
CS361 Homework #2

Due Tuesday, September 28th

1. Prove that the exact solution of

f(n) = 4f(n/2) + n2, f(1) = 0

is
f(n) = n2 log2 n

when n is a power of 2. Instead of just plugging the solution in to the recurrence, use the structure of
an inductive proof: show that it’s true for the base case, and then show that if it’s true for n/2, it’s
also true for n.

2. Using the fact that we have to handle every possible permutation, give a lower bound on the number
of comparisons we need to sort a list of 4 elements. Is there in fact an algorithm that sorts lists of size
4 with this number of comparisons?

3. Use the exact recurrence for the average number of comparisons done by Quicksort,

f(n) = n− 1 +
2
n

n−1∑
`=0

f(`) ,

and the base case f(0) = 0, to calculate exactly the average number of comparisons Quicksort does
for lists of size n = 2, 3, and 4. Then explain these numbers in terms of what might happen when the
algorithm runs: where the pivot ends up, what size lists it calls itself on recursively, and so on. (Feel
free to use symmetry to shorten your answer; for instance, having the pivot at the left end produces
the same running time as if it were at the right end.)

4. Here is an algorithm for the partition step of Quicksort due to Hoare:

// partition A[first..last] using A[first] as the partition:
// put the smaller elements on the left, the larger on the right,
// and return the final position of the partition
int partition(A,first,last) {
p = A[first];
left = first+1;
right = last;
while (left <= right) {
while (A[left] <= p and left < last) left++;
while (A[right] > p) right--;
if (left < right) swap A[left] and A[right];

}
// now put pivot in the right place
if (right > first) swap A[first] and A[right];
return right;

}
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Prove that this algorithm works, by defining a loop invariant which makes some guarantee about
the state of the world after each run of the outer while loop. Prove “initialization” (base case),
“maintenance” (inductive step), and “termination” (making sure that when we’re done the entire
thing works). If you take more than a page or so, you’re probably giving too much detail.

5. In Quicksort, suppose I could guarantee that the pivot’s position is a fraction a through the list for
some constant 0 < a < 1. The recurrence for the number of comparisons would then be roughly

f(n) = f(an) + f((1− a)n) + n

(setting a = 1/2 gives the recurrence for Mergesort). Solve this recurrence by plugging in a solution of
the form f(n) = An log n. Discuss what happens to the constant A in the limit a→ 0 or a→ 1.

6. Let f(w) be the number of ways to tile a rectangle of height 2 and width w with horizontal and vertical
dominoes. For instance, f(1) = 1, f(2) = 2, and f(3) = 3 as the following picture shows:

w=1 w=2

w=3

What is the recurrence for f(w)? What is f(10), for instance? Working backwards, what is f(0)?

Extra Credit: What happens if we allow 1× 1 blocks as well as dominoes, such as

Hint: it might help to write a recurrence for a pair of functions.
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