and Romano (2011, sec. 2.1) surveys different models of externalities between students.
5The complementarity model becomes more complicated when φ ≥ 1, and so this case is assumed away in the
literature.
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of identifying the source of endogenous social interaction. If the row sums of A are not identi-

cal, the complementarity model is observationally equivalent to the social-interactions model with

i-specific φ. Our existence proof covers this case as well.

3. From a Theoretical to an Econometric Model

An econometric evaluation of our theoretical model requires additional assumptions. In this

section we introduce these assumptions and discuss their role in identification of the utility pa-

rameters. Loosely speaking, parameters are “identified" if the map from utility parameters into

the joint distribution of regressors and outcomes is one-to-one. The following definition, due to

Koopmans (1953), is useful in translating our theoretical framework to an econometric one.

Definition 1. A structure s for the linear social interactions model is a list

〈γ, δ, φ, A, C, ρ〉, where γ, δ and φ are utility parameters, A and C are peer- and contextual-

effects sociomatrices, and ρ is the a priori probability distribution on R× R. A model is a set of

structures.

The empiricist is interested in whether the utility parameters γ, δ and φ are identified in a model

in which a number of sometimes implicit restrictions have been imposed on A, C and ρ. Here,

we make these restrictions explicit by concerning ourselves with the model M, all of whose

structures satisfy T.1–T.2 and the following assumptions:

E.1. The support of the marginal distribution of x has dimension N.

E.2. For all i and j, aij > 0 iff aji > 0. For some i and j, aij > 0.

E.3. For all i and j, cij > 0 iff cji > 0. For some i and j, cij > 0.

E.4. For all i, j ∈ V, xj and zi are uncorrelated.

E.5. At least one of γ and δ is nonzero.

E.1 ensures that the N×N matrix of parameters post-multiplied by x in equation (1) is unique.

Assumptions E.2 and E.3 place additional restrictions on the sociomatrices. While these are not

12



necessary conditions in our theorems, they greatly simplify derivations. Each is, in itself, weak and

only serves to eliminate knife-edge cases. The first parts of E.2 and E.3 require that when j exerts

social influence on i, i also exerts social influence on j. These are weak assumptions because

nonzero elements of the sociomatrices are allowed to be arbitrarily small and the strength of ties

between two individuals may be asymmetric. We do not require these two assumptions for most

of our results, including those which rely on holes in the network for identification. However, we

prefer to maintain them because they greatly simplify proofs. The second parts of E.2 and E.3

require, respectively, that there exist at least one pair of agents who exert peer-effects on each

other and one pair of agents who exert contextual-effects on each other. If it is known that one

or the other of the sociomatrices is the zero matrix, identification is straightforward without all the

complications that we take up in section 4. E.4 is a standard exogeneity condition with respect

to x. In the context of our theory model, it means that higher order beliefs depend only on own-

types, so µ(x, z) ≡ µ(z). We will relax this assumption in section 6. E.5 eliminates the special

case in which the x’s have no effect on the outcomes. This case is discussed in theorem 2.

For what follows, it will be convenient to define

µ = E
(

µ(z) +
1

1 + φ
z
)

,

ε = µ(z) +
1

1 + φ
z− µ,

Bφ(s) =
1

1 + φ

(
I − φ

1 + φ
A
)−1

,

and

B(s) = Bφ(s)(γI + δC). (2)

For structures in models satisfying assumptions T.1–T.2 and E.1–E.4, the equilibrium equation

system of theorem 1 becomes

ω = µ + B(s)x + ε, (3)
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With this change of variables, the residual term ε has unconditional mean 0. Although it should

not be forgotten that both µ and the distribution of ε depend upon ρ, we shall not be using either

for identification, except in section 4.2. Instead, we will identify parameters through the matrices

B(s). We index these matrices by s to emphasize that it is from the structure that we will recover

utility parameters.

Equation (3) may be contrasted with a purely statistical model of the form

ω = α + Bx + e, (4)

in which e is constructed to be orthogonal to (1, x). Viewing this statistical model through the

prism of the game of section 2 and the econometric assumptions of this section has three ad-

vantages. First, it imposes some parameter restrictions on the model (e.g. the row sums of B will

be identical). Second, it facilitates the interpretation of parameter values in terms of commonly

accepted models of interactive decision making. Third, it allows for causal conclusions from pa-

rameter estimates because it makes clear what environmental perturbations leave the structure

unchanged.

From E.1 it is immediately clear that α, B and Var(e), the covariance matrix of the reduced

form errors from equation (4), summarize the relevant information for identification via the first

and second moments of the data, and that each is unique. For purposes of identification, these

moments are the objects that the data provide to the analyst.

Most of this paper is concerned with identification of the utility parameters from the matrices

B(s) of equation (3), which describe how equilibrium strategy profiles vary with characteristics x.

Definition 2. Utility parameters γ, δ and φ are identified in a modelM by B if for all s, s′ ∈ M,

if B(s) = B(s′) then (γ, δ, φ) = (γ′, δ′, φ′).

Our identification definition ignores the constant term because, in comparing the equilibrium

strategy profile (3) with the statistical model (4), without restrictions on ρε|x (the marginal prior
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of ε given x), the individual-specific constant terms cannot provide additional information on γ, δ

and φ.

Since B depends on the structure only through γ, δ, φ, A and C, identification of the utility

parameters will obviously depend on what is known about A and C a priori. Without a priori

information about structures, identification will fail since the inverse image of a matrix B under

the map s 7→ B(s) could contain structures with very different sociomatrices. In section 4.1

we assume that the pair (A, C) is known a priori, while in section 5.1, a priori knowledge only

pertains to C. LetM(A, C) andM(C) denote the sets of all s ∈ M with fixed sociomatrices A

and C, and with fixed contextual-effects sociomatrix C, respectively. These should be thought of

as sub-models ofM. For instance, when A and C are known a priori, the identification exercise

is that of identifying the utility parameters in the set of structuresM(A, C). It follows from these

definitions that anything identified inM is identified inM(C) for every contextual-effects matrix

sociomatrix C, and anything identified in M(C) is identified in M(A, C) for every peer-effects

sociomatrix A.

We first establish a basic identification result. This result supposes the following structure on

observations:

K. 1. For all i, the analyst observes (ωi, xi)

Assumption K.1 requires that the analyst observe both the outcomes and characteristics of

each member of the population. Theorem 2 says that without any a priori knowledge other than

T.1–T.2, E.1–E.4 and K.1, the reduced form parameters B = B(s) and the sum β = γ + δ

are nonetheless identified; that is, they are identified in M. This is critical. The remainder of

the paper is concerned with the unpacking of B = B(s) to recover utility and social interactions

parameters. The theorem goes on to state that the parameter set γ = δ = 0 is identified, where

“identified” here means “identified inM”. A third result states that with an additional piece of a

priori information, the set δ = φ = 0 is identified, and in this case, by virtue of the first result, γ

is identified as well.
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Theorem 2. Assume T.1–T.2, E.1–E.4, and K.1.

i. The matrix B(s), µ, and the sum β = γ + δ are identified from the joint distribution of ω

and x without any additional a priori information.

ii. E (ω|x) is independent of x if and only if δ = γ = 0.

iii. If it is known a priori that either A 6= C or γ + δ 6= 1, then for all i, E (ωi|x) = E (ωi|xi)

if and only if δ = φ = 0. In this case, γ is identified as well.

Otherwise, the parameters γ, δ, φ, A, C are not identified without additional a priori information.

These results do not require E.5. But having dispensed with this case, it is convenient for exposi-

tory purposes to maintain E.5 for the remainder of the paper. The condition γ + δ 6= 1 is required

to ensure that the contextual and endogenous peer effects do not cancel each other out.

Theorem 2 is a negative result from the perspective of identifying social interactions. The non-

identifiability of δ and φ means that the structural parameters representing the two possible social

effects, peer and contextual, cannot be recovered given the assumptions we have made so far.

To understand why, consider the following econometric specification, which is delivered from the

first-order conditions for expected utility maximization in the Bayes-Nash equilibrium:

ωi =
γ

1 + φ
xi +

δ

1 + φ ∑
j

cijxj +
φ

1 + φ ∑
j

aij E
(
ωj|x

)
+

1
1 + φ

εi (5)

This system of N equations is just a classic simultaneous equations system except that ex-

pectations of endogenous variables appear on the right hand side of the equation, rather than

realizations. In fact one can interpret two stage least squares as making exactly this substitu-

tion. The non-identification of this simultaneous equations system is a classical result — one that

is unaffected by the row summability of A and C. From this vantage point, identification failure

stems from the absence of exclusion restrictions in the system. (See Bramoullé, Djebbari, and

Fortin (2009) for elaboration of this intuition.)
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We close this section by showing how a number of existing models constitute special cases

of our general framework. The social interactions literature has focused on equation (5), the first

order conditions for expected utility maximization, rather than the equilibrium strategy profiles.

Hence our first two examples focus on econometric models that may be interpreted as special

cases of (5). Our third example illustrates how our models instantiates the idea of weak ver-

sus strong ties, a sociological distinction which is important for a variety of economic network

analyses.

Example 1: linear-in-means models. In many social interactions models, individuals are parti-

tioned into non-overlapping groups g. Let ng denote the size of group g. In the linear-in-means

model, an individual’s behavior depends on his average group characteristics and average group

behavior. This amounts to imposing the following constraints on the sociomatrices:

cij =
1

ng − 1
if i, j ∈ g, (6)

aij =
1

ng − 1
if i, j ∈ g,

cij = aij = 0 if i ∈ g, j /∈ g

Combined with the assumption that E (ε|x) = 0, the first order conditions (5) may be rewritten:

ωi =
γ

1 + φ
xi +

δ

(1 + φ)(ng − 1) ∑
j

xj +
φ

(1 + φ)(ng − 1) ∑
j 6=i

E(ωj|x) +
1

1 + φ
εi (7)

Manski’s (1993) study of identification of social effects is based upon a large sample approxi-

mation of this model, in which for all i, ng → ∞. In the limit

ωi =
γ

1 + φ
xi +

δ

1 + φ
x̄g +

φ

1 + φ
E(ω̄g|x) + 1

1 + φ
εi (8)

where x̄g and ω̄g are group-level averages of the respective variables.

The unweighted averaging assumed in the linear-in-means model does not have a theoretical

justification but rather reflects a modeling choice made for simplicity, or because of limits on what

is observable about the groups. It is trivial to think of contexts in which weights will not be equal.
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For high school students, one could easily imagine differences in sociomatrix elements that reflect

relative popularity, strong versus weak friendships, and the like. Goldsmith-Pinkham and Imbens

(2013) in fact report evidence of violations of the linear-in-means social structure for high school

students. One message of this paper will be that it is not necessary to rely on the simplification of

unweighted averaging. While some prior information on the sociomatrices A and C is necessary

for identification of the utility parameters, the necessary information is less than that assumed in

the linear-in-means model.

Our framework can also be used to assess the interpretability of different variations of (5) with

respect to rigorous microfoundations. For example, a major empirical study of educational peer

effects is Sacerdote (2001), which examines roommate pair interactions at Dartmouth. Sacerdote

assumes that each student i’s grade point average depends on his own ability and the ability and

grade point average of his roommate j. Sacerdote is careful to allow for measurement error in

ability. We ignore this for simplicity, since in its absence his model reduces to

ωi = d0 + d1xi + d2xj + d3ωj + ςi.

Sacerdote follows the theoretically appropriate formulation of endogenous social effects by em-

ploying the average of each individual’s roommates, which for pairs is simply the outcome of the

other roommate. Further, given that there is only a single roommate, there is no issue of the

restriction of the linear-in-means model A matrix. On the other hand, as in Lee (2007), the inclu-

sion of ωj rather than E(ωj) begs the question of what information sets are available to agents,

since a roommate’s grades are not observable contemporaneously. That said, there is a simple

reinterpretation of this model as

ωi = d0 + d1xi + d2xj + d3 E(ωj) + d3(ωj − E(ωj)) + ςi

which is isomorphic to our equilibrium best response function when roommates are playing a

Bayes-Nash game. Does this do violence to Sacerdote’s analysis? We argue that it does not,

since instrumenting for ωj is equivalent to replacing this variable with E(ωj). Note that in this
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specification, d2 and d3 are not separately identified if E(ωj) is determined by a linear combina-

tion of xi, xj and a constant. Identification of d2 + d3 holds and is a special case of theorem 2.6

Example 2: linear-in-means models based on neighborhoods. A second common approach

to analyzing social effects has extended the linear- in-means model by exploiting observed net-

work data to locate individuals in neighborhoods, and using these neighborhoods to generate

sociomatrices. One example of this strategy is De Giorgi, Pellizari, and Redaelli (2010) who

employ administrative data from university students to explore peer effects among classmates,

where interactions are determined by overlapping classroom enrollments. A similar approach is

employed in Calvó-Armengol, Patacchini, and Zenou (2009), using Add Health data, which we

discuss later.

Formally, let i’s neighborhood h be the set of other agents to whom he is connected and let nh

be the number of agents in this set. Note that i 6∈ h. The weights associated with a linear-in-

means model based on neighborhoods correspond to

cij =
1
nh if j ∈ h,

aij =
1
nh if j ∈ h,

cij = aij = 0 if j /∈ h

The reduced form regression that is generated by the addition of these assumptions to our frame-

work is

ωi = d0 + d1xi + d2x̄h + d3 E(ω̄h) + ςi (9)

where x̄h and ω̄h denote averages for neighborhood h. While equation (9) may resemble equation

(5), it in fact implies a much richer structure for social interactions. Unlike the linear-in-means

model, agents are no longer partitioned into non-overlapping groups; an agent to whom many are

6Sacerdote (2001) shows that identification can hold under restrictions on the unobservables in his model. In our
formulation of his model, this would require that ωj − E(ωj) and ςi are uncorrelated, which Sacerdote (2001) notes
involves the very stringent and arguably non-credible requirement that ςi and ς j be uncorrelated.
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connected has a larger influence than one to whom few are connected because of differences in

the number of neighborhoods the respective agents inhabit.

However, the formulation is still restrictive relative to our general C and A sociomatrix formu-

lation as (9)’s generalization of (5) involves the relaxation of the block diagonality assumption of

the linear-in-means model but retains equal values of the non-zero elements of each row of the

implied sociomatrix. This could be an inaccurate, not to mention excessively restrictive, repre-

sentation of social interactions.

In this example too, our microfoundations can be used to evaluate the statistical formulations of

(9). For example, De Giorgi, Pellizari, and Redaelli (2010) use ω̄h rather than E(ω̄h). As argued

above, our Bayes-Nash formulation is more natural and does no violence if employed to interpret

their regression.

Calvó-Armengol, Patacchini, and Zenou (2009) make a more substantial deviation from our

framework. They develop a complete-information social interaction game where individuals re-

spond to the choices of peers in their social network. Individuals utilities are additively separable

in two choice variables, private effort and peer-induced effort. These are perfect substitutes in the

production of observed output (which is not an argument of the utility function). Their model differs

from ours in two important way. First, they assume that individual characteristics (including con-

textual effects) affect only the utility of private effort, and so they elide the identification problem

since individual characteristics do not feed back into peer effects. So, for instance, if a student in

a classroom had an exogenous improvement in health status that reduced his cost of effort, and

so he chose to work more, this would have no effect on others’ effort levels or outcomes. Second,

although individual characteristics are not an argument of peer effort utility, there is heterogeneity

in equilibrium peer effort nonetheless, because ceteris paribus the marginal utility of peer effort

is assumed to scale linearly with the number of connections one has — individuals with more

contacts are assumed to be more susceptible to peer pressure. These unusual modeling choices

serve a purpose. Calvó-Armengol, Patacchini, and Zenou make a direct connection between the
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peer-effort choice and sociological measures of centrality. They claim that the equilibrium peer

effect equals the Katz-Bonacich centrality vector.

This and other measures can be derived from our A matrix. Both models have the advantage

that the attenuation rate of influence, a key parameter, can be derived from the marginal rate of

substitution between private and social components of utility.

Example 3: strong and weak ties Empirical work by economists on social interactions has

largely concerned networks with only one type of connection between agents. Sociologists, on

the other hand, have recognized that social connections may have different manifestations, and

that the distribution of different kinds of connections in a social network has an impact on network

outcomes. Perhaps the most well-known distinction among connections is that of strong and weak

social ties. Granovetter (1973) argued that weak ties play an important role in job search because

they relay useful job information more frequently. Lin (2002) suggests that weak ties are useful

because weak-tie job referrals are drawn from a different and often better distribution of openings.

Montgomery (1994) has embedded simple two-edge-type social networks into job search models

to investigate the impact of the distribution of weak versus strong ties on employment rates and

wage distributions. While the labor-market literature extolls the virtues of weak ties, in other

aspects of economic life strong ties may be more important. Some ethnographic work suggests

that strong ties have more value to poor individuals than weak ties. The suggestion is that the

poor, lacking access to markets, rely more on reciprocity in their social networks for the provision

of credit and a variety of commodity flows (see Granovetter 1973, pp. 209–13.)

The flexibility of weighted sociomatrices allows for the empirical distinction between strong and

weak ties. Suppose that an individual i has niS strong ties and niW weak ties. Suppose too

that the ratio of the strength of strong to weak ties is θ. Define elements of the peer- effects

sociomatrix as
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aij =


1/(niW + θniS) if j is weakly tied to i;

θ/(niW + θniS) if j is strongly tied to i;

0 otherwise.

A statistical model with this kind of network structure can be estimated from survey data that

includes information on tie strength or data on ties that would allow a researcher to infer the

nature of the tie. The Add Health data set is an obvious candidate for constructing weak versus

strong ties.7 Patacchini, Rainone, and Zenou (2012) in fact explore strong versus weak ties by

assuming that the weights on friends report in the data are linearly declining in the order listed by

each student and by studying the differences between friendships reported in two survey waves

versus one.

4. Identification with known sociomatrices

In this section, we describe identification of the primitive utility parameters γ, δ and φ when the

sociomatrices A and C are known to the analyst. We do not take a stance on the source of this a

priori knowledge. It may be the case that the matrices are empirical constructions or chosen for

theoretical reasons. Formally, we augment the assumptions made in sections 2 and 3 with

K.2. A and C are exogenous and known to the analyst a priori.

Assumption K.2, that the analyst knows the values of the sociomatrices, is strong, and we

believe that standard approaches to generating a priori values of A and C are often theoretically

unjustified. However, since this is in fact how the bulk of the social interactions and networks

literatures has proceeded, it is important to understand identification for such contexts. We begin

by maintaining assumption K.1, which said that the analyst observes individual outcomes and

7The Add Health data set originated in 1994, when over 90,000 subjects in a randomly selected set of schools across
the U.S. were asked to name their five best school friends, many of whom were included as subjects in the sample.
This allows researchers to observe a friendship network with friend characteristics. The school survey was later
supplemented by a household survey performed on a randomly selected sub-sample of 20,545 subjects, tracked
over four waves up to 2005. In the second wave (1996), subjects were asked to list their friends again, which allows
researchers to look at the evolution of the friendship network and make inferences on the strength of ties over time.

22



characteristics. We will relax this assumption when we consider identification with aggregated

data in section 4.2.

One major result of this section is that when individual data are available, there is a precise

sense in which identification of the primitive utility parameters of the linear social interactions

models is “typically” the case. Identification is “generic" in that the set of sociomatrix pairs (A, C)

for which utility parameters are not identified is a lower-dimensional subset of MA ×MC, which

is the set of all (A, C) pairs that satisfy the relevant assumptions placed on our theoretical and

econometric models. Our results indicate that concerns over simultaneity as a source of non-

identification of social effects are misplaced when A and C are known, unless one has a justifica-

tion for working with a model from the non-generic (small) set of linear social interactions models

in which identification fails.

We further consider identification when data are aggregated. Consideration of this case was

initiated by Glaeser, Sacerdote, and Scheinkman (2003) and formalized in Graham (2008). They

employ versions of the linear-in-means model and focus on identifying the equivalent of the con-

textual-effects parameter δ under the assumption that φ = 0, i.e. peer effects are not present.

Here we provide identification results that generalize the cases these authors studied. We show

that identification is possible when both effects are present and for social structures other than

the linear-in-means specification.

4.1 Individual-level data. We begin by generalizing an important result due to Bramoullé, Djeb-

bari, and Fortin (2009), which places conditions on the sociomatrices that are sufficient for iden-

tification of the parameters. Our generalization accounts for distinct peer- and contextual-effects

sociomatrices. The result provides conditions such that the matrix B in the statistical model (4),

when identified with B(s) in the structural equation (3), can be used to back out the values of γ, δ

and φ. Since A and C are known a priori, “is identified” means in this subsection “is identified

inM(A, C)”. We provide conditions on the structure of the underlying networks that guarantee

identification of the utility parameters. One of these conditions, namely that networks overlap, is
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defined below. The results in this section can be seen as demonstrating how exclusion restrictions

enable identification.

Definition 3. Given two networks N1 and N2, The network N1 overlaps the network N2 if every

component of N2 contains an i and a j who are connected in N1.

.

Theorem 3. Assume T.1–T.2, E.1–E.5, and K.1–K.2. Linear independence of the four matrices

I, A, C and AC is necessary for identification of the utility parameters γ, δ and φ. Suppose that

A 6= C, and that the contextual-effects and peer-effects networks overlap. If γ + δ 6= 0, it is

sufficient as well.

Theorem 3 says that the failure of identification implies the existence of a non-zero solution in

α, β, θ and τ of the following equation system:

α + τ ∑
j

aijcji = 0 for all i,

βcij + θaij + τ ∑
j

aijcji = 0 for all i 6= j

α + β + θ + τ = 0

These linear dependence conditions implicitly define the set of matrices A and C such that iden-

tification fails. The conditions in the theorem can be checked, but they are admittedly abstract.

The following corollary gives an easily checked sufficient condition. Moreover, it is clear that the

sufficient condition is “almost always” satisfied. The utility parameters are identified for all pairs

of sociomatrices outside of a lower-dimensioinal set.8 The reflection problem is an artifact of a

particular specification; it is not the general case.

8Our results may be seen as a complement to McManus (1992) who established generic identification for parametric
nonlinear models. He studies a space of nonlinear functions each of which is indexed by a parameter vector and
employs a slightly different notion of genericity.
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Corollary 1. A sufficient condition for identification is that there exist two individuals i and j such

that ∑k aikcki 6= ∑k ajkckj.

To place this corollary in the education context, suppose that social interactions are confined

to students in a given classroom. Student i has a direct peer effect on student k, and student

k in turn has a contextual effect on student i. The sum ∑k aikcki measures the “self indirect

contextual effect”. Corollary 1 requires that this effect be different for two different students. If

peer relationships are at all asymmetric and if contextual effects are not distributed uniformly in

the classroom, this is likely to be the case.

Beyond giving an easily verifiable condition for identification, Corollary 1 shows how rare failure

of identification is when the sociomatrices are known. For any A, the set of C for which identi-

fication fails is lower-dimensional in MC. The corollary displays the natural intuition that a priori

knowledge of A and C radically decreases the number of unknown parameters in the best re-

sponse function in equation (2). Identification fails when the sociomatrices are so symmetric that

distinct relationships within the network become redundant.

Our finding that identification is generic for known sociomatrices contrasts with much of the

conventional wisdom in the econometric literature on the identification of social effects. In par-

ticular, since Manski (1993), there has been a recognition that for linear-in-means models iden-

tification can fail. Manski’s (1993) demonstration that the parameters of such social interactions

model are not identified for the large sample approximation (8) immediately follows from the fact

that E(ω̄g|x) is linearly dependent on 1 and x̄g. Manski dubbed this identification failure “the

reflection problem”, and it has dominated econometric work on social effects ever since. The

following theorem indicates how central the linear-in-means assumption is to this traditional non-

identification result.

Theorem 4. Assume T.1–T.2, E.1–E.5, and K.1–K.2. Suppose the contextual effects matrix

contains only one component.9

9If not, identification is typical. For instance, if the peer- and effects- components are the same, and two are of
different size, then I, A, C and AC are independent and so the utility parameters are identified. If they are not, then
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i. If A 6= C, C is a linear-in-means sociomatrix, then the utility parameters are not identified.

ii. If A 6= C, A is a linear-in-means sociomatrix, the peer-effects network is connected, and

C is bistochastic, then the utility parameters are not identified.

iii. If A = C and γ + δ 6= 0, the utility parameters are not identified if and only if C is a

linear-in-means sociomatrix.

Theorem 4 shows that non-identification comes not from the fact that the sociomatrices for peer-

and contextual-effects are the same, but from the extreme symmetry imposed by the linear-in-

means structure. It further demonstrates that when peer- and contextual-effects networks are the

same, identification fails only in the linear-in-means model. This theorem expands on a result

of Bramoullé, Djebbari, and Fortin (2009), who show in an econometric specification similar (but

not identical) to ours, that linear independence of the zeroeth, first and second powers of A is

a necessary and sufficient condition for identification. We establish this result in our model, and

then go on to prove that among sociomatrices satisfying T.1 (and not necessarily E.3), only the

linear-in-means matrix has this property.

Generally speaking, identification will be determined by the specific values of the elements in

the sociomatrices A and C. From theorem 4, however, we can derive criteria for identification

which depend only on the shape of the network, the network topology, and the location of 0’s in

the sociomatrices.

Corollary 2. Assume that there are distinct individuals i and j who are connected by a sequence

of edges, some in the peer-effects network and some in the contextual-effects network, and who

are not connected by a path in either the peer-effects network or the contextual-effects network

alone. Then γ, δ and φ are identified.

This corollary says that utility parameters are identified except possibly when each compo-

nent of the peer-effects network is the union of components of the contextual-effects network.

the matrices are independent unless the sums of aij over j in the intersections of the components are related in a
paticular way, etc.
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It demonstrates how restrictions on merely the qualitative structure of social interactions imply

identification. For instance, if families attending a given school deliver contextual effects at the

school level (e.g. they provide public goods) but peer effects do not cross classrooms or grade

levels, then the utility parameters are identified. This sufficient condition for identification cannot

arise if the peer- and contextual-effects networks are the same, and in particular, if A = C. This

illustrates how the existence of richer peer and contextual social structures can facilitate rather

than hamper identification.

Taken as wholethe results in this section thus far show, in our judgment, that concerns about

non-identification with a priori knowledge of A and C are misplaced. Of course, this does not

mean that a given model is identified. Rather, these results say that if the utility parameters are

not identified, then the researcher’s choice of A and C is a very special case relative to the set of

matrices that are consistent with the behavioral model we have described. It is always possible

that a researcher has a principled reason for choosing sociomatrices under which identification

fails. Our message is simply that such a reason needs to be present to conclude that the presence

of social effects in preferences cannot be uncovered by the data.

Comparing corollaries 1 and 2 to previous work on identification and the linear-in-means model

highlights the fragility of the reflection problem. Previous work has already produced variations of

the linear-in-means model in which, unlike Manski’s formulation, identification holds. Lee (2007),

Lee, Liu, and Lin (2010), Bramoullé, Djebbari, and Fortin (2009) and Davezies, d’Haultfoeuille,

and Fougère (2009) provide positive identification results based on (7), the exact linear-in-means

model as opposed to the large sample approximation. Bramoullé, Djebbari, and Fortin (2009) and

Davezies, d’Haultfoeuille, and Fougère (2009) study a version of Lee (2007), and find that if there

are at least 2 groups of different size, identification holds for the exact model. Further, Bramoullé,

Djebbari, and Fortin (2009) and Blume et al. (2011) show that the Manski non-identification result

will hold if, contrary to our theoretical reasoning, aii is non-zero, which in the linear-in-means case

implies that if each agent reacts to an unweighted average of the expected choice, the reflection

problem reemerges even if groups are finite — a conclusion that was anticipated in Moffitt (2001).
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4.2. Aggregate Data. Individual-level data on social interactions are often unavailable, or are in-

complete due to sampling gaps. However, aggregate statistics are widely available (e.g., average

standardized test scores at the school-level, city-level crime incidence, county-level unemploy-

ment rates, etc.). One approach that takes advantage of such data, originating with Glaeser,

Sacerdote, and Scheinkman (1996, 2003) and later extended by Graham (2008), focuses on the

informational content of cross-sectional data on group level averages.

To see how such data can be related to the linear social interactions model we have developed,

consider data drawn from G + 1 non-overlapping groups numbered g = 0, . . . , G. Each group

g contains ng members. We assume that the primitive utility parameters γ, δ and φ are constant

across the groups in order to render the use of aggregate data interpretable, but that socioma-

trices are group-specific, so each group g is associated with a distinct set of sociomatrices Ag

and Cg. For many contexts, heterogeneity in social structure seems natural across groups, even

when populations are of the same size. One example is school classrooms, where one would

naturally expect different social structures, even for classrooms of a given size.

Denote by ω
g
i , xg

i and ε
g
i the outcomes, observed characteristics, and unobserved character-

istics, respectively, of individual i in group g and let ω̄g, x̄g and ε̄g be the group-level averages of

these variables. The model is such that assumptions T.1–T.2, E.1–E.5 hold at the group level.

In addition, we assume:

K.1.′ For all g, Ag and Cg are exogenous and known to the analyst a priori.

K.2.′ For all g, the analyst observes (ω̄g, x̄g).

Assumption K.1′ establishes what, in this section, is assumed to be the analyst’s a priori knowl-

edge. Assumption K.2′, that the analyst observes only group-level averages of s and ω, replaces

the assumption that the analyst observes individual-level data. For each group, let (ωg, xg, εg)

denote the vectors of outcomes and observed and unobserved group characteristics for group g,

respectively, and let ñg denote the vector each of whose elements is 1/ng. Given equations (3)
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and (2), ω̄g, x̄g, and ε̄g are related to the individual-level variables by

ω̄g ≡ ñgωg = ñgµε + ñgBg
φ(γxg + δCgxg) +

1
1 + φ

ñgεg (10)

A natural starting point for many empiricists would be to estimate a linear-in-means model,

which amounts to imposing the restriction on (10) that the rows and columns of Ag and Cg each

sum to 1. This yields

ω̄g = µε + (γ + δ)x̄g +
1

1 + φ
ε̄g (11)

It is easy to see from this equation that separate identification of the structural parameters from

the joint distribution of ω̄g and x̄g is not possible: δ and γ enter the joint distribution only through

the sum, and φ cannot be untangled from the variance of ω̄ under our current assumptions.

While the first moments do not permit identification, the key insight of Glaeser, Sacerdote, and

Scheinkman (2003) and Graham (2008) is that, under further assumptions, second moments

may. Glaeser, Sacerdote, and Scheinkman pointed out that conditional on x̄g, variation in ω̄g is

consistent with the variation that would be predicted in averaging i.i.d. random variables. Their

argument, which is heuristic, is that Var(ω̄g|x̄g) will reveal social interactions by comparing the

sample variances for different group sizes to one in which ωi−E(ωi|x̄g) is i.i.d. within and across

groups.

Following Glaeser, Sacerdote, and Scheinkman (1996) and the case in Graham (2008) where

group level effects are absent, we add the following additional constraint on the model in this

section.10

E. 6. For all i, j xg
i and xg

j are i.i.d. and ε
g
i and ε

g
j are i.i.d.

10Graham (2008) has additional identification results in the case where random group effects are present.
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This is a stronger i.i.d. assumption than we have had so far, namely that for all i, j, xg
i and ε

g
i are

i.i.d. Together with E.6, equation (10) yields:11

Var(ω̄g) =
1

(ng)2 ∑
j∈g

(
∑
i∈g

Bg
ij

)2

σ2
x +

(
1

1 + φ

)2 1
ng σ2

ε (12)

Setting one group, g = 0, as the baseline, define the following statistic for the remaining groups

g = 1, . . . , G, where Var(x) = σ2
x is observed

νg =
ng Var(ω̄g)

σ2
x

− n0 Var(ω̄0)

σ2
x

The following theorem shows that νg can be used for identification. Define Mg
A and Mg

C to be

the set of peer- and contextual-effects sociomatrices for group g; that is, they satisfy the matrix

assumptions T.1, E.2 and E.3.

Theorem 5. Assume T.1–T.2, E.1–E.6 and K.1′–K.2′. Assume also that δ, φ, and β = (γ +

δ) 6= 0. If

i. There are at least 5 groups,

ii. 5 or more groups have at least 3 members, and

iii. Ag is not bistochastic,

then the utility parameters γ, δ and φ are identified from ν1, . . . , ν5, except on a closed lower

dimensional set of matrices (C1, . . . , C5) ⊂ ∏5
g=1 Mg

C.

Theorem 5 says when data are in the form of group averages, second moments can be used

to identify the utility parameters for a generic set of contextual-effects matrices, under some ad-

ditional conditions. The analyst needs to observe at least 5 groups, 5 of which have at least 3

members. Moreover, there needs to be some heterogeneity in the peer-effects sociomatrix within

11Equation (12) follows directly from

ω̄g = µε +
1

ng ∑
j∈g

(
∑
i∈g

Bg
ij

)
xg

j +
1

1 + φ

1
ng ∑

i∈g
(ε

g
i − µε).
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each group: the row sums and column sums of each Ag cannot all be 1. These conditions ef-

fectively provide enough variation to allow each group to provide distinct second moments from

which the utility parameters can be backed out.

The theorem builds on Graham (2008), who explores the case in which peer effects are effec-

tively absent (for all g, Ag = 0), and contextual effects are characterized by a linear-in-means

structure where for all g, cii = 0 (all of which are allowed by T.1–T.2 and E.1–E.5). The linear-in-

means assumption reduces the number of required groups with distinct Cg’s to 3 relative to the 5

in theorem 5. Our result indicates that the logic of Graham’s analysis extends beyond the linear-

in-means model. Moreover, it does not require the absence of a peer effect, and neither does it

require different group sizes, which in his analysis generates the necessary variation for identifi-

cation. However, in our formulation, this comes at a cost: data loss in moving from individual to

group-average observations necessitates a priori information on characteristic covariances. Al-

though we conjecture that similar statistics can be constructed with more complicated covariance

structures, here, we have assumed independence.

4.3. Mixed individual and aggregate data. We conclude this section by considering linear

social interactions models that are based on a combination of individual-level and aggregate

data. A number of studies, including many in the important first generation of empirical social

interactions research, combine individual-data from the Panel Study of Income Dynamics (PSID)

with aggregate data from, say, the ZIP-code or census-tract level.12

The sampling scheme for the PSID, when combined with aggregate information, produces

regressions of the form

ωi = b0 + b1xi + b2x̄g + ηi (13)

12The PSID is a unique data set: it has been tracking a sample of 5,000 households since 1968, expanding over time
to follow respondents as households structure changes and recording rich individual and family-level measures for
both parents and offspring. However, it has limited information on residential neighborhoods. As a result, researchers
interested in studying social interactions have resorted to generating neighborhood information by matching aggre-
gate data sets to the PSID via respondent Zip codes (Datcher 1982, Corcoran et al. 1992) or their census-tract,
(Campbell, Haveman, and Wolfe (2011), Plotnick and Hoffman (1999) and Sharkey and Elwert (2011)). Hence
PSID-based social interactions studies involve the individual aggregate mix we describe.
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where g denotes the relevant level of aggregation. This regression, to be interpretable as an

equilibrium strategy profile, implies assumptions akin to the linear-in-means model in equation

(6). Since the sampling scheme we describe provides no information on Ag and Cg, this equation

represents an information reduction relative to the row describing ωi in equation (4), which we

showed in theorem 2 is not identified when these matrices are unknown. Relative to the ωi row

found in equation (4), equation (13) represents a misspecified regression so the parameters in

(13) will depend on the underlying parameters γ, δ, φ, Ag and Cg. The one positive use of (13) is

that if b2 = 0, then neither peer- nor contextual-effects are present in the preferences of agents.

5. Identification with Partial Information on Sociomatrices

Theorem 2 states that without prior knowledge on the sociomatrices beyond what is necessary

for the existence of a Bayes-Nash equilibrium in the quadratic-payoff game, there is little that

can be learned about the preference parameters which constitute the primitives of the behavioral

model. Section 4 explored the polar opposite case that is employed in most empirical applications,

namely identification when these matrices are (assumed to be) known. We now explore the

degree to which parameters can be identified with only partial knowledge of social interactions.

There are many ways in which one can model partial knowledge of A and C. Two forms

of partial knowledge are, in our view, particularly salient. First, the analyst may have a priori

knowledge about C without any a priori knowledge about A beyond T.1 and E.2. This is a

natural case to consider because peer effects embodied in A represent a primitive psychological

proclivity to behave similarly to others, for which theory provides no guidance. Such guidance

may, however, exist for C. Classrooms provide a simple example. If students supply some goods

which are partially public, for example musical instruments, then average parental income may

be plausibly assumed to determine the level of such goods, which constitute a contextual effect in

our model. Alternatively, data sets exist in which parental involvement in a classroom is measured

(e.g. Bassani (2008) and Sui-Chu and Willms (1996)). The total level of parental involvement can

represent a public good analogous to the musical instrument expenditures example. If social units
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produce public goods, the decision mechanism will implicitly define contextual effects; this occurs

in Calabrese et al. (2006).

A second type of partial knowledge of sociomatrices may come from data sets in which indi-

viduals are asked to identify those to whom they are connected. These data sets, leaving aside

imperfections such as limits on the number of friends that can be named, represent cases in

which the analyst has information about connections between individuals but not the sociomatri-

ces themselves. In such contexts, a researcher needs to make a judgment as to the interpretation

of the data on direct connections in term of the sociomatrices. Knowledge of the presence or ab-

sence of ties between individuals in the network creates a close parallel between identification of

social interaction parameters and classical results on the identification of simultaneous equations

systems, since holes in the network (i.e. the absence of edges) in essence provide exclusion

restrictions that can be exploited.

Throughout subsection 5.1 we impose two additional constraints.

E.6. −γ/δ is not an eigenvalue of C.

E.7. φ > 0.

These constraints differ from those in section 4 since they do not pertain to objects observed a

priori. Assumption E.6 ensures that B is non-singular. Assumption E.7 is largely for convenience.

If φ = 0, then the identified matrix B is a linear combination of I and C. The converse is true if

I, A, C and AC are independent. This is generically true, but we would like to do better since

A is unobservable. Results such as corollary 2 show that this can be guaranteed with modest

additional a priori information about the peer-effects network. Such is the case, for example, in

theorem 6 below.

5.1. Unknown peer-effects sociomatrix A. Peer networks are notoriously hard to measure,

and so here we investigate identification when the contextual-effects sociomatrix C is known, but

the analyst has either partial information, or none at all, on the peer-effects sociomatrix A. For
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the case in which the researcher knows C and the topology of the peer-effects network, one can

establish identification under weak conditions, as seen in theorem 6.

Theorem 6. Assume T.1–T.2, E.1–E.7, and K.1. Assume also that the contextual-effects so-

ciomatrix C is known, the peer-effects sociomatrix A is unknown, and the peer-effects network is

known a priori. If

i. N ≥ 3,

ii. there are two distinct individuals j and i who are known to be unconnected in the peer-

effects network, that is, aij = aji = 0, and

iii. B−1
ij 6= ∑k cikB−1

kj ,

then the utility parameters γ, δ and φ are identified from the conditional mean of ω given x.

Theorem 6 demonstrates that even when the peer-effects sociomatrix A is unknown, limited,

qualitative information about the peer-effects network sufficies for identification of the utility pa-

rameters. In a school class of with three or more members, for example, where the researcher

knows C but not A, the simple knowledge that two students do not exert peer influence on one

another may be sufficient for identification. This is possible because, although A is not observed,

the matrix B is still identified and can be used to back out utility parameters, provided the condi-

tions of the theorem are satisfied. This clearly fails if δ = 0, since in this case aij = 0 implies that

B−1
ij = 0, which violates condition iii of the theorem. Otherwise, a derivative argument shows

that if N ≥ 3, then for each C ∈ MC there is a generic subset SA ⊂ MA such that if A ∈ SA,

then γ, δ and φ are also identified in the set of models satisfying T.1–T.2, and E.1–E.7 by the

conditional mean of ω given x.

5.2. Identification with a priori qualitative network knowledge. As noted in section 2, data

sets with network data, such as Add Health do not furnish the sociomatrices A and C: survey

respondents indicate to whom they are connected, but not the weights. We can interpret such

data as providing information about exclusion restrictions, the location of 0’s in the A and C
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matrices. No survey we know of distinguishes between peer- and contextual-effects networks.

We suggest that data collection, even if measures of interaction intensity cannot be constructed,

allow for distinct sociomatrices.

How can such knowledge facilitate identification? In this section we show that if networks are

sufficiently sparse, there is a path to identification which is analogous to classical linear simultane-

ous equations results, which link identification to exclusion restrictions. Interestingly, we can state

the requirements for identification in terms that are analogous to the necessary order condition

rather than the necessary and sufficient rank condition for simultaneous equation identification,

which is a consequence of the social interactions structure.

Theorem 7. Assume T.1–T.2, E.1, E.4, E.5, and K.1. Suppose that the only a priori information

about A and C is, for some given individual i, the sets {j : j ∼A i} and {j : j ∼C i}. For an

individual i, consider the following three conditions.

1. #{j 6∼C i}+ #{j 6∼A i} ≥ N − 1.

2. N − 1 > #{j 6∼C i} ≥ #{j 6∼A i}.

3. #{j 6∼A i} ≥ #{j 6∼C i}.

If conditions 1 and 2 are satisfied, then for each γ and δ there is a generic set of contextual-effects

matrices C such that the utility parameters are identified. If conditions 1 and 3 hold, then there is

a generic set of peer-effects matrices A such that the utility parameters are identified.

The results in sections 5.1 and 5.2 have important implications for the interpretation of surveys

that measure social interactions. In terms of interpretation, Theorems 6 and 7 demonstrate the

importance of network structure in generating identification. The key conditions across our results

is a priori knowledge of 0’s in the sociomatrices. Survey data on social networks do not provide

information on the intensity of bilateral interactions. Rather they provide information on whether

or not a bilateral interaction is present. Our emphasis on the importance of “holes" in the social

structure extends the argument in Bramoullé, Djebbari, and Fortin (2009) that 0’s in a known
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sociomatrix allow for instruments. Our results show that these 0’s can facilitate identification even

when, unlike in Bramoullé, Djebbari and Fortin, the sociomatrices are unknown.

Our results also suggest a potentially serious limitation in current surveys, specifically Add

Health, which is arguably the most popular data set for the study of social interaction effects. Its

main draw is that high school students in its nationally representative sample are interviewed not

only about the usual demographic and outcome variables of interest, but also about who their

friends are. Unfortunately, the data set’s friendship questions are restricted in that each student

is allowed to name up to 5 friends of each gender. This has important ramifications in view of the

result in theorem 6, which indicates that it is more useful to know who is not someone’s friend

rather than who is. Moreover, the restriction on the number of friends means that the failure to

identify someone as a friend does not mean that there is a corresponding zero in the associated

sociomatrices. The limitation on the number of friends that could be named in the interviews has

long been understood as inducing measurement error in network structure. However, as far as

we know, the effects of this limitation on identification per se have not been recognized.13

Our results provide a substantial generalization of Lee, Liu, and Lin (2010) as we do not need

to assume that each agent equally weights others to whom he is directly connected. Lee, Liu, and

Lin assume that the sociomatrices are functions of the common adjacency matrix, which clearly

does not need to be the case.

5.3. Identification with aggregated social network data. We conclude this section with an

analysis of a different type of partial knowledge, namely partial knowledge that reflects the ab-

sence of individual level data with which to evaluate social effects. Section 5.2 provided some

positive results on inference of structural parameters when social interaction effects data are

aggregated. Here we show that these effects disappear when individuals are sampled across

groups and paired with group level averages. For data sets employing the PSID, for example,

it is common to see models in which individual outcomes are assumed to depend on individual

13Another concern is that the failure to identify someone as a friend is consistent with a negative entry in one or both
of the sociomatrices we have employed. While we have assumed that all elements of A and C are non-negative
(axiom T.1) negative values are certainly empirically plausible. We thank Jesse Naidoo for this observation.
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characteristics and certain census tract aggregates. We provide a link to this type of empirical

analysis by considering the case where data are of the form ωi, xi, ω̄g, x̄g, where ω̄g and x̄g

denote group level average outcomes and characteristics, respectively, of i’s group g. We make

two knowledge assumptions. First, we assume that C is known because otherwise information

would be lost relative to theorem 2 and identification would obviously fail. Second, the analyst

only observes one individual per group, whom we denote as 1.

K.1′′. C is exogenous and known to the analyst.

K.2′′. For all g, the analyst observes (ω̄g, x̄g, ω1, x1).

Finally, we place a restriction on the nature of observed heterogeneity, namely, that it is i.i.d.

across members of the same group.

E.8. For each g, xi is i.i.d. within g.

For each individual i in the sample we observe that individual’s record and his group averages.

The presumption is that the individual’s social network is confined to the group. The individual

can be netted out of the group average, so from equation (3) we derive two relationships: one for

the behavior of everyone but individual i, and one for the behavior of individual i.

E(ω̄g|xi, x̄g) = µg + bg E(x|xi, x̄g) + bgixi

E(ωi|xi, x̄g) = µi + b−i E(x|xi, x̄g) + biixi

(14)

where the bars denote group averages exclusive of individual i, and variables with a i subscript

refer to individual i. The coefficients bg = (1/(N − 1))∑j,k∈g,k 6=i Bkj, bgi = ∑k∈g,k 6=i bki, and

b−i = ∑j∈g,j 6=i bij are all sums of terms in the matrix B.

Theorem 8. Assume T.1–T.2, E.1–E.4, E.8, and K.1′′–K.2′′. Assume also that E(ω̄g|xi) and

E(ωi|xi, x̄g) are known. Then β = γ + δ is identified, and γ, δ, φ are not identified.

Returning to our schooling example, suppose the researcher observes a sample of student

test scores ωi and individual characteristics xi, as well as classroom average characteristics and
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test scores x̄g and ω̄g. Theorem 8 shows that in this case utility parameters cannot be identified

because the assumption of a linear-in-means structure entails too great a loss of information. As

in other cases, if the projection of ωi onto xi and x−i differs from the projection of ωi onto xi, then

all one can say is that some sort of social interaction is present. This is a cautionary message

given the ubiquity of these models in empirical practice. Our results provide a complement to

Davezies, d’Haultfoeuille, and Fougère (2009) who consider the problem of identification for a

linear-in-means model in which the analyst does not have data on the group aggregate variables,

but does know the group sizes. Identification is shown to hold when there are groups of at least 3

distinct sizes. Our relatively negative result stems from the heterogeneity in sociomatrices across

groups. This precludes our use of that paper’s approach, whereby observed means of others can

be treated as mismeasured true means. For our context, the mismeasurement involves loss of

information on the weights of the sociomatrix as well as the values of x and ω.

6. Endogeneity of Social Structure

A standard concern in uncovering social interactions is the endogeneity of the social structure.

The issue is straightforward: does a correlation between high ability friends and an individual

student’s educational performance reflect a social interaction of the type we have modeled or

does it occur because the student’s unobserved type is correlated with his friendship choices?

This concern has generated interest in randomized assignment to groups, as in Sacerdote (2001),

as well as cases in which a “natural experiment" alters group composition, e.g. Cipollone and

Rosolia (2007).14 A focus on data in which exogenous social structure is present delimits the

domain of environments that may be studied, so it is important to understand how endogeneity

should be understood and accounted for in more general settings.

A natural way to extend our model of social interactions to network formation is to formulate

a two-stage game, in which networks are formed in the first stage and actions are determined

in the second. For each possible network there is a unique second-stage equilibrium, and each

14Blume et al. (2011) discuss how quasi-experiments may not satisfactorily resolve self-selection problems in identi-
fying social interactions.
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individual’s expected utility of this second-stage equilibrium is a value function for the network

which gives payoffs for the first-stage game.

While this abstract conceptualization is useful in understanding the implications of endogeneity,

it is not one that can be directly implemented in the context of an econometric model of network

formation and subsequent choices. The reason for this is that there simply does not exist a viable

general theoretical model of network formation. Networks for business relations, job search and

classroom friendships are formed according to very different rules, and vary greatly in the degree

to which they are instrumental for the second-stage game. While network formation games have

been devised for particular contexts, they do not even include pair-specific weights in the decision

process.

An alternative approach is to imagine conditions that should be properties of equilibrium out-

comes for many different games. This path, first travelled by Gale and Shapley (1962), leads to

network stability concepts such as pairwise stability (Jackson and Wolinsky 1996) and pairwise-

Nash stability (Calvó-Armengol and Ilkiliç 2009). A network is pairwise-Nash stable if and only if

a) no individual wants to drop any edges, and b) there is no missing edge that if added would,

ceteris paribus, be a Pareto improvement for the individuals it connects. It is neither a strictly

cooperative nor a strictly non-cooperative concept. Stability expresses the idea that breaking

relations is a non-cooperative activity while forming new relations involves mutual consent.

While this approach has been employed in a few recent studies,15 it is not a panacea. The

basic problems are threefold. First, stable networks may not exist. Non-existence, however,

can be circumvented by introducing random stable networks, that is, probability distributions on

graphs which satisfy an expectation based concept of stability. Specifically, one can imagine a

probability distribution on graphs for which the inequalities in the stability definition are satisfied

15Badev (2013) studies the coevolution of friendship networks and smoking behaviors in an environment where
agents make myopic friendship decisions among k− 1 randomly selected others. This model is shown to converge
to a k−stable Nash network, which means that no agent wishes to deviate by simultaneously altering k− 1 friendship
statuses as well as his choice. Sheng (2012) uses pairwise stability in the context of identification of a network
formation game but omits choices that are affected by network structure. Hsieh and Lee (2012) employ a two
stage approach to generate joint estimation of the likelihood of a network and associated outcomes; their approach
implicity assumes perfect information and does treat network formation and subsequent outcomes as the solutions
that appear in a dynamic decision problem.

39



in expectation. Existence can easily be shown in two cases: if ε is observed only just prior to the

second stage or the support of the marginal distribution of ε is finite.16 In the first case, selection

is not an issue because private types are not observed until after the network is formed. In the

second case, discreteness of the set of possible z’s rules out many common econometric models.

It is quite possible, however, that an existence proof can be provided for more general classes of

models.

A second problem for both pairwise-stable and random pairwise-stable networks is that factors

other than the utility of second-stage choices may play a role in determining the utility of a given

network. The sociology literature is replete with descriptions of such payoffs. For instance, there

might be an independent value to homophily — associating with people similar to oneself — which

is distinct from the value of the game outcome.

Structural estimation of these models, then, involves specifying these additional factors. This

requirement may be impossible to realize.

A third problem is that the set of pairwise stable random graphs will typically not be a singleton.

Thus partial-identification techniques will come into play, and it may be that the set of pairwise

stable random graphs is too large to impose useful first-stage restrictions.

For these reasons, we believe it makes more sense to address endogeneity by considering its

effects on inference from data on the second stage of the game. This involves returning to our

model and asking how endogeneity can invalidate our assumptions. From this vantage point, the

implications of endogeneity depend on the information available to agents when networks form.

If either the public types or the private types relevant for the second-stage choice are not

observed at the time the network is formed, then the missing variable cannot enter into the first-

stage interim payoff functions. In this case, the linear structure of the second stage is maintained

and endogeneity is not an issue. By contrast, suppose that x and zi are available to agent i at

16For both cases, consider Myerson’s (1991) network formation game. In the first case, the first-stage game is a
complete-information game, and a correlated equilibrium will satisfy the needed inequalities. In the second case, a
perfect direct correlated equilibrium (Dhillon and Mertens 1996) of Myerson’s (1991) network formation game is a
pairwise-Nash stable random graph, and since Myerson’s game is finite, these equilibria exist.
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the outset of the first stage. The expected second state payoff will depend upon both of these

variables, and so both will influence individuals’ first-stage choices. Consequently, an individual

i, observing that he is connected to j, can, with knowledge of xj, make an inference about the

value of zj that is dependent on xj. Thus E.4 is violated. In this case µ(x, z) is not independent

of x, and second-stage equilibrium strategy profiles are no longer linear in x, except for special

cases. (They are, however, still described by theorem 1.) This is the selection problem. It is not

just a statistical issue. It affects the basic structure of equilibrium, because it affects inference not

only of the econometrician but of individuals constructing the network.

How can one proceed? From the perspective of the reduced form model (3) coefficients B,

the only effect that endogeneity can have under the information regime we have described is

through E (ε|x) = E (µ(x, z)|x).17 This expression is in fact nothing more than Heckman’s clas-

sic control function (e.g. Heckman (1979), Heckman and Robb (1986)), where basic idea is to

use economic theory to model the violation of orthogonality between the x and ε that is induced

by the dependence of z on x. In the present context, so long as µ(x, z) does not depend lin-

early on x, identification will still hold. To be clear, the robustness of identification to endogenous

network formation exploits the quadratic game structure that leads to linear equilibrium strategy

profiles. But this is true for general control function approaches; they break down when E (ε|x) is

linear in x. Hence Heckman’s fundamental idea that self-selection can be addressed by incorpo-

rating self-selection into the analysis, rather than using instrumental variables, applies to social

interactions contexts.18

Where would instrumental variables approaches come into play in this setting? Suppose that

the researcher has available a vector of observable individual attributes v. From the vantage

17This formally demonstrates and generalizes the interpretation given by Goldsmith-Pinkham and Imbens (2013) of
social network endogeneity as an omitted variable problem.
18The idea that selection on unobservables can aid in identification of social effects via control functions was first
shown in Brock and Durlauf (2001). Brock and Durlauf (2006) provide a more general treatment when agents select
into non-overlapping groups and the sociomatrix weights are required to be equal as occurs for the linear-in-means
model. Our current discussion makes two important extensions of this earlier work. First, an explicit game for the
sequential formation of social networks and the subsequent choices of actors in the network are described. Second,
the analysis indicates that the control function approach applies to a much wider class of environments than had
previously been established.
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point of this two-stage game, the critical question involves the timing by which this information is

revealed. If agents observe v by the outset of the second stage, then endogenous network for-

mation means that one needs to analyze E (zi|x, v). But this means that v no longer constitutes

an instrument, since it is correlated with the errors in the regressions that emerge in the second

stage of the game. In this sense, the pro forma use of instruments on the grounds that they are

associated with the payoffs of network formation and not behaviors conditional on the network

is invalid. Once one introduces instruments to account for network heterogeneity, one needs to

account for their implications for the second stage regression errors, which will, outside of special

cases, be present even if the payoff in the second stage is independent of the instrument.

7. Conclusion

In this paper, we have provided a theoretical and econometric characterization of linear social

interactions models. Our analysis provides both a clear description of the behavioral assump-

tions needed to employ these models as well as the conditions under which the primitive utility

parameters that characterize social influences may be recovered. Our results demonstrate the

possibilities and limits to identification as determined by the degree of prior information on the

sociomatrices that determine how the characteristics and behaviors of others affect each indi-

vidual’s utility. The absence of any a priori knowledge on these matrices unsurprisingly means

that identification fails. We show that for the most common case in the empirical literature, namely

when these matrices are known a priori, identification holds generically. Variants of the workhorse

linear-in-means model for which identification fails are in fact knife edge cases.

We further explore a range of possible forms of a priori knowledge that represent intermediate

cases compared to these two extreme information assumptions. These intermediate cases cor-

respond to plausible sources of a priori information as derived from economic theory or empirical

social structure measurement. We also address the identification question when a researcher is

limited to aggregated data of various types. Finally, we argue that endogenous network formation

does not constitute an unbridgeable impediment to identification.
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In terms of future research, we see a number of important directions. First, our findings may be

understood as fleshing out parts of the “assumptions/possibilities" frontier in terms of the edges

between different types of a priori information on social structure and identification. There is no

reason to believe that the cases we have examined span the possible types of information that

may be available to a researcher, so there is certainly more work to be done in fully characterizing

the environments in which identification does or does not hold.

Second, the operationalization of the control function approach to addressing network endo-

geneity needs to be developed. Third, we have not addressed issues of estimation. This suggests

a necessary complementary paper to this one if one wishes to make our results operational.

Fourth, while we have addressed the question of how our identification results are affected by

endogenous social structure, we have not addressed how this endogeneity can, when explicitly

modeled, facilitate identification. For example, if group memberships are associated with prices,

then prices can help to uncover social effects, as demonstrated in recent advances in the econo-

metrics of hedonic models. (See Ekeland, Heckman, and Nesheim (2004)). As discussed above,

the control functions associated with the changes in conditional error distributions conditional on

group membership may be able to facilitate identification.

Finally, information on social interactions may be encoded in the composition of the groups

themselves. Becker’s (1957) model of taste-based discrimination implies that information on the

presence of discriminatory preferences is embodied both in any black/white wage gap and in the

degree of segregation of workers across firms. All these directions emphasize the importance

of extending the theoretical and econometric arguments developed here in directions that fully

exploit the codetermination of social structure and associated behavioral outcomes.
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Appendix

A1. Networks and Sociomatrices

Our networks can be represented by a vertex set V and an adjacency relation ∼, which is

symmetric. If i ∼ j, i then i and j influence each other, but the influence may be unequal. Degree

of influence is represented by a weighted sociomatrix M, where mij is the degree or weight of

influence that j has on i. By virtue of E.2 and E.3, ∼ is symmetric, but it need not be the case

that mij = mji. However, mij > 0 iff i ∼ j, so the location of zeros in the matrix is symmetric.

A pair of vertices i, j is connected by a sequence of length n if there is a sequence i = k0 ∼

. . . ∼ . . . kn = j. An i, j pair is connected by a path of length n if and only if Mn
ij > 0. A maximally

connected set of vertices is called a connected component, or component for short. The vertices

can be ordered so that M is block-diagonal, with each block corresponding to a single component.

Any two individuals in a component are connected by a path of length equal to at most the number

of component members less 1. Thus for large enough N the matrix M + M2 + · · ·+ MN will be

block diagonal with strictly positive blocks. If M is the weighted sociomatrix for a single component

(the entire matrix or one block of a larger matrix), then it is irreducible, and we can rely on the

consequences of the Perron-Frobenius Theorem. For sociomatrices with row-sums equal to 1,

1 is the Perron eigenvalue, the vector of 1s spans its right eigenspace, and its left eigenspace

is spanned by a single strictly positive vector as well. If it has two cycles of lengths which are

relative prime, Mn will converge as n grows to a matrix whose row vectors are the left Perrone

eigenvector whose coefficients sum to 1.
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A2. Proofs

We begin with the proof of theorem 1, the existence theorem. In fact we prove a more general

theorem. Suppose that each individual i has his or her own φi. Define the matrices

Φij =


1

1 + φi
if i = j,

0 otherwise;

Φ̂ij =


φi

1 + φi
if i = j,

0 otherwise.

Assumption T.1 is modified appropriately:

T. 1′. For all i, φi ≥ 0. A and C are non-negative, for each i ∈ V, ∑j aij is either 0 or 1, and

similarly for C. For all i ∈ V, aii = 0.

Theorem A1. If the Bayesian game satisfies axioms T.1′ and T.2, then the game has a unique

Bayes-Nash equilibrium. The equilibrium strategy profile is

f (x, z) = Φ
(

I − Φ̂A
)−1

(γI + δC)x + g(x, z),

where g(x, z) satisfies, for each i, the relation

gi(x, zi) =
1

1 + φi
zi +

φi

1 + φi
∑

j
aij E

(
gj(x, zj)|x, zi

)
.

If z is independent of x, then each g(x, zi) depends only on zi. If the elements of z are pairwise

independent, then gi(x, zi) = (1 + φi)
−1zi + µi(x).

This theorem breaks the strategy profile into two pieces. The first measures direct and con-

textual effects of the public type x, and the feedback through their peer effects. The second

term measures the effects of each individual’s private type and is estimate of the private types of

others.
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Proof of Theorem A1. Suppose that in the utility function the parameter φ is indexed by i. Give

F the L2
ρ max norm; || f || = maxi || fi||2. Let

ψi = γxi + δ ∑
j

cijxj + zi ,

so that

ui = ψiωi −
1
2

ω2
i −

φi

2
(ωi −∑

j
aijωj)

2 (15)

Since the strategies are in L2
ρ, the expected payoff to any i of any strategy profile f is finite, so

preferences over strategies for the Bayesian game are well-defined.

The first-order conditions for expected utility maximization are that for each i, and given the

strategy profile f−i of the other individuals and type (x, zi) ∈ T ,

ψi + φi ∑
j

aij E
(

f j(ψj, zj)|x, zi
)
− (1 + φi)ωi = 0. (16)

Since the problem is concave in ωi, the first-order conditions are sufficient.

Define the operator T : F → F such that

(T f )i(ψi, zi) =
1

1 + φi
ψi +

φi

1 + φi
∑

j
aij E

(
f j(ψj, zj)|x, zi

)
.

A fixed point of T satisfies the first-order condition for all i, ψi and zi; thus it will be a Bayes-Nash

equilibrium profile. Assumption T.1 and a computation shows that this map is a contraction in the

norm topology with contraction constant φ = maxi φi/(1 + φi), and so a fixed point exists, and

is unique. The fixed-point strategy profile satisfies the sufficient first-order optimality conditions,

and so it is a Bayes-Nash equilibrium.

Any strategy profile can be written in the form

f (x, z) = Φ
(

I − Φ̂A
)−1

(γI + δC)x + g(x, z).
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where gi(x, z) depends on z through zi alone. Apply the operator T to see that f will be an

equilibrium if and only if g(x, z) satisfies, for each i,

gi(x, z) =
1

1 + φi
zi +

φi

1 + φi
∑

j
aij E

(
gj(x, zj)|x, zi

)
. (17)

Thus each gi depends upon z only through zi. From now on we take the arguments of each gi to

be x and zi. Take

µ(x, z)i = ∑
j

aij E
(

gj(x, zj)|x, zi
)

.

This proves the general characterization of equilibrium strategy profiles.

For the characterizations of the gi(x, zi), define the operator Tg such that

(Tgh)i =
1

1 + φi
zi +

φi

1 + φi
∑

j
aij E

(
hj(x, zj)|x, zi

)
.

This operator too is a contraction on L2
ρ, and so it has a unique fixed point, which is clearly g. The

characterizations are proven by showing that the different assumptions imply that sets of g with

given properties are invariant under T, and so the fixed point must be in this set.

To prove the second claim, suppose now that x and z are independent. Then for any function

hj : zj 7→ R,

E
(
hj(zj)|x, zi

)
= E

(
hj(zj)|zi

)
.

Consequently, the set of functions h : (z) 7→ RN is invariant under Tg. Thus each gi depends

only on zi.

For the third claim, observe that if the private types are independent, then if hi(x, zi) is of the

form (1 + φi)
−1zi + µi(x),

Tg(h)i(x, z) =
1

1 + φi
zi +

φ

1 + φi
∑

j
aij

(
1

1 + φj
E
(
zj|x

)
+ µj(x)

)
,
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since E
(
zj|x, zi

)
= E

(
zj|x

)
. The sum over j is a function only of x, and so the set of all

functions of this form is invariant under Tg. Thus the fixed point has this property too. This proves

theorem A1.

To complete the proof of theorem 1, observe that if for all i and j, φi = φj, and if the zi are

independent of each other and of x, the fixed point of Tg can be computed directly, and gives

equation (1a). �

The remainder term µ(x, z) has to do with higher-order beliefs. Suppose, to simplify the expo-

sition, that all the φi are identical. Equation (17) contains a recursion, and by iterating it, one sees

that

µi(x, zi) =
1

1 + φ

(
φ

1 + φ ∑
i′

aii′ E (zi′ |x, zi)

+

(
φ

1 + φ

)2

∑
i′

∑
i′′

aii′ai′i′′ E (E (zi′′ |x, zi′) |x, zi) + · · ·
)

The second term contains expressions whose meanings are, “i ’s expectation of j ’s expectation

of zk . . . ".

Now we take up identification questions. We have assumed for convenience (E.5) that γ and δ

are not both 0. Lemma 1 settles the question of identification when the true γ and δ are both 0.

Lemma 1. Assume T.1–3 and E.1–E.5. The set of parameters {(γ, δ, φ) : γ = δ = 0, φ ≥ 0}

is weakly identified from the conditional mean of ω. No parameter vector (0, 0, φ) is identified.

Proof of Lemma 1. Let γ∗, δ∗ and φ∗ denote the true values of the un-starred parameters. If

γ∗ = δ∗ = 0, then B(s) = 0. If B(s) = 0, then since Bφ(s) is non-singular, γ∗ I + δ∗C = 0.

The sociomatrix C has some positive off-diagonal element (E.3), so the unique solution to the

equation γI + δC = 0 is γ = γ∗ and δ = δ∗.

If γ∗ = δ∗ = 0, then B(s) = 0, and φ affects ω only through its effect on ε. Since E (ε|x) = 0,

E (ω|x) is independent of the parameter φ. �
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Proof of Theorem 2. Identification of µ follows from E.1 and equation (3). E (ω|x) is an affine

function whose behavior on an open set is observed, so E (ω|x) is identified. Thus, the spanning

assumption E.1 and the orthogonality assumption E.4 identify B(s). Since C is stochastic, for the

vector e of all 1s, B(s)e = (γ + δ)Bφ(s)e = (γ + δ)e.

If E (ω|x) is independent of x, then B(s) = 0. Since Bφ(s) is always non-singular, γI + δC =

0. E.3 implies that C is not a multiple of I, so γ = δ = 0. Conversely, if γ = δ = 0, then

B(s) = 0 and ω is independent of x.

Suppose that for all i, E (ωi|x) = E (ωi|xi) and that some ωi is not independent of xi. Then

B(s) = αI, and α is identified and equal to γ + δ. Since we are not in the previous case,

α 6= 0. There are two cases to consider. First, suppose A 6= C. Then α(1 + φ)I − αφA =

γI + δC. Since both sociomatrices have 0 diagonals, γ = (1 + φ)α and −αφA = δC. Since

both sociomatrices are stochastic, −αφ = γ. Since A 6= C they are independent, so δ = 0 and

φα = 0. So γ = α, and since α 6= 0, φ = 0.

Suppose next that A = C. Then (1 + φ)αI − φA = γI + δA. Since for some i 6= j, aij 6= 0,

the matrices I and A are independent, so γ = (1 + φ)α and −φ = δ. Thus

γ + αδ = α

γ + δ = α.

If γ + δ 6= 1, this equation system has the unique solution γ = α and δ = 0.

The converse is obvious. �

The proof of theorem 3 requires that I, A, C and AC be distinct sociomatrices.

Lemma 2. Suppose that I, A, C and AC are linearly dependent and the peer- and contextual-

effects networks overlap. If A 6= C, then I, A, C and AC are distinct.

Proof. Neither A nor C equals I since they have only 0s on the diagonal. If AC = I, then there

must be an even number of individuals, divided into pairs, such that each i links in the peer-effects
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network only to his corresponding j, and each j links in the contextual-effects network only to her

corresponding i. Since i is influenced by j if and only if j is influenced by i, j links only to i in the

peer-effects network and i links only to j in the contextual-effects network. Since the matrices are

stochastic, each weight has to be 1, and so A = C.

For matrix M = A, C, M̃ = (1/N)∑N−1
n=1 Mn. Suppose AC = C. Then ÃC = C and

ÃC̃ = C̃. Indices can be arranged so that the matrix C̃ is block diagonal with strictly positive

blocks, each block corresponding to a component of the contextual-effects network. For i in one

contextual-effects component and j in another, 0 = c̃ij = ∑k ãik c̃kj. Since the c̃kj > 0 for all k

in the same component as j, ãik = 0 for all such k, and so the components of the peer-effects

network are subsets of those of the contextual effects network.

Without loss of generality assume that the contextual effects network has only one component,

and arrange the indices so that A is in block diagonal form. Then the ith block of Ã is strictly

positive. Partition C into corresponding blocks. For the kth block of A, AkCkk = Ckk. If any

column of Ckk has a non-zero element, then ÃC = C implies that the corresponding diagonal

element of Ckk exceeds 0, which is a contradiction. Thus Ckk = 0. The contextual-effects network

does not overlap the peer-effects network.

If AC = A, arguing as before shows that the contextual-effects components are subsets of

the peer-effects components. The preceding argument works again, and we conclude that the

peer-effects network does not overlap the contextual-effects network. �

Proof of theorem 3. First observe that if φ id identified, so are the remaining utility parameters.

For if (φ, γ′, δ′) and (φ, γ′′, δ′′) give rise to the same reduced form B, then

γ′ − γ′′

1 + φ

(
I − φ

1 + φ
A
)−1

=
δ′′ − δ′

1 + φ

(
I − φ

1 + φ
A
)−1

C,

and so (γ′ − γ′′)I = (δ′ − δ′′)C. Since C has 0s on its diagonal, γ′ = γ′′ and since C 6= 0,

δ′ = δ′′.
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Suppose that distinct (φ′, γ′, δ′) and (φ′′, γ′′, δ′′) give rise to the same reduced form B with row

sum b. Then φ′ 6= φ′′, γ′ + δ′ = γ′′ + δ′′ = b, and Bφ(s′)(γ′ I + δ′C) = Bφ(s′′)(γ′′ I + δ′′C).

Multiply this last condition out. Since Bφ(s)−1 is a power series in A and all such series commute,

we derive that B(s′) = B(s′′) if and only if Bφ(s′′)(γ′ I + δ′C) = Bφ(s′)(γ′′ I + δ′′C) if and only

if

(
(1 + φ′′)γ′ − (1 + φ′)γ′′

)
I +

(
(1 + φ′′)δ′ − (1 + φ′)δ′′

)
C

+ (φ′γ′′ − φ′′γ′)A + (φ′δ′′ − φ′′δ′)AC = 0. (18)

In words, a linear combination of the four matrices which equals 0, αI + βC + θA + τAC = 0,

is given by (1 + φ′′)γ′ − (1 + φ′)γ′′ = α, (1 + φ′′)δ′ − (1 + φ′)δ′′ = β, φ′γ′′ − φ′′γ′ = θ and

φ′δ′′− φ′′δ′ = τ. Algebraic manipulation shows that if the four matrices are linearly independent,

that is, if α, β, θ, τ = 0, then (φ, γ′, δ′) = (φ, γ′′, δ′′).

Suppose now that the four matrices are linearly dependent. That is, there are α, β, θ, τ not all

zero such that the linear combination is the 0 matrix. Taking account of the fact that the sum of

γ and δ is identified, identification of the utility parameters fails if and only if there is a solution to

the system of equations

M 0

0 M




γ′

γ′′

b− γ′

b− γ′′


=


α

θ

β

τ


where M =

1 + φ′′ −1− φ′

−φ′′ φ′



If identication is to fail, we must have φ′ 6= φ′′, and so the matrix M will be non-singular. The

system will have a solution if and only if it is consistent, which is true if and only if

M

γ′

γ′′

 =

α

θ

 and M

γ′

γ′′

 = b(φ′′ − φ′)

 1

−1

−
β

τ


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so consistency is achieved if and only ifα + β

θ + τ

 = b(φ′′ − φ′)

 1

−1

 .

Since I, C, A and AC all have row sums equal to 1, the coefficients of the trivial linear combina-

tion sum to 0. Algebra shows the necessary and sufficient consistency condition for this equation

system to be consistent is to choose φ′ and φ′′ such that α + β = b(φ′′ − φ′). Since b 6= 0 by

hypothesis, take φ′ − φ′′ = (α + β)/b. If α + β 6= 0, then φ′′ − φ′ 6= 0 and the system has a

solution. If α + β = 0, the system has no solution with φ′′ − φ′, and so the utility parameters are

identified.

Next, observe that we cannot have α + β = 0. If so, we also have θ + τ = 0. Furthermore, if

the four matrices are inearly dependent and A 6= C, τ 6= 0. Without loss of generality, choose

τ = −1. Then AC = α(I−C) + A. Stochasticity implies α = 1, and this conclusion contradicts

lemma 2. �

Proof of Theorem 4.i. This result is a corollary of theorem 3. If A 6= C and C is the linear-

in-means sociomatrix, then I, A, C and AC are distinct matrices. We will show that they are

dependent. Since C has only one component the overlap condition (see Definition 3) is satisfied.

The diagonal elements of AC are 1/(N − 1). For i 6= j, ACij = (N − 1)−1 ∑k 6=i ajk = (N −

1)−1(1− aij). (The second equality makes use of the assumption that C has only one block.)

Thus AC = (N − 1)−1 I − (N − 1)−1A + C, and the claim follows from theorem 3. �

Proof of Theorem 4.ii. The argument is the same. The diagonal elements of AC are 1/(N− 1).

For i 6= j, ACij = (N− 1)−1 ∑k 6=i ckj = (N− 1)−1(1− cij). Both statements hold because the

column sums of C are 1. �

Proof of Theorem 4.iii. First we show that linear independence is a sufficient condition for iden-

tification. Then we show that linear-in-means is necessary and sufficient for linear dependence.
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Finally, we check directly that if C is the linear-in-means matrix, the utility parameters are not

identified.

Lemma 3. If A = C and γ + δ 6= 0, then linear independence of I, A and A2 is sufficient for

identification.

Proof of lemma 3. Let r = φ/(1+ φ). Suppose (γ′, δ′, φ′) and (γ, δ, φ) have the same reduced

form with row sum b. In this case, B(s) = (1 + φ)−1(I − (φ/(1 + φ))A
)−1

(γI + δA) and so

we derive as in the proof of theorem 3 that if the three matrices are independent,

(1− r)γ− (1− r′)γ′ = 0

(1− r)δ− (1− r)r′γ− (1− r′)δ′ + (1− r′)rγ′ = 0

(1− r)r′δ− (1− r′)rδ′ = 0.

Since r, r′ < 1, either γ and γ′ both equal 0 or neither do. If they both do, then δ = δ′ = b and

r/(1− r) = r′/(1− r′) so φ = φ′. If not, we derive (r − r′)(1− r)(γ− b) = (r − r′)(1−

r′)(γ′ − b) = 0. If r = r′ then γ = γ′ and so δ = δ′. If r 6= r′ then γ = γ′ = b and δ = δ′ = 0.

Then γ + δ = b 6= 0 implies that r = r′, a contradiction. �

Next is the result relating dependence of I, A and A2 to the linear-in-means matrices. We state

this result in some generality because it applies as well to other econometric social interaction

models.

Theorem A2. If A is any stochastic sociomatrix (satisfying T.1) such that I, A and A2 are linearly

dependent, then A is block-diagonal with each block corresponding to a component of the peer-

effects network, each block is a linear-in-means matrix for that block, and all components contain

the same number of individuals.

Proof of Theorem A2. Suppose that a ρI I + ρA A + ρAA A2 = 0 with not all of the scalars 0. It

cannot be the case that ρAA = 0 because A cannot be a scalar multiple of I. Thus, recalling that
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the row sums of the three matrices are all 1 and that A2 is non-negative, we have

A2 = ρI + (1− ρ)A for some 0 ≤ ρ ≤ 1.

The following formula can be verified by induction:

An = ψ(n)I +
(
1− ψ(n)

)
A, ψ(n) =

n−1

∑
k=1

(−1)k−1ρk, (19)

with ψ(n) > 0 for all n if ρ > 0, and limn ψ(n) = ψ(∞) ≡ ρ/(1 + ρ).

If ρ = 1, then A2 = I. In this case the peer-effects network is the union of strongly connected

components of size 2. To see this, observe first that for each i there is a j such that aij, aji > 0.

Second, for each i there is only one j such that aij > 0. If instead aij, aji > 0 and aik > 0 for

some k 6= j, then A2
jk > 0, a contradiction.

If ρ = 0, then A2 = A. The peer-effects network contains no cycles. Clearly there can be

no two-cycles, else for some i, aii = A2
ii > 0. Suppose, to the contrary, that there is a path

1  2  · · ·  k  1 for k ≥ 3. Then a12, a23 > 0 implies A2
13 > 0, and so a13 > 0 and

1  3. Continuing in this fashion, 1  j for any j in the cycle. Call this the “argument about

cycles”. In particular, it holds for j = k. Thus a1k > 0, and since ak1 > 0, we have found a

two-cycle.

Since there are no cycles, starting from any individual and following any directed edge, we

ultimately reach an individual who is connected to no one, that is aij = 0 for all j. Thus A is

nilpotent; there is a power k < n such that Ak = 0. A = A2 implies A = Ak = 0. No one is

connected to anyone, and the peer-effects network is the union of components of size 1.

The remaining case has 0 < ρ < 1. When these inequalities hold, A2
ii > 0 for all i, and so

every individual is in a connected component of size at least 2. Since for any i and j in the same

component there is a cycle containing them both, the preceding argument about cycles shows

that aij, aji > 0, and so the component is a clique. (Alternatively, there is a path of some length n

between them, and equation (19) shows that aij > 0.)
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If i is in one component and j is in another, suppose it were the case that i j. (i) There could

be no k in the first component and l in the second component such that l  k; otherwise the

argument about cycles implies that i and j would be in the same component. (ii) Every individual

in i’s component would be infuenced by j, and therefore every individual in i’s component would

be influenced by everyone in j’s component. (iii) If someone in j’s component were influenced

by k in yet another component, then everyone in i’s component would be influenced by everyone

in k’s component. In other words, if we suppose that individuals in one component are influenced

by individuals in another component, then we could order the components V1 � V2 · · ·Vk where

Vi � Vj means that (someone, and therefore) everyone in Vi is influenced by (someone, and

therefore) everyone in Vj. This order would be transitive. Consequently, individuals could be

enumerated in such a way to make A block upper-triangular. The rows corresponding to a given

component V would have non-zero entries in their corresponding columns, except for the diagonal

elements. Columns corresponding another component V′ would have 0 elements in these rows

unless V � V′. In this case, all elements would be positive.

We will now show that none of this can happen; that each member of any component links

only to other members of her component. There can be no links between distinct components,

and consequently individuals can be enumerated so that A is block-diagonal, with each block

indecomposable. To see this, consider a maximal component of the order that is not also minimal;

that is, the component influences no other component but is influenced by some other component.

Suppose our component has diagonal block B in A. The corresponding block in A2 is B2, and

so B2 = ρI + (1− ρ)B. The row-sums of A are 1, and each row in the block comprising B has

positive elements outside of the block. Therefore each row sum of B is less than 1. Let 0 < α < 1

denote the maximal row-sum of the block B. Then the maximal row sum of Bn is no greater than

αn, which converges to 0. On the other hand, Bn = ψ(n)I +
(
1− ψ(n)

)
B. Thus the maximal

row-sum of Bn converges to (ρ + α)/(1 + ρ) > 0, establishing a contradiction.

The sociomatrix A is block-diagonal, and each block is itself indecomposable. We claim that if

the social network is not the union of components of size 2, connected pairs, then A is aperiodic.
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First observe that A has no blocks of size 2. For suppose that A contains a block B of size 2.

Then B2 = I and hence ρ = 1, a case we have already dispensed with. Thus each block has

size at least three. SInce B2 and B3 are both strictly positive linear combinations of B and I,

the network contains cycles of lengths 2 and 3. The greatest common divisor of all cycle-lengths

belonging to i is thus 1, and therefore B is aperiodic.

We have now established that A is block-diagonal and that each block is indecomposable and

aperiodic. Thus An converges to a block-diagonal matrix A∞ wherein each block is at least 3× 3

and has rank 1. The ith row vector has in its non-zero columns the left Perron eigenvector of the

block to which i belongs. Since A∞
ii = ψ(∞)I, every coefficient in the left Perron eigenvector

of every block is ψ(∞). It follows that aij = ρ for all i 6= j. Since the sum of the coefficients of

each row is 1, it follows that all components are the same size n, ρ = 1/(n− 1), and so A is the

linear-in-means sociomatrix with identically-sized components. �

Finally, we establish the reflection principle for linear in means matrices.

Lemma 4. If A = C and is a linear-in-means matrix in which all blocks are of equal size, then the

utility parameters are not identified.

Proof of Lemma 4. If all blocks are the same size, a calculation shows that the reduced form has

identical diagonal elements and identical off-diagonal elements. The matrix B−1
φ has this form

because it is the discounted sum of powers of C, and an induction shows that the powers have

this form. Its product with γI + δC also then has this form. Thus the reduced form is described by

two numbers that are algebraic functions of the parameters. The inverse image of the map from

parameters to reduced forms therefore has dimension of at most 2, and so the three parameters

cannot be uniquely determined. �

This concludes the proof of theorem 4. �

Proof of Corollary 2. We will verify the condition of theorem 3. If the hypothesis of the corollary

holds, then A 6= C. Let i and j be two individuals connected only by paths containing both
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peer-effect and contextual-effect links. Choose a path of minimal length connecting them. Then

since according to E.2 and E.3 we can traverse the path in both directions, there will be a triple

k  A l  C m along the path. There can be no k  m link in either network, and k 6= m, or it

would be possible to find a shorter path. Suppose that I, A, C and AC are linearly dependent.

Since A 6= C, we can write AC = ρI I + ρA A + ρCC. Since ACkm > 0, at least one of ρA and

ρC is not zero. We have ACkm = ρA Akm + ρCCkm, however, and so one of these matrix elements

must be non-zero. That is, we have at least one of k A m and k C m, a contradiction. �

The proof of theorem 5 is long, tedious, and without merit beyond its existence. It will be useful

to rewrite the social interaction effects with the parameter r = φ/(1 + φ), with r ∈ [0, 1).

Define a(r)T = (1− r)eT(I − rA)−1, where e is a vector of suitable length and T denotes

transpose. The effect of r is isolated in the column-sum vector a. We need these facts:

Lemma 5. (a) For every sociomatrix A which is not bistochastic, the map r 7→ a(r) is an injection.

(b) For all A and r ∈ [0, 1), a(r)� 0.

(c) ∑x ax(r) = N.

Proof. We use the relationship aT = (1− r)eT + raT A which is easily derived from the definition

of a.

(a) If a(r′) = a(r′′) = a for r′ 6= r′′), then

(r′′ − r′)eT + (r′ − r′′)aT A = 0,

so aT A = eT and therefore a = e, and A is bistochastic.

(b) Without loss of generality, suppose that A is irreducible. (Otherwise consider each compo-

nent of the peer-effects network A separately.) (1− r)eT(I − rA)−1 equals (1− r)(e + reA +

r2eA2 + · · · ). This is the sum of nonnegative vectors, and some eAT is strictly positive.

(c) The row sums of A are 1. �
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Another technical lemma we need is this: Fix N, and let S denote the set of all triples (α, r, C)

which solve the equation system

α(ai(r)− aj(r))− β ∑
x∈V

ax(r)(cxi − cxj) = 0 for i 6= j,

and let SC ⊂MC denote its projection onto the set of all contextual-effects sociomatrices.

Lemma 6. The set SC is closed and has dimension at most 2 + (N − 1)2, which is less than

dimMC for N ≥ 3.

The set of stochastic matrices had dimension N(N − 1), which exceeds 2 + (N − 1)2 when

N ≥ 3. The proof involves facts about semi-algebraic sets — sets defined by finite numbers of

polynomial inequalities, which can be found, for instance, in Bochnak, Coste, and Roy (1987).

Proof of lemma 6. This system contains N− 1 equations. According to lemma 5, a(r)� 0, and

so the derivative with respect to C of the left-hand side is surjective onto RN−1. Consequently

the solution set is a semi-algebraic set of co-dimension N − 1, which is to say, of dimension

2 + (N − 1)2. It is also compact. The projection of S onto SC is compact and has dimension at

most 2 + (N − 1)2 since semi-algebraic functions (projection, in this case) cannot increase the

dimension of their domains. �

Proof of Theorem 5. Since x̄g is observed, σ2
x is identified. It is convenient to define, for the gth

group,

f g(γ, φ, β, Ag, Cg) =

1
ng e · Bg

φ(γI + (β− γ)Cg)(γI + (β− γ)CgT)Bg
φ

T
eT.

Then νg = f g(γ, φ, β, Ag, Cg)− f 0(γ, φ, β, A0, C0).
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Define F = F1, . . . , Fg such that

Fg(γ′, r′, γ′′, r′′, β, Ag, Cg) = f g(γ′, r′, β, Ag, Cg)

− f g(γ′, r′, β, A0, C0)− f g(γ′′, r′′, β, Ag, Cg)

+ f g(γ′′, r′′, β, A0, C0)

The domain of F is taken to be R4/∆2 × R×MA ×MC where A and C denote the peer- and

contextual-effects networks, respectively and the first set is that of all quadruples (γ′, r′, γ′′, r′′)

such that not both γ′ = γ′′ and r′ = r′′.

Fix the Ag, Cg and s, and consider the equation

F(γ′, r′, γ′′, r′′, β, A0, . . . , Ag, C0, . . . , Cg) = 0.

Since β is already identified, we need only to identify γ and r. The statistic (ν1, . . . , νg) does

not distinguish γ′, r′ from γ′′, r′′ (given β) if and only if (γ′, r′, γ′′, r′′) solves the equation, and

(γ′, r′) 6= (γ′′, r′′). Thus we must show that for generic C1, . . . , Cg,

F(γ′, r′, γ′′, r′′, β, A0, . . . , Ag, C0, . . . , Cg) = 0

has no solution in R4/∆2.

We will show that if Fg = 0, then DCg Fg is surjective onto R. If so, it follows that DFC1,...,Cg is

surjective onto Rg. Consequently, 0 is a regular value of F, and we conclude from the transver-

sality theorem that for almost all C1, . . . , Cg, 0 is a regular value of the map

F(·, β, A1, . . . , Ag, C1, . . . , Ag) : R4/∆2 → Rg.

Because F is semi-algebraic, the set of critical C1, . . . , Cg for which this may fail is closed and

lower-dimensional inM′
C. When the map has 0 as a regular value, the inverse image of 0 is a

manifold of co-dimension G. For G ≥ 5, this implies that the solution set in R4/∆2 has negative

dimension, that is, it is empty.
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It remains only to show that if Fg = 0, then DCg Fg is surjective onto R. Observe first that

DCg Fg = DCg f g(γ′, r′, β, Ag, Cg)− DCg f g(γ′′, r′′, β, Ag, Cg).

The derivative DCg f g is a linear map from the tangent space of MC to R. That tangent space is

spanned by the set of all matrices Hkij whose vwth entry is 1 if v = k and w = i, −1 if v = k

and w = j, and 0 otherwise. In words, Hkij shifts a little bit of j’s influence on k to i.

A calculation shows that

DCg f gHkij = ak(r)(s− γ)
(

γ
(
ai(r)− aj(r)

)
+ (s− γ)∑

x
ax(r)(cix − cjx)

)
≡ ak(r)$ij(γ, r)

where a = eBφ. Thus if DCg Fg is not surjective at (γ′, r′, γ′′, r′′), then

ak(r′)$ij(γ
′, r′) = ak(r′′)$ij(γ

′′, r′′). (20)

First we show that for generic C and all γ and r, there is a pair i 6= j such that $ij(γ, r) 6= 0.

Suppose not. Since γ 6= s, for all i, j pairs

γ
(
ai(r)− aj(r)

)
= (γ− s)∑

x
ax(r)(cxi − cxj).

Fix j. Then for all i 6= j, the equation system

α
(
ai(r)− aj(r)

)
= ∑

x
ax(r)(cxi − cxj)

has a solution. From lemma 6, the set of matrices SC for which this system has a solution is

a closed and lower-dimensional subset of M′
C. So for C ∈ Sc

C, the equation system has no

solution, and hence some $ij 6= 0.

Now suppose that DCg Fg is not surjective at (γ′, r′, γ′′, r′′), so that equation (20) holds.

Lemma 5 states that the sum over u of ak(r) is N, independent of r. Consequently, summing
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over u in equation (20), we see that for all i and j, $ij(γ
′, r′) = $ij(γ

′′, r′′). Since for at least

one i, j pair, $ij(γ
′, r′) 6= 0, it follows that for all u, a(r′) = a(r′′). Conclude from lemma 5 that

r′ = r′′. Thus DCg Fg can only fail to be surjective at points (γ′, r′, γ′′, r′).

A calculation now shows that for all i 6= j,

(s− γ′ − γ′′)
(
ai(r′)− aj(r′)

)
= (2s− γ′ − γ′′)∑

x
ax(r′)(cxi − cxj),

and by hypothesis γ′ 6= γ′′. If s 6= 0, then at least one of s− γ′− γ′′ and 2s− γ′− γ′′ must not

be 0. That is, the equation system

α
(
ai(r′)− aj(r′)

)
= β ∑

x
ax(r′)(cxi − cxj)

has a solution (α, β, r′, C) has a solution with not both α = β = 0. It cannot be the case that

β = 0, for if so, then α 6= 0, and ai(r′) = aj(r′) for all i and j. But if this were the case, then

a(r′) = e and it follows that r′ = 0 or that A is bistochastic. We have ruled out both cases by

assumption. Since β 6= 0, it follows that if DCg Fg is not surjective, then

α
(
ai(r′)− aj(r′)

)
= ∑

x
ax(r′)(cxi − cxj),

and again from lemma 6, this can only happen for Cg ∈ SC. �

If −γ∗/δ∗ is not an eigenvalue of C, then B will be non-singular, and γ∗, δ∗ and φ∗ solve the

equation

(1 + φ)I − φA = γB−1 + δCB−1. (21)

We will use this fact in the proof of theorem 6.

Proof of Theorem 6. Axiom E.2 and the hypothesis imply that both aij and aji are 0, so we have

two locations with 0’s in the peer-effects sociomatrix. Let γ∗, δ∗ and φ∗ denote the true parameter

values, and recall that B = B(s) is identified (by theorem 2). Since it is nonsingular, they solve

equation (21). We also know that b = δ∗ + γ∗ is identified (by theorem 2). Thus the following
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two-by-two equation system in γ and δ has as one solution δ = δ∗ and γ = γ∗.

γB−1
ij + δ ∑

k
cikB−1

kj = 0

γ + δ = b.

(22)

The system is degenerate if and only if B−1
ij − ∑k cikB−1

kj = 0. If it is not degenerate, equation

(22) can be solved for γ∗, and since b = δ∗ + γ∗, this gives δ∗. Finally, identify φ from the

diagonal of equation (21) — the equation

1 + φ = γ∗B−1
jj + δ∗cjkB−1

kj

has φ∗ as its unique solution. �

Proof of Theorem 7. The proof for this theorem applies the classical rank condition for linear si-

multaneous equation systems to the system

(1− r)−1(I − rA)ω− (γI + δC)x = η, where r = φ/(1 + φ).

The strategy of the proof is to identify one equation, say the equation for individual 1, and use

its coefficients to identify the utility parameters. The last part is straightforward: Normalize the

equation system so that the sum of the coefficients corresponding to the ω, the endogenous

variables, is 1. Then the ω1 coefficient gives φ since a11 = 0; φ equals the coefficient value

less 1. The x1 coefficient identifies γ, and the sum of the xj coefficients for j 6= 1 identifies δ.

Now we develop the rank condition. Let M denote the N − 1× K + L matrix of the formu1 v1

u2 v2


where K = #{j : j 6∼A 1}, L = #{j : j 6∼C 1}, u1 is the K× K matrix whose rows and columns

correspond to the j ∈ {j : j 6∼A 1}, u2 has rows corresponding to the remaining individuals

except individual 1, and v1 and v2 have corresponding to {j : j 6∼C 1}. The order condition

for identification of the equation corresponding to individual 1 is that K + L ≥ N − 1, and the
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rank condition is that this matrix have full (row) rank. Notice that in the case where the excluded

individuals sum to exactly N − 1, while each of the first K rows and first K columns correspond

to the same individual, this is not necessarily true for the last L rows and columns: The columns

correspond to individuals not contextually connected to individual 1, while the columns correspond

to individuals peer-connected to 1. We will show that if the order condition is satisfied, the rank

condition holds for generic A and C.

To establish the rank condition we must show that if x and y are vectors such that u1x + v1y =

0 and u2x + v2y = 0, then x = 0 and y = 0. Assume without loss of generality that the

individuals not peer-connected to 1 are individuals 2 through K + 1. The matrix u1 is of the form

(1− r)(I − Ã) where the ij element of Ã is just aij. The Perron eigenvalue of Ã < 1, so u1 is

invertible. If the first equation is satisfied, x = u−1
1 v1y, and so the set of all pairs satisfying the

first equation is an L-dimensional subspace of RN−1, a space of codimension K.

Now consider the second equation. If L ≥ K, for every δ and γ it will be true that for generic

C the matrix v2 is non-singular and that the set of all (x, y) pairs solving the second equations

intersects the set of solutions to the first equations transversally. This solution set is of codimen-

sion L, so the intersection is a vector subspace of condimension K + L = N − 1; that is their

intersection is a set of dimension 0, a point, which must be the zero vector. If L < N − 1 then

any given C can be perturbed to meet the conditions without violating the summability constraint

on rows or the constraints that any diagonal terms in the submatrix are 0.

If L ≤ K < N − 1, then for generic A corresponding to those i, j pairs where i is peer-

connected to individual 1 and j is not, there will be an L× L submatrix of A of full rank, whose

entries correspond to pairs in this set, and again the matrix is generically such that the two solution

sets interset transversally, and hence have only 0 in the intersection. Finally, if K = N − 1 then

the matrix M is only [u1 v1], and we have already argued that u1 has full row rank. �
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Proof of Theorem 8. Let x̂g denote the mean of the xj for j ∈ g, including individual i. Equations

(14) become

E(ω̄|xi, x̄g) = µg + bg x̂g + bgixi

E(ωi|xi, x̄g) = µi + b−i x̂g + biixi

(23)

The four coefficients are identified, and the problem is to determine the values of the utility pa-

rameters from these four values without knowing A. Observe that b−i + bii = γ + δ, a row-sum

of B. Thus γ + δ is identified. Furthermore, bg + bgi = (N − 1)(γ + δ). Consequently there

are only three independent values among these four coefficients. For fixed C, let FC denote the

map that takes quadruples (γ, δ, φ, A) to triples (bii, b−i, bgi) with the given C matrix. This map

is smooth, and so the implicit function theorem can be used to study solutions of the equation

FC(γ, δ, φ, A) = (bii, b−i, bgi).

It will be convenient to take i = 1 for the calculations, to reparametrize with r = φ/(1 + φ),

and to work with the map GV : (γ, δ, r, ε) : 7→ (b11, ∑k bk1, ∑i b1i). This function is a non-singular

linear transformation of FC, and so we can identify utility parameters from bii, bgi and b−i if and

only if we can identify them from these sums of elements of B as well.

We will show that there is a particular direction H for a perturbation of peer-effects matrices A

such that for generic A and any φ > 0, the derivative of the map (γ, δ, φ, ε) 7→ GC(γ, δ, φ, A +

εH) has full-rank at (γ, δ, φ, 0) and the partial derivative ∂ε 6= 0. Choose now γ∗, δ∗ and φ∗,

and an A for which the preceding statement holds, and denote the corresponding statistics

(s1, s2, s3) ≡ (b∗11, ∑k b∗k1, ∑i b∗1i). The derivative map is surjective in a neighborhood J × I

of (γ∗, δ∗, φ∗, 0) where I is an open interval around ε = 0 and J is an open rectangle in R3 con-

taining (γ∗, δ∗, r∗), and so the intersection of the inverse image of (b∗11, ∑k b∗k1, ∑i b∗1i) with J× I

is a manifold of dimension 1. In fact, we show that J× I, the partial derivative ∂γδεGC : R3 → R3

is surjective. This immediately implies that r is not identified. Suppose we parametrize the

manifold locally in a neighborhood (γ∗, δ∗, φ∗, 0) as ψ(λ) =
(
γ(λ), δ(λ), r(λ), ε(λ)

)
where
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ψ(0) = (γ∗, δ∗, φ∗, 0). Suppose that Dψ(0) = (xγ, xδ, xr, xε). Then Dψ(0) 6= 0, and

0 = ∂rGC
(
ψ(0)

)
· xr + ∂γδεGC

(
ψ(0)

)
· (xγ, xδ, xε).

To show that r is not identified, it suffices to show that xr 6= 0. Suppose xr = 0. Since Dψ(0) 6=

0, xr = 0 requires that (xγ, xδ, xε) 6= 0. If so, then DGC
(
ψ(0)

)
· Dψ(0) 6= 0, which is a

contradiction.

Now we calculate. First observe that for generic A, there will exist i and j such that b1i 6= b1j,

and a1i, a1j > 0. Next, observe that DAB · H = −r(1− rA)−1HB, where r = φ/(1 + φ).

Observe, too, that s2 = γ + δ. To show that DGC(γ
∗, δ∗, φ∗, A) is surjective, it suffices to show

that ∂γδεGC(γ
∗, δ∗, φ∗, A + εH)|ε=0 has rank 3. Choose H to be the matrix Hkij where i and j

are as above, u 6= 1, hki = −hkj = 1, and all other elements of H are 0. Computing,

∂γδεGC(γ
∗, δ∗, φ∗, A + 0H) =

(1− r∗)d1,1 (1− r∗)∑u d1ucu1 −r∗(bi1 − bj1)d1k

1 1 0

(1− r∗)∑v dv1 (1− r∗)∑v ∑u dvkcu1 −r∗(bi1 − bj1)∑u duk


where dul is the ulth element of (I − r∗A)−1. Since bi1− bj1 6= 0 and 0 < r∗ < 1, this matrix is

non-singular if and only if the following matrix is non-singular:
d1,1 ∑u d1ucu1 d1k

1 + φ∗ 1 + φ∗ 0

∑v dv1 ∑v ∑u dvkcu1 ∑u duk


Notice that δ∗ and γ∗ have disappeared. For fixed r∗ and C it is generic in A that this matrix is

non-singular. �
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