
CS361 Homework #1 Solutions

1. According to Moore’s Law (no relation), computers get twice as fast every 18 months. Suppose that I
can currently solve a problem of size n within one week. What size of problem will I be able to solve
in one week with a computer 3 years from now if the running time of my algorithm grows as:

(a) f(n) = Θ(n)? 4n (if the speed doubles in 18 months, it quadruples in 3 years.)

(b) f(n) = Θ(n2)? 2n

(c) f(n) = Θ(
√

n)? 16n

(d) f(n) = Θ(2n)? n + 2

(e) f(n) = Θ(4n)? n + 1

(f) f(n) = Θ(2n/2)? n + 4

(g) f(n) = Θ(log2 n)? n4

(h) f(n) = Θ(log10 n)? n4

2. When we say f(n) = O(log n), why don’t we need to state the base of the logarithm? Because changing
the base only changes the log by a constant factor: logb n = (log n)/(log b).

3. Is 2O(n) the same as O(2n)? Why or why not? No: changing the exponent by a constant can change
the function by an exponential factor. For instance, 22n = 4n = ω(2n).

4. There are two ways to represent a graph: an adjacency matrix where for every pair of vertices u, v
there is a bit that tells you whether u and v are connected, and an edge list which gives a list of the
edges (u, v). If a graph has N vertices and M edges, how many bits does it take to give the adjacency
matrix, and how many bits does it take to give the edge list? Answer both in the sparse case where
M = Θ(N), and in the dense case where M = Θ(N2). Assume that each vertex is represented by a
number between 1 and N (how many bits does each such number take?) and give your answers in
terms of Θ.

Answer. The adjacency matrix takes N2 bits. For the edge list, since it takes log2 N bits to represent
a number from 1 to N and each edge consists of two vertices, it takes 2M log2 N = Θ(M log N) bits.
In the sparse case where M = Θ(N) this is only Θ(N log N), much more efficient than the adjacency
matrix; in the dense case where M = Θ(N2) this is Θ(N2 log N), so the adjacency matrix is more
efficient.

5. For each pair of functions, state whether their relationship is f = o(g), f = Θ(g), or f = ω(g):

(a) f(n) = log
√

n, g(n) = log(n2): f = Θ(g).

(b) f(n) = 3n/2, g(n) = 2n: f = o(g) since 31/2 =
√

3 < 2.

(c) f(n) = 2n, g(n) = nlog n: f = ω(g). Take logs: n = ω(log2 n).

(d) f(n) = 2n+10, g(n) = 2n: f = Θ(g) since f/g = 210 is a constant.

(e) f(n) = 2n+log n, g(n) = 2n: f = ω(g) since f/g = 2log n = n.
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(f) f(n) = nn, g(n) = n!: f = ω(g) since

f(n)
g(n)

=
n

n− 1
n

n− 2
n

n− 3
· · · n

1
→∞

6. Substitute a solution of the form f(n) = A · 4n + B into the recurrence f(n) = 4f(n− 1) + 4 and the
base case f(0) = 0 and solve for A and B.

The recurrence gives

f(n) = 4f(n− 1) + 4
⇒ 4nA + B = 4(4n−1A + B) + 4

= 4nA + 4B + 4
⇒ B = 4B + 4

⇒ −3B = 4
⇒ B = −4/3

and then the base case gives

f(0) = 0
A40 + B = A + B = 0

⇒ A = 4/3

so the exact solution is
f(n) = (4/3)× 4n − 4/3 = (4/3)(4n − 1) .

7. Substitute a solution of the form f(n) = rn into the recurrence f(n) = f(n− 1) + 6f(n− 2) and solve
for r. Hint: divide both sides by rn−2. There may be more than one solution; which one matters when
n is large?

f(n) = f(n− 1) + 6f(n− 2)
⇒ rn = rn−1 + 6rn−2

⇒ r2 = r + 6
⇒ r2 − r − 6 = 0

Since r2 − r − 6 = (r − 3)(r + 2), the two roots are 3 and −2. As n grows, (−2)n oscillates and grows
exponentially, but 3n grows even more quickly, so f(n) = Θ(3n).

8. Substitute a solution of the form f(n) = An into the recurrence f(n) = 2f(n/3) + n and solve for A.
Substitute your final solution back in to the recurrence to make sure it works.

An = 2An/3 + n

⇒ A = 2A/3 + 1
⇒ A/3 = 1
⇒ A = 3

so f(n) = 3n.
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9. Substitute a solution of the form f(n) = nα into the recurrence f(n) = 8f(n/4) and solve for α.
Substitute your final solution back in to the recurrence to make sure it works.

f(n) = 8f(n/4)
⇒ nα = 8(n/4)α

= nα × 8/4α

⇒ 4α = 8
⇒ α = log4 8 = 3/2

so f(n) = n3/2.

10. Given the base case f(0) = 1 and the recurrence f(n) = 3f(n− 1) + n, calculate f(n) for the first few
values of n, up to n = 8 or 9. Find the pattern in these numbers and propose a form for f(n).

This is somewhat challenging: if you think f(n) grows roughly as fast as some simple function g(n),
you might want to check the ratios f(n)/g(n) to figure out the multiplying constant. Then, see if
adding some correction term gives you f(n).

Finally, substitute your final answer back into the recurrence and base case and confirm that it works.

Answer. Here are the first few values:

n 0 1 2 3 4 5 6 7 8
f(n) 1 4 14 45 139 422 1272 3823 11477

From the recurrence, we might guess that when n is large, the driving term n is unimportant compared
to the exponential growth caused by the homogeneous term 3f(n − 1), and so that f(n) = Θ(3n).
Indeed, if we look at the ratios between f(n) and f(n− 1), these converge to 3.

Inspired by this, we divide f(n) by 3n, and find that the result converges to 7/4. We conclude that
f(n) is (7/4)3n plus or minus a small correction.

To find this correction, we subtract (7/4)3n from f(n) and get

n 0 1 2 3 4 5 6 7 8
f(n) 1 4 14 45 139 422 1272 3823 11477

f(n)− (3/4)3n −3/4 −5/4 −7/4 −9/4 −11/4 −13/4 −15/4 −17/4 −19/4

This correction is −n/2− 3/4, so the final answer is f(n) = (7/4)3n − n/2− 3/4.

Finally, we check the base case f(0) = 7/4− 0− 3/4 = 1, and the recurrence:

f(n) = 3f(n− 1) + n

(7/4)3n − n/2− 3/4 = 3((7/4)3n−1 − (n− 1)/2− 3/4) + n

= (7/4)3n − 3(n− 1)/2− 9/4 + n

= (7/4)3n − n/2 + 3/2− 9/4

and it works.
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11. In the following program, the global variable tick represents the running time. Let f(n) be the total
number of ticks for calling calc(n). Find the recurrence relation for f(n) and its base cases. Explain
which part of the recurrence is the homogeneous term, and which is the driving term. Finally, solve
this recurrence and determine f(n) within Θ.

calc(int n) {
if (n <= 0) return;
else {
calc(n-1);
for (int i = 0; i < n; i++)

for (int j = 0; j < i; j++)
tick++;

calc(n-2);
}

}

Answer. f(n) = f(n−1)+f(n−2)+n(n−1)/2. The homogeneous part f(n) = f(n−1)+f(n−2) comes
from calc calling itself twice on n−1 and once on n−2, and the driving term 0+1+2+ · · ·+(n−1) =
n(n− 1)/2 comes from the two nested for loops.

The solution to the homogeneous part is just like the Fibonacci numbers, f(n) = ϕn where ϕ is the
golden ratio (

√
5+1)/2 ≈ 1.618. Since the driving term is only polynomial, it is insignificant compared

to this exponential growth, and f(n) = Θ(ϕn).

12. A quasipolynomial is a function of the form f(n) = 2Θ(logk n) for some constant k > 0 (where logk n
means (log n)k).

(a) Show that a quasipolynomial function with k > 1 is ω of any polynomial and o of any exponential.

(b) Show that if f(n) and g(n) are both quasipolynomial, then so is their composition f(g(n)).

Answer. We have log f(n) = Θ(logk n), while if g(n) is a polynomial nc, then log g(n) = c log n =
Θ(log n). If k > 1 we then have log f = ω(log g), which implies f = ω(g).

On the other hand, if g(n) is an exponential function 2cn, then log g(n) = Θ(n), and now log f =
o(log g).

For the second question, suppose that f(n) = 2logk n and g(n) = 2log` n. Then

f(g(n)) = 2logk 2log` n

= 2(log` n)k

= 2logk` n .

(The same argument works if you Θ in the exponent with any constant.)

13. The research lab of Prof. Flush is well-funded, and they regularly upgrade their equipment. Brilliant
Pebble, a graduate student, has to run a rather large simulation. Given that the speed of her computer
doubles every two years, if the running time of this simulation exceeds a certain T , she will actually
graduate earlier if she waits for the next upgrade to start her program. What is T?

Answer. Suppose her simulation would take 4 years using her current computer. If she waits two years,
her computer will be twice as fast, and her simulation will only take 2 more years after that, for a total
of 4. This is the break-even point; if the simulation would take more than 4 years, she should wait!
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