(CS361 Final Answers

Cristopher Moore, Fall 2006

1. (40 points total) Consider the following pseudocode:

stuff(list L of length n) {
if n==0 return;
for (i=n down to 1) print L[i];

list L1 = L[1...n/2]; // first half

list L2 = L[n/2+1...n]; // second half

list L3 = L[n/4+1...3n/4]; // middle two fourths
stuff(L1);

stuff(L2);

stuff (L3);

}

(a) Let f(n) be the running time of stuff on a list of size n; in particular, let f(n) be the total
number of elements stuff prints out. Write a recurrence relation for f(n).
Answer. The function prints out n numbers and calls itself three times on lists of size n/2, so

f(n) =3f(n/2) +n .

(b) Solve this recurrence relation within ©.

Answer. Without the driving term, we have f(n) = 3f(n/2). Trying a solution of the form
f(n) = n® gives a = log, 3. This is larger than 1, so the driving term is insignificant, and we get

F(n) = O(nl5?) |

2. (20 points) Name a function f(n) which is bigger than any polynomial, but less than any exponential.
In other words, f(n) = w(n*) for any constant k, but f(n) = o(2°") for any constant c.

Answer. Lots of things work: a few examples are f(n) = n'°¢™ or 20°8™)" for ¢ > 1, or v,

3. (20 points) I want to sort a list of 5 elements with an algorithm that uses comparisons to decide how
to rearrange the elements. What is the smallest number of comparisons I need to do this, and why?

Answer. There are 5! = 120 possible orders the elements can be in. By the “twenty questions”
argument, we need to do at least log, 120 comparisons to distinguish them, and rounding up gives 7.



4. (40 points) When we remove the root element from a min-heap (for instance, because it represents
the highest-priority task in a priority queue), we move the rightmost element from the bottom row up
to the root, and then downSift that element, swapping it with the smaller of its two daughters until
it finds a place where it is smaller than both its daughters. Prove that when we are done with this
process, we again have a legal min-heap, in which every element is less than both its daughters. Start
by describing the overall structure of your proof: if it is an inductive proof, state clearly the inductive
hypothesis that you will try to prove is true at each stage of the process.

Answer. Call the item we have moved up to replace the root x. First, note that since we assumed
we had a min-heap to start with, the only places where the min-heap property might be violated are
between x and its daughters. We will show that this inductively true. Suppose z’s daughters are y and
z, and let’s say that y is the smaller one and that = > y. Then swapping x and y puts y on top; but
since y < z and y < x, y is now less than both its daughters, and it is again true that the only places
which might violate the min-heap property are between z and its (new) daughters. This continues
until z is less than both its daughters, but now the heap property holds everywhere.

5. (30 points) Given a binary tree, define the following quantity:

S = Z 2—dcpth

leaves

Prove inductively that S < 1 for any binary tree. For which binary trees is § = 17

Answer. There are several proofs, but the simplest is to assume that this is true for both subtrees: call
their values S7 and S5, and assume that S7, .5, < 1. Making these subtrees’ roots the children of the
root increases the depths of their leaves by 1, and this decreases their contribution by a factor of 1/2,

)
:S1+S2 <

B <

The base case is given by a tree consisting just of the root node, for which S = 2° = 1.

S 1.

Another nice proof involves growing the tree by adding new leaves: if we add two daughters to a leaf
then S stays the same, and if we add only one it decreases.

The trees for which S = 1 are those where every internal node has two daughters. This includes
completely balanced trees, but lots of others as well.



6. (30 points total) Suppose I have a dynamic array structure called growingArray. At each point in time,
it consists of an array int array[maxSize] and a number size. Each time I insert a new number z,
I set array[size] = x and increment size, unless size = maxSize which means the array is full. In
this case, I double maxSize, allocate a new array of that size, copy the contents of the old array into
the new array, and then continue as before.

(a) What is the total running time of a series of n inserts, within ©, and what is the average running
time? Justify your answer.

Answer. The total running time is 1 per insert, for a total of n, plus the time it takes to copy the
old array into new ones. This only happens when the size is a power of 2, so this is

14+24+4+8+---42F

where 2F is the largest power of 2 less than or equal to n. For simplicity say 2 = n; then this
sum is
14+24+4+8+---+n

or, written backwards,

S R S
Ty T2

This geometric sum converges to a constant (in fact, to 2), so we get a total of ©(n). Dividing by
the number of inserts, the average running time of a single insert operation is O(1).

(b) What happens to the average running time if instead of doubling maxSize each time the array is
full, T increase maxSize by 10007
Answer. Now we copy the array every thousand steps, which takes

1000 + 2000 + 3000 + - -- +n

time. This is ©(n?), so the average time per insert is ©(n).

7. (20 points) Suppose z is a number mod n. Roughly how many multiplications does it take to calculate

1,000,000 4o
Your answer does not have to be exact, but it should be correct to within a factor of 2. Explain your
answer.

Answer. Since 1,000,000 is about 229, it takes about 20 repeated squarings to get

z, 2%,z 28,
up to :17220, and then at most 20 multiplications to combine the powers of 2 that appear in 1000000’s
binary digit sequence. The total is at most 40.

To be more precise we only need 19 squarings to get =, z2, z*, ... ,1;219, and then just 6 multiplications

to combine the powers 219 4 218 4 217 4 216 4 914 4 99 4 96 — 1000000. But we don’t need to be this
precise!



